MTW condition vs. convexity of injectivity domains

Ludovic Rifford

Université de Nice - Sophia Antipolis
Let M be a smooth connected compact manifold. For any $x, y \in M$, we define the geodesic distance between x and y, denoted by $d(x, y)$, as the minimum of the lengths of the curves (drawn on M) joining x to y.
Let $x \in M$ be fixed.

- For every $v \in T_x M$, we define the exponential of v by

$$\exp_x(v) = \gamma_{x,v}(1),$$

where $\gamma_{x,v} : [0, 1] \to M$ is the unique geodesic starting at x with speed v.
Let $x \in M$ be fixed.

- For every $v \in T_x M$, we define the exponential of v by
 \[
 \exp_x(v) = \gamma_{x,v}(1),
 \]
 where $\gamma_{x,v} : [0, 1] \to M$ is the unique geodesic starting at x with speed v.

- We call **injectivity domain** at x, the set
 \[
 \mathcal{I}(x) \subset T_x M
 \]
 of velocities v for which there exists $t > 1$ such that
 γ_{tv} is the unique minimizing geodesic between x and $\exp_x(tv)$.

Ludovic Rifford

MTW condition vs. convexity of injectivity domains
Proposition (Itoh-Tanaka '01)

For every $x \in M$, the set $\mathcal{I}(x)$ is a star-shaped (with respect to $0 \in T_x M$) bounded open set with Lipschitz boundary.
Proposition (Itoh-Tanaka ’01)

For every $x \in M$, the set $\mathcal{I}(x)$ is a star-shaped (with respect to $0 \in T_x M$) bounded open set with Lipschitz boundary.
A list of questions

Questions

- $\partial I(x)$ more than Lipschitz?
Questions

- $\partial \mathcal{I}(x)$ more than Lipschitz?

- Is the uniform convexity of injectivity domains stable under perturbation of the metric?
Questions

- $\partial I(x)$ more than Lipschitz?
- Is the uniform convexity of injectivity domains stable under perturbation of the metric?
- What kind of curvature-like condition implies the convexity of injectivity domains?
The Ma-Trudinger-Wang tensor

Definition

The **MTW** tensor \mathcal{G} is defined as

$$
\mathcal{G}_{(x,v)}(\xi, \eta) = -\frac{3}{2} \left. \frac{d^2}{ds^2} \right|_{s=0} \left. \frac{d^2}{dt^2} \right|_{t=0} d^2 \left(\exp_x(t\xi), \exp_x(v+s\eta) \right),
$$

for every $x \in M$, $v \in \mathcal{I}(x)$, and $\xi, \eta \in T_x M$.

\[y := \exp_x(v), \quad x_t := \exp_x(t\xi), \quad y_s := \exp_x(v + s\eta) \]
Two remarks

Remarks

- By an observation due to Loeper, one has

\[S_{(x,0)}(\xi, \eta) = K_{\xi,\eta} \]

provided \(\xi \perp \eta \) with \(|\xi|_x = |\eta|_x = 1 \).
Remarks

By an observation due to Loeper, one has

\[\mathcal{S}_{(x,0)}(\xi, \eta) = K_{\xi,\eta} \]

provided \(\xi \perp \eta \) with \(|\xi|_x = |\eta|_x = 1 \).

We can extend \(\mathcal{S} \) up to the boundary of the nonfocal domain \(\mathcal{N}\mathcal{F}(x) \subset T_xM \) defined as the set of \(v \in T_xM \) such that for any \(t \in [0, 1) \) the mapping

\[w \mapsto \exp_x(w) \]

is nondegenerate at \(w = tv \).
The Villani Conjecture

Definition

We say that \((M, g)\) satisfies the MTW condition if the MTW tensor \(S \succeq 0\), that is if for any \(x \in M\), \(v \in \mathcal{I}(x)\), and \(\xi, \eta \in T_x M\),

\[
\langle \xi, \eta \rangle_x = 0 \implies S_{(x,v)}(\xi, \eta) \geq 0.
\]

Conjecture

If \((M, g)\) satisfies the MTW condition, then all its injectivity domains are convex.

Ludovic Rifford
The Villani Conjecture

Definition

We say that \((M, g)\) satisfies the MTW condition if the MTW tensor \(\mathcal{S} \succeq 0\), that is if for any \(x \in M, v \in \mathcal{I}(x)\), and \(\xi, \eta \in T_x M\),

\[
\langle \xi, \eta \rangle_x = 0 \implies \mathcal{S}_{(x, v)}(\xi, \eta) \geq 0.
\]

Conjecture

If \((M, g)\) satisfies the MTW condition, then all its injectivity domains are convex.
Examples

- On flat tori, we have $\mathcal{S} \equiv 0$ and convexity of the $\mathcal{I}(x)$'s.
- On S^2 equipped with the unit round metric, we have

$$
\mathcal{S}_{(x,v)}(\xi, \xi^\perp) = 3 \left[\frac{1}{r^2} - \frac{\cos(r)}{r \sin(r)} \right] \xi_1^4 + 3 \left[\frac{1}{\sin^2(r)} - \frac{r \cos(r)}{\sin^3(r)} \right] \xi_2^4 \\
+ \frac{3}{2} \left[-\frac{6}{r^2} + \frac{\cos(r)}{r \sin(r)} + \frac{5}{\sin^2(r)} \right] \xi_1^2 \xi_2^2 \geq 0,
$$

with $x \in S^2$, $v \in \mathcal{I}(x)$, $r := |v|$, $\xi = (\xi_1, \xi_2)$, $\xi^\perp = (-\xi_2, \xi_1)$.

Ludovic Rifford
MTW condition vs. convexity of injectivity domains
Ellipsoids of revolution (oblate case):

\[E_\mu : \quad x^2 + y^2 + \left(\frac{z}{\mu} \right)^2 = 1 \quad \mu \in (0, 1]. \]

Theorem (Bonnard-Caillau-R ’10)

The injectivity domains of an oblate ellipsoid of revolution are all convex if and only if and only if the ratio between the minor and the major axis is greater or equal to \(1/\sqrt{3} \approx 0.58\).
Let $U \subset \mathbb{R}^n$ be an open convex set and $F : U \to \mathbb{R}$ be a function of class C^2. Assume that for every $v \in U$ and every $w \in \mathbb{R}^n \setminus \{0\}$ the following property holds:

$$\langle \nabla_v F, w \rangle = 0 \implies \langle \nabla_v^2 F w, w \rangle > 0.$$

Then F is quasiconvex.
Lemma

Let $U \subset \mathbb{R}^n$ be an open convex set and $F : U \rightarrow \mathbb{R}$ be a function of class C^2. Assume that for every $v \in U$ and every $w \in \mathbb{R}^n \setminus \{0\}$ the following property holds:

$$\langle \nabla_v F, w \rangle = 0 \implies \langle \nabla^2_v F w, w \rangle > 0.$$

Then F is quasiconvex.
Proof of the lemma

Let \(v_0, v_1 \in U \) be fixed. Set \(v_t := (1 - t)v_0 + tv_1 \), for every \(t \in [0, 1] \). Define \(h : [0, 1] \to \mathbb{R} \) by

\[
h(t) := F(v_t) \quad \forall t \in [0, 1].
\]

If \(h \not\geq \max\{h(0), h(1)\} \), there is \(\tau \in (0, 1) \) such that

\[
h(\tau) = \max_{t \in [0, 1]} h(t) > \max\{h(0), h(1)\}.
\]

There holds

\[
\dot{h}(\tau) = \langle \nabla_{v_{\tau}} F, \dot{v}_{\tau} \rangle \quad \text{et} \quad \ddot{h}(\tau) = \langle \nabla^2_{v_{\tau}} F \dot{v}_{\tau}, \dot{v}_{\tau} \rangle.
\]

Since \(\tau \) is a local maximum, one has \(\dot{h}(\tau) = 0 \).

Contradiction!!
Given $v_0, v_1 \in \mathcal{I}(x)$ we set for every $t \in [0, 1],$

$$v_t := (1 - t)v_0 + tv_1 \quad \text{and} \quad h(t) := F(v_t),$$

with

$$F(v) = \frac{1}{2}|v|^2_x - \frac{1}{2}d^2(x, \exp_x(v)) \quad \forall v \in \mathcal{I}(x).$$

We have $F(v_0) = F(v_1) = 0.$
Given $v_0, v_1 \in \mathcal{I}(x)$ we set for every $t \in [0, 1],$

$$v_t := (1 - t)v_0 + tv_1 \quad \text{and} \quad h(t) := F(v_t),$$

with

$$F(v) = \frac{1}{2}|v|^2_x - \frac{1}{2}d^2(x, \exp_x(v)) \quad \forall v \in \mathcal{I}(x).$$

We have $F(v_0) = F(v_1) = 0.$

Therefore

$$F \text{ quasiconvex} \implies F(v_t) \leq 0 \implies F(v_t) = 0 \quad \forall t.$$
Thank you for your attention!!