Regularity of weak KAM solutions

Ludovic Rifford

Université Nice Sophia Antipolis
&
Institut Universitaire de France

Analysis of Hamilton-Jacobi equation:
Optimization, Dynamics and Control
SIAM conference, Scottsdale, 2015
Let M be a smooth manifold of dimension $n \geq 2$ be fixed. Let $H : T^*M \to \mathbb{R}$ be a Hamiltonian of class C^2 satisfying the following properties:

(H1) **Superlinear growth:**
For every $K \geq 0$, there is $C^*(K) \in \mathbb{R}$ such that

$$H(x, p) \geq K|p| + C^*(K) \quad \forall (x, p) \in T^*M.$$

(H2) **Uniform convexity:**
For every $(x, p) \in T^*M$, $\frac{\partial^2 H}{\partial p^2}(x, p)$ is positive definite.

(H3) **Uniform boundedness:** For every $R \geq 0$, we have

$$A^*(R) := \sup \{ H(x, p) \mid \|p\| \leq R \} < \infty.$$

Assumption (H3) holds if M is compact.
A first result of regularity

We are concerned with the regularity properties of viscosity solutions of the Hamilton-Jacobi equation

\[H(x, d_x u) = 0 \quad \text{on } M \quad \text{(HJ)}. \]

Theorem (LR '07)

Let \(H : T^* M \to \mathbb{R} \) be a Hamiltonian of class \(C^2 \) satisfying (H1)-(H2) and \(u : M \to \mathbb{R} \) be a viscosity solution of (HJ). Then the function \(u \) is locally semiconcave on \(M \). Moreover, the singular set of \(u \) is nowhere dense in \(M \) and \(u \) is \(C^{1,1}_{loc} \) on the open dense set \(M \setminus \Sigma(u) \).

Reminder:

\[\Sigma(u) = \left\{ x \in M \mid u \text{ not diff. at } x \right\} \]
A first result of regularity

We are concerned with the regularity properties of viscosity solutions of the Hamilton-Jacobi equation

\[H(x, d_x u) = 0 \quad \forall x \in M \] (HJ).

Theorem (LR, 2007)

Let \(H : T^*M \to \mathbb{R} \) be a Hamiltonian of class \(C^2 \) satisfying (H1)-(H2) and \(u : M \to \mathbb{R} \) be a viscosity solution of (HJ). Then the function \(u \) is locally semiconcave on \(M \). Moreover, the singular set of \(u \) is nowhere dense in \(M \) and \(u \) is \(C^{1,1}_{loc} \) on the open dense set \(M \setminus \Sigma(u) \).

Reminder:

\[\Sigma(u) = \{ x \in M \mid u \text{ not diff. at } x \} \]
An instructive example
An instructive example
An instructive example
Characterization of viscosity solutions

Let \(L : TM \to \mathbb{R} \) be the Tonelli Lagrangian associated with \(H \) by Legendre-Fenchel duality, that is
\[
L(x, v) := \max_{p \in T^*_x M} \left\{ p \cdot v - H(x, p) \right\} \quad \forall (x, v) \in TM.
\]

Proposition

The function \(u : M \to \mathbb{R} \) is a viscosity solution of (HJ) iff:

(i) For every Lipschitz curve \(\gamma : [a, b] \to M \), we have
\[
u(\gamma(b)) - u(\gamma(a)) \leq \int_a^b L(\gamma(t), \dot{\gamma}(t)) \, ds.
\]

(ii) \(\forall x \in M \), there is a curve \(\gamma_x : (-T, 0] \to M \) such that
\[
u(\gamma(b)) - u(\gamma(a)) = \int_a^b L(\gamma(t), \dot{\gamma}(t)) \, ds \quad \forall a < b < 0.
\]
Semiconcavity

\[z = \gamma_x(-1) \]

\[u(x) = u(z) + \int_{-1}^{0} L(\gamma_x(t), \dot{\gamma}_x(t)) \, dt \]

\[u(x') \leq u(z) + \int_{-1}^{0} L(\gamma'(t), \dot{\gamma}'(t)) \, dt \]

Thus

\[u(x') \leq u(x) + \int_{-1}^{0} L(\gamma'(t), \dot{\gamma}'(t)) - L(\gamma_x(t), \dot{\gamma}_x(t)) \, dt \]
We can repeat the previous argument to show that for every \(x \in M \), every semi-calibrated curve \(\gamma_x : (-T_x, 0] \to M \) and every \(t \in (0, T) \), the graph of \(u \) at \(\gamma_x(-t) \) admits a support function of class \(C^2 \) from below. Moreover, we can show that for every \(x \in M \), there is a one-to-one correspondence between the limiting differential of \(u \) at \(x \),

\[
d^*_x u := \left\{ \lim d_{x_k} u \mid x_k \to x, u \text{ diff at } x_k \right\},
\]

and the set of semi-calibrated curves \((p = \frac{\partial L}{\partial \nu} (\dot{\gamma}(0))) \).
The classical Dirichlet problem

Let M be an open set in \mathbb{R}^n with compact boundary of class $C^{k,1}$ and $H : \mathbb{R}^n \to \mathbb{R}$ of class $C^{k,1}$ (with $k \geq 2$) satisfying (H1)-(H3) and such that $H(x,0) < 0$ for every $x \in \bar{M}$.

Proposition

The continuous function $u : \bar{M} \to \mathbb{R}$ given by

$$u(x) := \inf \left\{ \int_0^t L(\gamma(s), \dot{\gamma}(s)) \, ds \right\},$$

where the infimum is taken among Lipschitz curves $\gamma : [0, t] \to \bar{M}$ with $\gamma(0) \in \partial \Omega, \gamma(t) = x$ is the unique viscosity solution to the Dirichlet problem

$$\begin{cases} H(x, du(x)) = 0 & \forall x \in M, \\ u(x) = 0 & \forall x \in \partial M. \end{cases}$$
The classical Dirichlet problem (picture)
Let u be a solution to the previous Dirichlet problem. We call \textbf{critical point} of u, any $x \in M$ such that $0 \in \partial_x u$. Here, ∂_x denotes the Clarke generalized differential of u at x, \textit{i.e.}

$$\partial_x u := \text{conv}(d_x^* u).$$

We denote by $C(u)$ the set of critical points of u in M.

Theorem (LR '07)

\textit{If $k \geq 2n^2 + 4n + 1$, then the set $u(C(u))$ has Lebesgue measure zero.}
The distance function to the cut-locus

We call **cut locus** associated with this Dirichlet problem the set

$$ \text{cut}(u) := \overline{\Sigma}(u). $$

The **distance function to the cut locus** is defined as

$$ \tau_{\text{cut}}(x) := \min \{ t \geq 0 \mid \exp(x, t) \in \text{cut}(u) \}, $$

for every $x \in \partial M$.

Theorem (Itoh-Tanaka ’01, Li-Nirenberg ’05)

The function t_{cut} is Lipschitz.

Since $\text{cut}(u) = \{ \exp(x, t_{\text{cut}}(x)) \mid x \in \partial M \}$, we get

Corollary

The set $\text{cut}(u)$ has a finite $(n - 1)$-dimensional Hausdorff measure.
Let M be a smooth compact manifold of dimension $n \geq 2$ be fixed. Let $H : T^*M \to \mathbb{R}$ be a Hamiltonian of class C^k, with $k \geq 2$. We call **critical value** of H the constant $c = c[H]$ defined as

$$c[H] := \inf_{u \in C^1(M;\mathbb{R})} \left\{ \max_{x \in M} \{ H(x, du(x)) \} \right\}.$$

Theorem (Fathi ’90s)

There is a viscosity solution $u : M \to \mathbb{R}$ to the critical HJ equation

$$H(x, d_x u) = c[H] \quad \text{on } M.$$

It is called a **critical** or a **weak KAM solution** of H.
Denote by $S(H)$ the set of weak KAM solutions for H. The **Aubry set** may be defined as

$$
\tilde{\mathcal{A}}(H) = \bigcup_{u \in S(H)} \text{Graph}(du).
$$

Proposition

For every $x \in M$ and every $p \in d_x^* u$ there is a semi-calibrated curve $\gamma = \gamma_{x, p} : (-\infty, 0] \rightarrow M$ such that

$$
\frac{\partial L}{\partial v}(\dot{\gamma}(0)) = (x, p).
$$

It satisfies

$$
\lim_{t \to -\infty} \text{dist} (\gamma(t), \mathcal{A}(H)) = 0.
$$
Two results of regularity

Theorem (Bernard ’07)

Assume that the Aubry set is exactly one hyperbolic periodic orbit, then any critical solution is ”smooth” in a neighborhood of $A(H)$.

Theorem (Arnaud ’08)

Let $M = \mathbb{T}^2$ and $H : T^*M \to \mathbb{R}$ be an Hamiltonian of class C^2 satisfying (H1)-(H2). Let $u : M \to \mathbb{R}$ be a solution of (HJ) of class C^1 without singularities. Then u is $C^{1,1}$ and C^2 almost everywhere.

We call **singularity** any equilibrium of the characteristic flow of u, that is any $x \in M$ such that $\frac{\partial H}{\partial p}(x, d_x u) = 0$.
For every $\theta = (x, d_x u) \in T^* M$ and every $t \in \mathbb{R}$, we define the Lagrangian subspace $G^t_\theta \subset T_\theta T^* M$ by $(V_\theta \simeq \{0\} \times \mathbb{R}^2)$

$$G^t_\theta := \left(\phi^H_t \right)_* \left(V_{\phi^H_{-t}(\theta)} \right).$$
Definition

For every $\theta = (x, d_x u)$, we define the positive and negative Green bundles at θ as

$$G_{\theta}^+ := \lim_{t \to +\infty} G_{\theta}^t \quad \text{and} \quad G_{\theta}^- := \lim_{t \to -\infty} G_{\theta}^t$$
The following properties hold:

- For every $\theta = (x, d_x u)$, $G_{\theta}^- \preceq G_{\theta}^+$.
- The function $x \in M \mapsto G^+_{(x, d_x u)}$ is upper-semicontinuous.
- The function $x \in M \mapsto G^-_{(x, d_x u)}$ is lower-semicontinuous.
- So, if $G^+_{(x, d_x u)} = G^-_{(x, d_x u)}$ for some x then both functions are continuous at x.
- For every $x \in M$, we have

$$G^-_{(x, d_x u)} \preceq \mathcal{H}ess_C u(x) \preceq G^+_{(x, d_x u)};$$

where $\mathcal{H}ess_C u(x)$ denotes the Clarke generalized Hessian of u at x.

Ludovic Rifford
Regularity of weak KAM solutions
Thank you for your attention!!