Franks’ Lemma for Mañé perturbations of Riemannian metrics and applications

Ludovic Rifford

Université Nice Sophia Antipolis
& Institut Universitaire de France

Workshop on Hamiltonian dynamical systems
January 4-10, 2015
Fudan University, Shanghai, China
Let \((M, g)\) be a smooth compact Riemannian manifold of dimension \(n \geq 2\) be fixed.
Let \((M, g)\) be a smooth compact Riemannian manifold of dimension \(n \geq 2\) be fixed.

Definition

We call Mañé perturbation or conformal perturbation of the metric \(g\) any perturbation of the form

\[
\tilde{g} = e^f g,
\]

where \(f : M \to \mathbb{R}\) is a smooth function.
Let \((M, g)\) be a smooth compact Riemannian manifold of dimension \(n \geq 2\) be fixed.

Definition

We call **Mañé perturbation** or **conformal perturbation** of the metric \(g\) any perturbation of the form

\[
\tilde{g} = e^f g,
\]

where \(f : M \to \mathbb{R}\) is a smooth function.

Remark

If \(f\) is close to 0 in \(C^k\) topology then the geodesic flow of \(\tilde{g} = e^f g\) is close the geodesic flow of \(g\) in \(C^{k-1}\) topology.
Connecting geodesics

\[\gamma \] connecting \(\gamma_1 \) and \(\gamma_2 \) within \(\text{Supp} \ (f) \).
First define the connecting trajectory by

\[\tilde{\gamma}(t) = \alpha(t) \gamma_1(t) + (1 - \alpha(t)) \gamma_2(t). \]

and reparametrize it by arc-length w.r.t. the initial metric g to get a new parametrized curve γ.

Ludovic Rifford

Franks’ Lemma for Mañé perturbations..
First define the connecting trajectory by
\[\tilde{\gamma}(t) = \alpha(t) \gamma_1(t) + (1 - \alpha(t)) \gamma_2(t). \]
and reparametrize it by arc-length w.r.t. the initial metric \(g \) to get a new parametrized curve \(\gamma \). Setting
\[H(x, p) = \frac{1}{2} \| p \|_x^2 \quad \text{and} \quad \tilde{H}(x, p) = \frac{e^{-f(x)}}{2} \| p \|_x^2, \]
we would like to construct a real function \(f \) satisfying
\[
\begin{align*}
\dot{\gamma} &= \frac{\partial \tilde{H}}{\partial p} = e^{-f(\gamma)} \frac{\partial H}{\partial p}(\gamma, p) \\
\dot{p} &= -\frac{\partial \tilde{H}}{\partial x} = -e^{-f(\gamma)} \frac{\partial H}{\partial x}(\gamma, p) - \tilde{H}(\gamma, p) d_\gamma f.
\end{align*}
\]
along \(\gamma \).
A constructive method I

First define the connecting trajectory by

$$\tilde{\gamma}(t) = \alpha(t) \gamma_1(t) + (1 - \alpha(t)) \gamma_2(t).$$

and reparametrize it by arc-length w.r.t. the initial metric g to get a new parametrized curve γ. Setting

$$H(x, p) = \frac{1}{2} \|p\|_x^2$$

and

$$\tilde{H}(x, p) = \frac{e^{-f(x)}}{2} \|p\|_x^2,$$

we would like to construct a real function f satisfying

$$\begin{cases}
\dot{\gamma} = \frac{\partial \tilde{H}}{\partial p} = e^{-f(\gamma)} \frac{\partial H}{\partial p}(\gamma, p) \\
\dot{p} = -\frac{\partial \tilde{H}}{\partial x} = -e^{-f(\gamma)} \frac{\partial H}{\partial x}(\gamma, p) - \tilde{H}(\gamma, p) d\gamma f.
\end{cases}$$

along γ. This can be done if we force $f = 0$ along γ.

Ludovic Rifford
Franks’ Lemma for Mañé perturbations.
A constructive method I

As a matter of fact, if we impose $f = 0$ along γ then we need

\[
\begin{cases}
\gamma'(t) = \frac{\partial H}{\partial p}(\gamma(t), p(t)) \\
\dot{p}(t) = -\frac{\partial H}{\partial x}(\gamma(t), p(t)) - \frac{1}{2}d_{\gamma(t)}f.
\end{cases}
\]

which can be solved.
As a matter of fact, if we impose $f = 0$ along γ then we need

\[
\begin{align*}
\dot{\gamma}(t) &= \frac{\partial H}{\partial p}(\gamma(t), p(t)) \\
\dot{p}(t) &= -\frac{\partial H}{\partial x}(\gamma(t), p(t)) - \frac{1}{2} d_{\gamma(t)}f.
\end{align*}
\]

which can be solved. Moreover, since $H(\gamma(t), p(t)) = 1/2$ we have

\[d_{\gamma(t)}f \cdot \dot{\gamma}(t) = 0.\]
As a matter of fact, if we impose $f = 0$ along γ then we need

\[
\begin{cases}
\dot{\gamma}(t) = \frac{\partial H}{\partial p} (\gamma(t), p(t)) \\
\dot{p}(t) = -\frac{\partial H}{\partial x} (\gamma(t), p(t)) - \frac{1}{2} d_{\gamma(t)} f.
\end{cases}
\]

which can be solved. Moreover, since $H(\gamma(t), p(t)) = 1/2$ we have

\[d_{\gamma(t)} f \cdot \dot{\gamma}(t) = 0.\]
The control approach

Define the mapping

\[E : C^\infty([0, \tau], \mathbb{R}^n) \longrightarrow \mathbb{R}^n \times (\mathbb{R}^n)^* \]

\[u \longmapsto (x_u(\tau), p_u(\tau)) \]

where \((x_u, p_u) : [0, \tau] \longrightarrow \mathbb{R}^n \times (\mathbb{R}^n)^*\) is the solution of

\[
\begin{align*}
\dot{x}(t) &= \frac{\partial H}{\partial p}(x(t), p(t)) \\
\dot{p}(t) &= -\frac{\partial H}{\partial x}(x(t), p(t)) - u(t),
\end{align*}
\]

starting at \((x_1(0), p_1(0))\).
The control approach

Define the mapping

\[E : C^\infty([0, \tau], \mathbb{R}^n) \longrightarrow \mathbb{R}^n \times (\mathbb{R}^n)^* \]

\[u \longmapsto (x_u(\tau), p_u(\tau)) \]

where \((x_u, p_u) : [0, \tau] \longrightarrow \mathbb{R}^n \times (\mathbb{R}^n)^*\) is the solution of

\[
\begin{align*}
\dot{x}(t) &= \frac{\partial H}{\partial p}(x(t), p(t)) \\
\dot{p}(t) &= -\frac{\partial H}{\partial x}(x(t), p(t)) - u(t),
\end{align*}
\]

starting at \((x_1(0), p_1(0))\).

\[\Rightarrow \text{If } E \text{ is open at } u \equiv 0 \text{ then we can connect } \gamma_1 \text{ to the geodesics which are sufficiently close to } \gamma_1. \]
The Franks’ Lemma

Let $\varphi : M \to M$ be a C^1 diffeomorphism, consider a finite set of points $S = \{x_1, \ldots, x_m\}$ and set

$$\Pi = \bigoplus_{i=1}^m T_{x_i} M, \quad \Pi' = \bigoplus_{i=1}^m T_{\varphi(x_i)} M.$$
The Franks’ Lemma

Let $\varphi : M \to M$ be a C^1 diffeomorphism, consider a finite set of points $S = \{x_1, \ldots, x_m\}$ and set

$$\Pi = \bigoplus_{i=1}^m T_{x_i} M, \quad \Pi' = \bigoplus_{i=1}^m T_{\varphi(x_i)} M.$$

Lemma (Franks, 1971)

There is $\bar{\epsilon} > 0$ such that for every $\epsilon \in (0, \bar{\epsilon})$, there is $\delta = \delta(\epsilon) > 0$ such that for any isomorphism

$$L = (L_1, \ldots, L_m) : \Pi \to \Pi'$ s.t. $\|L_i - D_{x_i} \varphi\| < \delta \ \forall i,$$

there exists a C^1 diffeomorphism $\psi : M \to M$ satisfying

1. $\psi(x_i) = \varphi(x_i) \ \forall i,$
2. $D_{x_i} \psi = L_i \ \forall i,$
3. $\|g - f\|_{C^1} < \epsilon.$
Given $\theta_0 = (x, v) \in UM$ and $T > 0$, we consider the unit speed geodesic $\gamma_{\theta_0} : [0, T] \to M$ starting at x with initial velocity v and we set $\theta_1 := (\gamma_{\theta_0}(T), \dot{\gamma}_{\theta_0}(T))$. Then denoting by N_0, N_1 the hyperplanes in $T_{\theta_0}UM, T_{\theta_1}UM$ which are orthogonal to the flow at θ_0, θ_1, we consider the (local) **Poincaré mapping** from Σ_0 (tangent to N_0 at θ_0) to Σ_1 (tangent to N_1 at θ_1).
Given $\theta_0 = (x, v) \in UM$ and $T > 0$, we consider the unit speed geodesic $\gamma_{\theta_0} : [0, T] \to M$ starting at x with initial velocity v and we set $\theta_1 := (\gamma_{\theta_0}(T), \dot{\gamma}_{\theta_0}(T))$. Then denoting by N_0, N_1 the hyperplanes in $T_{\theta_0} UM, T_{\theta_1} UM$ which are orthogonal to the flow at θ_0, θ_1, we consider the (local) Poincaré mapping from Σ_0 (tangent to N_0 at θ_0) to Σ_1 (tangent to N_1 at θ_1).
Let \(\text{Sp}(m) \) be the symplectic group in \(M_{2m}(\mathbb{R}) (m = n - 1) \), that is the smooth submanifold of matrices \(X \in M_{2m}(\mathbb{R}) \) satisfying

\[
X^* \mathbb{J} X = \mathbb{J} \quad \text{where} \quad \mathbb{J} := \begin{bmatrix} 0 & I_m \\ -I_m & 0 \end{bmatrix}.
\]

Choosing a convenient set of coordinates, the differential of the Poincaré mapping \(P := P_g(\Sigma_0, \Sigma_T, \gamma_{\theta_0}) \) at \(\theta_0 \) is the symplectic matrix \(X(T) \) where \(X : [0, T] \rightarrow \text{Sp}(m) \) is solution to the Cauchy problem

\[
\begin{cases}
\dot{X}(t) = A(t)X(t) & \forall t \in [0, T], \\
X(0) = I_{2m},
\end{cases}
\]

where \(A(t) \) has the form

\[
A(t) = \begin{pmatrix} 0 & I_m \\ -K(t) & 0 \end{pmatrix} \quad \forall t \in [0, T].
\]
Problem:

Given $\epsilon > 0$, does the set of differentials of Poincaré maps $P_{\tilde{g}}(\Sigma_0, \Sigma_T, \gamma_{\theta_0})$ at θ_0 associated with smooth conformal factors $f : M \to \mathbb{R}$ such that

$$\|f\|_{C^2} < \epsilon,$$

fill a ball around $d\bar{\theta}_P$ in $\text{Sp}(\mathfrak{m})$? What's the radius of that ball in terms of ϵ?
Problem:

Given $\epsilon > 0$, does the set of differentials of Poincaré maps $P_{\tilde{g}}(\Sigma_0, \Sigma_T, \gamma_{\theta_0})$ at θ_0 associated with smooth conformal factors $f : M \to \mathbb{R}$ such that

- $\|f\|_{C^2} < \epsilon$,
Problem:

Given $\epsilon > 0$, does the set of differentials of Poincaré maps $P_{\tilde{g}}(\Sigma_0, \Sigma_T, \gamma_{\theta_0})$ at θ_0 associated with smooth conformal factors $f : M \to \mathbb{R}$ such that

- $\|f\|_{C^2} < \epsilon$,
- the curve $\gamma_{\theta_0} : [0, T] \to M$ is a unit-speed geodesic w.r.t. \tilde{g},
Problem:

Given $\epsilon > 0$, does the set of differentials of Poincaré maps $P_{\tilde{g}}(\Sigma_0, \Sigma_T, \gamma_{\theta_0})$ at θ_0 associated with smooth conformal factors $f: M \to \mathbb{R}$ such that

- $\|f\|_{C^2} < \epsilon$,
- the curve $\gamma_{\theta_0}: [0, T] \to M$ is a unit-speed geodesic w.r.t. \tilde{g},

fill a ball around $d\tilde{\theta}P$ (in $\text{Sp}(m)$)?
Problem:

Given $\epsilon > 0$, does the set of differentials of Poincaré maps $P_{\tilde{g}}(\Sigma_0, \Sigma_T, \gamma_{\theta_0})$ at θ_0 associated with smooth conformal factors $f : M \to \mathbb{R}$ such that

\begin{itemize}
 \item $\|f\|_{C^2} < \epsilon$,
 \item the curve $\gamma_{\theta_0} : [0, T] \to M$ is a unit-speed geodesic w.r.t. \tilde{g},
\end{itemize}

fill a ball around $d_{\theta}P$ (in $\text{Sp}(m)$)?

What’s the radius of that ball in term of ϵ?
Set $\gamma := \gamma_{\theta_0}$. We are looking for a smooth function

$$f : M \to \mathbb{R}$$

satisfying the following properties

$$f(\gamma(t)) = 0 \quad \text{and} \quad d_{\gamma(t)}f = 0 \quad \forall t \in [0, T],$$

with

$$d^2V(\gamma(t)) \quad \text{free.}$$
Set $\gamma := \gamma_{\theta_0}$. We are looking for a smooth function $f : M \to \mathbb{R}$ satisfying the following properties

$$f(\gamma(t)) = 0 \quad \text{and} \quad d_{\gamma(t)} f = 0 \quad \forall t \in [0, T],$$

with

$$d^2 V(\gamma(t)) \quad \text{free}.$$

$$\implies \quad d^2 V(\gamma(t)) \quad \text{is the control.}$$
A controllability problem on $\text{Sp}(m)$

The differential of the Poincaré map $P_{\tilde{g}}(\Sigma_0, \Sigma_T, \gamma_{\theta_0})$ at θ_0 associated with the metric $\tilde{g} = e^{f}g$ is given by $X_u(T)$ where $X_u : [0, T] \to \text{Sp}(m)$ is solution to the control problem

\[
\begin{cases}
\dot{X}_u(t) = A(t)X_u(t) + \sum_{i \leq j = 1}^{m} u_{ij}(t)E(ij)X_u(t), & \forall t \in [0, T], \\
X(0) = I_{2m},
\end{cases}
\]

where the $2m \times 2m$ matrices $E(ij)$ are defined by

\[
E(ij) := \begin{pmatrix} 0 & 0 \\ E(ij) & 0 \end{pmatrix},
\]

with

\[
\begin{cases}
(E(ij))_{k,l} := \delta_{ik}\delta_{il} \forall i = 1, \ldots, m, \\
(E(ij))_{k,l} = \delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk} \forall i < j = 1, \ldots, m.
\end{cases}
\]
Local controllability on $\text{Sp}(m)$

We are considering a bilinear control system on $M_{2m}(\mathbb{R})$ of the form

$$\dot{X}(t) = A(t)X(t) + \sum_{i=1}^{k} u_i(t)B_iX(t) \quad \forall t \in [0, T].$$
Local controllability on $\text{Sp}(m)$

We are considering a bilinear control system on $M_{2m}(\mathbb{R})$ of the form

$$\dot{X}(t) = A(t)X(t) + \sum_{i=1}^{k} u_i(t)B_iX(t) \quad \forall t \in [0, T].$$

Moreover, if we assume that $A(t), B_1, \ldots, B_k$ satisfy

$$\mathbb{J}A(t), \mathbb{J}B_1, \ldots, \mathbb{J}B_k \in S(2m) \quad \forall t \in [0, T],$$

then any solution $X : [0, T] \rightarrow M_{2m}(\mathbb{R})$ starting at $\bar{X} \in \text{Sp}(m)$ satisfies

$$X(t) \in \text{Sp}(m) \quad \forall t \in [0, T].$$
Local controllability on $\text{Sp}(m)$

Proposition

Define the k sequences of smooth mappings

$$\{B_1^j\}, \ldots, \{B_k^j\} : [0, T] \to T_{l_2m}\text{Sp}(m)$$

by

$$\begin{align*}
B_0^i(t) &:= B_i, \\
B_i^j(t) &:= B_i^{j-1}(t) + B_i^{j-1}(t)A(t) - A(t)B_i^{j-1}(t),
\end{align*}$$

for every $t \in [0, T]$ and every $i \in \{1, \ldots, k\}$. Assume that there exists some $\bar{t} \in [0, T]$ such that

$$\text{Span}\left\{B_i^j(\bar{t}) \mid i \in \{1, \ldots, k\}, j \in \mathbb{N}\right\} = T_{l_2m}\text{Sp}(m).$$

Then for every $\bar{X} \in \text{Sp}(m)$, the control system is controllable at first order around $\bar{u} \equiv 0$.

Ludovic Rifford
Franks’ Lemma for Mañé perturbations..
Sketch of proof.

Let $\bar{X} \in \text{Sp}(m)$ be fixed, we define the mapping $E : L^2([0, T], \mathbb{R}^k) \to M_{2m}(\mathbb{R})$ by

$$E(u) := X_u(T) \quad \forall u \in L^2([0, T], \mathbb{R}^k),$$

where X_u is the solution to the control system starting at \bar{X}.

If E is not a submersion at $\bar{u} \equiv 0$, then there is a nonzero matrix Y such that

$$X_0(T)JY \in S(2m)$$

and

$$\text{Tr} (Y^* D_0 E(v)) = 0 \quad \forall v \in L^2([0, T], \mathbb{R}^k).$$

The latter can be written as

$$(\sum_{i=1}^k \int_T^0 v_i(t) \text{Tr}(Y^* S(T)S(t) - 1^i B_i X_0(t)) \, dt = 0 \quad \forall v.$$
Sketch of proof.

Let \(\bar{X} \in \text{Sp}(m) \) be fixed, we define the mapping

\[
E : L^2([0, T], \mathbb{R}^k) \to M_{2m}(\mathbb{R})
\]

by

\[
E(u) := X_u(T) \quad \forall u \in L^2([0, T], \mathbb{R}^k),
\]

where \(X_u \) is the solution to the control system starting at \(\bar{X} \). If \(E \) is not a submersion at \(\bar{u} \equiv 0 \), then there is a nonzero matrix \(Y \) such that \(X_0(T)JY \in S(2m) \) and

\[
\text{Tr} \left(Y^* D_0 E(v) \right) = 0 \quad \forall v \in L^2([0, T], \mathbb{R}^k).
\]
Local controllability on $Sp(m)$

Sketch of proof.

Let $\bar{X} \in Sp(m)$ be fixed, we define the mapping $E : L^2([0, T], \mathbb{R}^k) \to M_{2m}(\mathbb{R})$ by

$$E(u) := X_u(T) \quad \forall u \in L^2([0, T], \mathbb{R}^k),$$

where X_u is the solution to the control system starting at \bar{X}. If E is not a submersion at $\bar{u} \equiv 0$, then there is a nonzero matrix Y such that $X_0(T)\mathbb{J}Y \in S(2m)$ and

$$\text{Tr} (Y^*D_0E(v)) = 0 \quad \forall v \in L^2([0, T], \mathbb{R}^k).$$

The latter can be written as (with $\dot{S} = AS$, $S(0) = I_{2m}$)

$$\sum_{i=1}^k \int_0^T v_i(t) \text{Tr} (Y^*S(T)S(t)^{-1}B_iX_0(t)) \, dt = 0 \quad \forall v.$$
In our case, we have

\[
\begin{align*}
\dot{X}_u(t) &= A(t)X_u(t) + \sum_{i \leq j = 1}^m u_{ij}(t)E(ij)X_u(t), \quad \forall t \in [0, T], \\
X(0) &= I_{2m},
\end{align*}
\]

with

\[
A(t) = \begin{pmatrix} 0 & I_m \\ -K(t) & 0 \end{pmatrix} \quad \text{and} \quad E(ij) := \begin{pmatrix} 0 & 0 \\ E(ij) & 0 \end{pmatrix}.
\]
In our case, we have

\[
\begin{align*}
\dot{X}_u(t) &= A(t)X_u(t) + \sum_{i \leq j = 1}^m u_{ij}(t)\mathcal{E}(ij)X_u(t), \quad \forall t \in [0, T], \\
X(0) &= I_{2m},
\end{align*}
\]

with

\[
A(t) = \begin{pmatrix}
0 & I_m \\
-K(t) & 0
\end{pmatrix}
\quad \text{and} \quad
\mathcal{E}(ij) := \begin{pmatrix}
0 & 0 \\
E(ij) & 0
\end{pmatrix}.
\]

Corollary (Contreras-Paternain, Contreras, Visscher, Lazrag)

Assume that there is \(\bar{t} \in [0, T] \) such that the \(m \times m \) symmetric matrix \(K \) has simple eigenvalues, then the Franks' Lemma for Mané perturbations holds at first order.
In our case, we have

\[
\begin{align*}
\dot{X}_u(t) &= A(t)X_u(t) + \sum_{i\leq j=1}^m u_{ij}(t)E(ij)X_u(t), \quad \forall t \in [0, T], \\
X(0) &= I_{2m},
\end{align*}
\]

with

\[
A(t) = \begin{pmatrix} 0 & I_m \\ -K(t) & 0 \end{pmatrix} \quad \text{and} \quad E(ij) := \begin{pmatrix} 0 & 0 \\ E(ij) & 0 \end{pmatrix}.
\]

Corollary (Contreras-Paternain, Contreras, Visscher, Lazrag)

Assume that there is \(\bar{t} \in [0, T] \) such that the \(m \times m \) symmetric matrix \(K \) has simple eigenvalues, then the Franks’ Lemma for Mané perturbations holds at first order.

What happens if the algebraic condition on \(K \) is not satisfied?
Local controllability on $\text{Sp}(m)$

Proposition

Assume that $B_i B_j = 0$ for all i, j and define the k sequences of smooth mappings $\{B^1_j\}, \ldots, \{B^k_j\} : [0, T] \rightarrow T_{I_2m} \text{Sp}(m)$ as before. If the following properties are satisfied with $\bar{t} = 0$:

$$\left[B^i_j(\bar{t}), B_i \right] \in \text{Span}\left\{ B^s_r(\bar{t}) \mid r = 1, \ldots, k, s \geq 0 \right\} \quad \forall i, \forall j = 1, 2,$$

and

$$\text{Span}\left\{ B^i_j(\bar{t}), [B^1_i(\bar{t}), B^1_i(\bar{t})] \mid i, l = 1, \ldots, k \text{ and } j = 0, 1, 2 \right\} = T_{I_2m} \text{Sp}(m).$$

Then, for every $\bar{X} \in \text{Sp}(m)$, the control system is controllable at second order around $\bar{u} \equiv 0$.

Ludovic Rifford
Franks’ Lemma for Mañé perturbations..
If $Q : \mathcal{U} \to \mathbb{R}$ is a quadratic form, its negative index is defined by

$$\text{ind}_-(Q) := \max\left\{\dim(L) \mid Q|_{L\setminus\{0\}} < 0\right\}.$$

Theorem

Let $F : \mathcal{U} \to \mathbb{R}^N$ be a mapping of class C^2 on an open set $\mathcal{U} \subset X$ and $\bar{u} \in \mathcal{U}$ be a critical point of F of corank r. If

$$\text{ind}_- \left(\lambda^* \left(D_{\bar{u}}^2 F \right) | \ker(D_{\bar{u}}F) \right) \geq r \quad \forall \lambda \in \left(\text{Im}(D_{\bar{u}}F) \right)^\perp \setminus \{0\},$$

then the mapping F is locally open at second order at \bar{u}.

Ludovic Rifford

Franks’ Lemma for Mañé perturbations.
Applications of Franks’ Lemma

Theorem

Let (M, g) be a smooth compact Riemannian manifold of dimension ≥ 2 such that the periodic orbits of the geodesic flow are C^2-persistently hyperbolic from Mañé’s viewpoint. Then the closure of the set of periodic orbits of the geodesic flow is a hyperbolic set.
Applications of Franks’ Lemma

Theorem

Let \((M, g)\) be a smooth compact Riemannian manifold of dimension \(\geq 2\) such that the periodic orbits of the geodesic flow are \(C^2\)-persistently hyperbolic from Mañé’s viewpoint. Then the closure of the set of periodic orbits of the geodesic flow is a hyperbolic set.

Corollary

Let \((M, g)\) be a smooth compact Riemannian manifold, suppose that either \(M\) is a surface or \(\dim M \geq 3\) and \((M, g)\) has no conjugate points. Assume that the geodesic flow is \(C^2\) persistently expansively from Mañé’s viewpoint, then the geodesic flow is Anosov.
Thank you for your attention !!