On the minimizing Sard Conjecture in sub-Riemannian geometry

Ludovic Rifford

Université Côte d'Azur \& AIMS-Senegal
Fudan International Seminar on Analysis, PDEs, and Fluid Mechanics Zoom, 1 February 2024

Outline

Outline

I. Introduction to sub-Riemannian geometry
II. The Minimizing Sard Conjecture
III. A Partial result

I. Introduction to sub-Riemannian geometry

Sub-Riemannian structures

Let M be a smooth connected manifold of dimension n.

Definition

A sub-Riemannian structure of rank $m \leq n$ on M is given by a pair (Δ, g) where:

- Δ is a totally nonholonomic distribution of rank $m \leq n$ on M which is defined locally by

$$
\Delta(x)=\operatorname{Span}\left\{X^{1}(x), \cdots, X^{m}(x)\right\} \subset T_{x} M
$$

where X^{1}, \ldots, X^{m} is a family of m linearly independent smooth vector fields satisfying the Hörlmander condition;

Sub-Riemannian structures

Let M be a smooth connected manifold of dimension n.

Definition

A sub-Riemannian structure of rank $m \leq n$ on M is given by a pair (Δ, g) where:

- Δ is a totally nonholonomic distribution of rank $m \leq n$ on M which is defined locally by

$$
\Delta(x)=\operatorname{Span}\left\{X^{1}(x), \cdots, X^{m}(x)\right\} \subset T_{x} M
$$

where X^{1}, \ldots, X^{m} is a family of m linearly independent smooth vector fields satisfying the Hörlmander condition;

- g is smooth and for every $x \in M, g_{x}$ is a scalar product over $\Delta(x)$.

The Hörmander condition

We say that a family of smooth vector fields X^{1}, \ldots, X^{m}, satisfies the Hörmander condition if

$$
\operatorname{Lie}\left\{X^{1}, \ldots, X^{m}\right\}(x)=T_{x} M \quad \forall x
$$

where $\operatorname{Lie}\left\{X^{1}, \ldots, X^{m}\right\}$ denotes the Lie algebra generated by X^{1}, \ldots, X^{m}, i.e. the smallest subspace of smooth vector fields that contains all the X^{1}, \ldots, X^{m} and which is stable under Lie brackets.

The Hörmander condition

We say that a family of smooth vector fields X^{1}, \ldots, X^{m}, satisfies the Hörmander condition if

$$
\operatorname{Lie}\left\{X^{1}, \ldots, X^{m}\right\}(x)=T_{x} M \quad \forall x
$$

where $\operatorname{Lie}\left\{X^{1}, \ldots, X^{m}\right\}$ denotes the Lie algebra generated by X^{1}, \ldots, X^{m}, i.e. the smallest subspace of smooth vector fields that contains all the X^{1}, \ldots, X^{m} and which is stable under Lie brackets.

Reminder

Given smooth vector fields X, Y in \mathbb{R}^{n}, the Lie bracket $[X, Y]$ at $x \in \mathbb{R}^{n}$ is defined by

$$
[X, Y](x)=D Y(x) X(x)-D X(x) Y(x)
$$

Lie Bracket: Dynamic Viewpoint

Remark

There holds

$$
[X, Y](x)=\lim _{t \downarrow 0} \frac{\left(e^{-t Y} \circ e^{-t X} \circ e^{t Y} \circ e^{t X}\right)(x)-x}{t^{2}} .
$$

The Chow-Rashevsky Theorem

Definition

We call horizontal path any $\gamma \in W^{1,2}([0,1] ; M)$ such that

$$
\dot{\gamma}(t) \in \Delta(\gamma(t)) \quad \text { a.e. } t \in[0,1] .
$$

The Chow-Rashevsky Theorem

Definition

We call horizontal path any $\gamma \in W^{1,2}([0,1] ; M)$ such that

$$
\dot{\gamma}(t) \in \Delta(\gamma(t)) \quad \text { a.e. } t \in[0,1] .
$$

The following result is the cornerstone of sub-Riemannian geometry. (Recall that M is assumed to be connected.)

Theorem (Chow-Rashevsky, 1938)
Let Δ be a totally nonholonomic distribution on M, then every pair of points can be joined by an horizontal path.

The Chow-Rashevsky Theorem

Definition

We call horizontal path any $\gamma \in W^{1,2}([0,1] ; M)$ such that

$$
\dot{\gamma}(t) \in \Delta(\gamma(t)) \quad \text { a.e. } t \in[0,1] .
$$

The following result is the cornerstone of sub-Riemannian geometry. (Recall that M is assumed to be connected.)

Theorem (Chow-Rashevsky, 1938)

Let Δ be a totally nonholonomic distribution on M, then every pair of points can be joined by an horizontal path.

Since the distribution is equipped with a metric, we can measure the lengths of horizontal paths and consequently we can associate a metric with the sub-Riemannian structure.

Examples of sub-Riemannian structures

Example: Riemannian case

Every Riemannian manifold (M, g) gives rise to a sub-Riemannian structure with $\Delta=T M$.

Examples of sub-Riemannian structures

Example: Riemannian case

Every Riemannian manifold (M, g) gives rise to a sub-Riemannian structure with $\Delta=T M$.

Example: Heisenberg
$\operatorname{In} \mathbb{R}^{3}, \Delta=\operatorname{Span}\left\{X^{1}, X^{2}\right\}$ with

$$
X^{1}=\partial_{x}, \quad X^{2}=\partial_{y}+x \partial_{z} \quad \text { et } \quad g=d x^{2}+d y^{2}
$$

Other examples of sub-Riemannian structures

Example: Martinet
$\operatorname{In} \mathbb{R}^{3}, \Delta=\operatorname{Span}\left\{X^{1}, X^{2}\right\}$ with

$$
X^{1}=\partial_{x}, \quad X^{2}=\partial_{y}+x^{2} \partial_{z} .
$$

Since $\left[X^{1}, X^{2}\right]=2 x \partial_{z}$ and $\left[X^{1},\left[X^{1}, X^{2}\right]\right]=2 \partial_{z}$, only one bracket is sufficient to generate \mathbb{R}^{3} if $x \neq 0$, however we needs two brackets if $x=0$.

Other examples of sub-Riemannian structures

Example: Martinet
$\operatorname{In} \mathbb{R}^{3}, \Delta=\operatorname{Span}\left\{X^{1}, X^{2}\right\}$ with

$$
X^{1}=\partial_{x}, \quad X^{2}=\partial_{y}+x^{2} \partial_{z} .
$$

Since $\left[X^{1}, X^{2}\right]=2 x \partial_{z}$ and $\left[X^{1},\left[X^{1}, X^{2}\right]\right]=2 \partial_{z}$, only one bracket is sufficient to generate \mathbb{R}^{3} if $x \neq 0$, however we needs two brackets if $x=0$.

Example: Rank 2 distribution in dimension 4
$\operatorname{In} \mathbb{R}^{4}, \Delta=\operatorname{Span}\left\{X^{1}, X^{2}\right\}$ with

$$
X^{1}=\partial_{x}, \quad X^{2}=\partial_{y}+x \partial_{z}+z \partial_{w}
$$

satisfies $\operatorname{Vect}\left\{X^{1}, X^{2},\left[X^{1}, X^{2}\right],\left[\left[X^{1}, X^{2}\right], X^{2}\right]\right\}=\mathbb{R}^{4}$.

The sub-Riemannian distance

The length of an horizontal path γ is defined by

$$
\text { length }{ }^{g}(\gamma):=\int_{0}^{T}|\dot{\gamma}(t)|_{\gamma(t)}^{g} d t
$$

Definition

Given $x, y \in M$, the sub-Riemannian distance between x and y is defined by

$$
d_{S R}(x, y):=\inf \left\{\text { length }^{g}(\gamma) \mid \gamma \text { hor., } \gamma(0)=x, \gamma(1)=y\right\}
$$

The sub-Riemannian distance

The length of an horizontal path γ is defined by

$$
\text { length }{ }^{g}(\gamma):=\int_{0}^{T}|\dot{\gamma}(t)|_{\gamma(t)}^{g} d t
$$

Definition

Given $x, y \in M$, the sub-Riemannian distance between x and y is defined by

$$
d_{S R}(x, y):=\inf \left\{\text { length }^{g}(\gamma) \mid \gamma \text { hor., } \gamma(0)=x, \gamma(1)=y\right\}
$$

Proposition

The manifold M equipped with the distance $d_{S R}$ is a metric space whose topology coincides with the one of M (as a manifold).

Sub-Riemannian geodesics

Definition

Given $x, y \in M$, we call minimizing horizontal path between x and y any horizontal path $\gamma:[0,1] \rightarrow M$ joining x to y satisfying $d_{S R}(x, y)=$ length $^{g}(\gamma)$.

Sub-Riemannian geodesics

Definition

Given $x, y \in M$, we call minimizing horizontal path between x and y any horizontal path $\gamma:[0,1] \rightarrow M$ joining x to y satisfying $d_{S R}(x, y)=\operatorname{length}^{g}(\gamma)$.

The energy of the horizontal path $\gamma:[0,1] \rightarrow M$ is given by

$$
\operatorname{ener}^{g}(\gamma):=\int_{0}^{1}\left(|\dot{\gamma}(t)|_{\gamma(t)}^{g}\right)^{2} d t
$$

Definition

We call minimizing geodesic between x and y any horizontal path $\gamma:[0,1] \rightarrow M$ joining x to y such that

$$
d_{S R}(x, y)^{2}=\operatorname{ener}^{g}(\gamma)
$$

$\left(M, d_{S R}\right)$ gives existence of minimizing geodesics.

II. The Minimizing Sard Conjecture

Study of minimizing geodesics I

Let $x, y \in M$ and $\bar{\gamma}$ be a minimizing geodesic between x and y be fixed. The SR structure admits an orthonormal parametrization along $\bar{\gamma}$, which means that there exists a neighborhood \mathcal{V} of $\bar{\gamma}([0,1])$ and an orthonomal family of m vector fields X^{1}, \ldots, X^{m} such that

$$
\Delta(z)=\operatorname{Span}\left\{X^{1}(z), \ldots, X^{m}(z)\right\} \quad \forall z \in \mathcal{V}
$$

Study of minimizing geodesics II

There exists a control $\bar{u} \in L^{2}\left([0,1] ; \mathbb{R}^{m}\right)$ such that

$$
\dot{\bar{\gamma}}(t)=\sum_{i=1}^{m} \bar{u}_{i}(t) X^{i}(\bar{\gamma}(t)) \quad \text { a.e. } t \in[0,1]
$$

Study of minimizing geodesics II

There exists a control $\bar{u} \in L^{2}\left([0,1] ; \mathbb{R}^{m}\right)$ such that

$$
\dot{\bar{\gamma}}(t)=\sum_{i=1}^{m} \bar{u}_{i}(t) X^{i}(\bar{\gamma}(t)) \quad \text { a.e. } t \in[0,1]
$$

Moreover, any control $u \in \mathcal{U} \subset L^{2}\left([0,1] ; \mathbb{R}^{m}\right)$ (u sufficiently close to \bar{u}) gives rise to a trajectory γ_{u} solution of

$$
\dot{\gamma}_{u}=\sum_{i=1}^{m} u^{i} X^{i}\left(\gamma_{u}\right) \quad \operatorname{sur}[0, T], \quad \gamma_{u}(0)=x
$$

Study of minimizing geodesics II

There exists a control $\bar{u} \in L^{2}\left([0,1] ; \mathbb{R}^{m}\right)$ such that

$$
\dot{\bar{\gamma}}(t)=\sum_{i=1}^{m} \bar{u}_{i}(t) X^{i}(\bar{\gamma}(t)) \quad \text { a.e. } t \in[0,1]
$$

Moreover, any control $u \in \mathcal{U} \subset L^{2}\left([0,1] ; \mathbb{R}^{m}\right)$ (u sufficiently close to \bar{u}) gives rise to a trajectory γ_{u} solution of

$$
\dot{\gamma}_{u}=\sum_{i=1}^{m} u^{i} X^{i}\left(\gamma_{u}\right) \quad \operatorname{sur}[0, T], \quad \gamma_{u}(0)=x
$$

Furthermore, for every horizontal path $\gamma:[0,1] \rightarrow \mathcal{V}$ there exists a unique control $u \in L^{2}\left([0,1] ; \mathbb{R}^{m}\right)$ for which the above equation is satisfied.

Study of minimizing geodesics III

Consider the End-Point mapping

$$
E^{x, 1}: L^{2}\left([0,1] ; \mathbb{R}^{m}\right) \longrightarrow M
$$

defined by

$$
E^{x, 1}(u):=\gamma_{u}(1)
$$

and set $C(u)=\|u\|_{L^{2}}^{2}$, then \bar{u} is a solution to the following optimization problem with constraints:

Study of minimizing geodesics III

Consider the End-Point mapping

$$
E^{x, 1}: L^{2}\left([0,1] ; \mathbb{R}^{m}\right) \longrightarrow M
$$

defined by

$$
E^{x, 1}(u):=\gamma_{u}(1)
$$

and set $C(u)=\|u\|_{L^{2}}^{2}$, then \bar{u} is a solution to the following optimization problem with constraints:
\bar{u} minimize $C(u)$ among all $u \in \mathcal{U}$ s.t. $E^{x, 1}(u)=y$.

Study of minimizing geodesics III

Consider the End-Point mapping

$$
E^{x, 1}: L^{2}\left([0,1] ; \mathbb{R}^{m}\right) \longrightarrow M
$$

defined by

$$
E^{x, 1}(u):=\gamma_{u}(1)
$$

and set $C(u)=\|u\|_{L^{2}}^{2}$, then \bar{u} is a solution to the following optimization problem with constraints:
\bar{u} minimize $C(u)$ among all $u \in \mathcal{U}$ s.t. $E^{x, 1}(u)=y$.
(Since the family X^{1}, \ldots, X^{m} is orthonormal, we have

$$
\left.\operatorname{ener}^{g}\left(\gamma_{u}\right)=C(u) \quad \forall u \in \mathcal{U} .\right)
$$

Study of minimizing geodesics IV

Proposition (Lagrange Multipliers)

There exist $p \in T_{y}^{*} M \simeq\left(\mathbb{R}^{n}\right)^{*}$ and $\lambda_{0} \in\{0,1\}$ with $\left(\lambda_{0}, p\right) \neq(0,0)$ such that

$$
p \cdot d_{\bar{u}} E^{x, 1}=\lambda_{0} d_{\bar{u}} C .
$$

Study of minimizing geodesics IV

Proposition (Lagrange Multipliers)

There exist $p \in T_{y}^{*} M \simeq\left(\mathbb{R}^{n}\right)^{*}$ and $\lambda_{0} \in\{0,1\}$ with $\left(\lambda_{0}, p\right) \neq(0,0)$ such that

$$
p \cdot d_{\bar{u}} E^{x, 1}=\lambda_{0} d_{\bar{u}} C .
$$

As a matter of fact, the function given by

$$
\Phi(u):=\left(C(u), E^{x, 1}(u)\right)
$$

cannot be a submersion at \bar{u}. Otherwise $D_{\bar{u}} \Phi$ would be surjective and so open at \bar{u}, which means that the image of Φ would contain some points of the form $(C(\bar{u})-\delta, y)$ with $\delta>0$ small.
\rightsquigarrow Two cases may appear: $\lambda_{0}=1$ or $\lambda_{0}=0$.

Study of minimizing geodesics \vee

First case : $\lambda_{0}=1$
This is the good case, the Riemannian-like case. The minimizing geodesic can be shown to be solution of a "geodesic equation". In fact, it is the projection of a normal extremal. It is smooth, there is a "geodesic flow" ...

Second case : $\lambda_{0}=0$

In this case, we have

$$
p \cdot D_{\bar{u}} E^{x, 1}=0 \text { with } p \neq 0
$$

which means that \bar{u} is singular as a critical point of the mapping $E^{\times, 1}$.

Study of minimizing geodesics \vee

First case : $\lambda_{0}=1$
This is the good case, the Riemannian-like case. The minimizing geodesic can be shown to be solution of a "geodesic equation". In fact, it is the projection of a normal extremal. It is smooth, there is a "geodesic flow" ...

Second case : $\lambda_{0}=0$

In this case, we have

$$
p \cdot D_{\bar{u}} E^{x, 1}=0 \text { with } p \neq 0
$$

which means that \bar{u} is singular as a critical point of the mapping $E^{\times, 1}$.
\rightsquigarrow As shown by R. Montgomery, the case $\lambda_{0}=0$ cannot be ruled out.

Singular horizontal paths and Examples

Definition

An horizontal path is called singular if it is, through the correspondence $\gamma \leftrightarrow u$, a critical point of the End-Point mapping $E^{x, 1}: L^{2} \rightarrow M$.

Singular horizontal paths and Examples

Definition

An horizontal path is called singular if it is, through the correspondence $\gamma \leftrightarrow u$, a critical point of the End-Point mapping $E^{x, 1}: L^{2} \rightarrow M$.

Example: Riemannian case

Let $\Delta(x)=T_{x} M$, any path in $W^{1,2}$ is horizontal. There are no singular curves.

Singular horizontal paths and Examples

Definition

An horizontal path is called singular if it is, through the correspondence $\gamma \leftrightarrow u$, a critical point of the End-Point mapping $E^{x, 1}: L^{2} \rightarrow M$.

Example: Riemannian case

Let $\Delta(x)=T_{x} M$, any path in $W^{1,2}$ is horizontal. There are no singular curves.

Example: Heisenberg, fat distributions

In \mathbb{R}^{3}, Δ given by $X^{1}=\partial_{x}, X^{2}=\partial_{y}+x \partial_{z}$ does not admin nontrivial singular horizontal paths.

Martinet-like distributions

$\operatorname{In} \mathbb{R}^{3}$, let $\Delta=\operatorname{Vect}\left\{X^{1}, X^{2}\right\}$ with X^{1}, X^{2} of the form

$$
X^{1}=\partial_{x_{1}} \quad \text { and } \quad X^{2}=\left(1+x_{1} \phi(x)\right) \partial_{x_{2}}+x_{1}^{2} \partial_{x_{3}},
$$

where ϕ is a smooth function and let g be a metric over Δ.

Martinet-like distributions

In \mathbb{R}^{3}, let $\Delta=\operatorname{Vect}\left\{X^{1}, X^{2}\right\}$ with X^{1}, X^{2} of the form

$$
X^{1}=\partial_{x_{1}} \quad \text { and } \quad X^{2}=\left(1+x_{1} \phi(x)\right) \partial_{x_{2}}+x_{1}^{2} \partial_{x_{3}},
$$

where ϕ is a smooth function and let g be a metric over Δ.

Theorem (Montgomery, 1991)

There exists $\bar{\epsilon}>0$ such that for every $\epsilon \in(0, \bar{\epsilon})$, the singular horizontal path

$$
\gamma(t)=(0, t, 0) \quad \forall t \in[0, \epsilon]
$$

is minimizing (w.r.t. g) among all horizontal paths joining 0 to $(0, \epsilon, 0)$.

Martinet-like distributions

$\operatorname{In} \mathbb{R}^{3}$, let $\Delta=\operatorname{Vect}\left\{X^{1}, X^{2}\right\}$ with X^{1}, X^{2} of the form

$$
X^{1}=\partial_{x_{1}} \quad \text { and } \quad X^{2}=\left(1+x_{1} \phi(x)\right) \partial_{x_{2}}+x_{1}^{2} \partial_{x_{3}},
$$

where ϕ is a smooth function and let g be a metric over Δ.

Theorem (Montgomery, 1991)

There exists $\bar{\epsilon}>0$ such that for every $\epsilon \in(0, \bar{\epsilon})$, the singular horizontal path

$$
\gamma(t)=0, t, 0) \quad \forall t \in[0, \epsilon],
$$

is minimizing (w.r.t. g) among all horizontal paths joining 0 to $(0, \epsilon, 0)$. Moreover, if $\left\{X^{1}, X^{2}\right\}$ is orthonormal w.r.t. g and $\phi(0) \neq 0$, then γ is not the projection of a normal extremal ($\lambda_{0}=1$).

Summary

Given a complete sub-Riemannian structure (Δ, g) on M and a minimizing geodesic γ from x to y, two cases may happen:

- The geodesic γ is the projection of a normal extremal so it is smooth..
- The geodesic γ is a singular curve and could be non-smooth..

Summary

Given a complete sub-Riemannian structure (Δ, g) on M and a minimizing geodesic γ from x to y, two cases may happen:

- The geodesic γ is the projection of a normal extremal so it is smooth..
- The geodesic γ is a singular curve and could be non-smooth..

Questions:
When? How many? How?

The Sard Conjecture

Given $x \in M$, we denote by $\operatorname{Sing}_{\Delta}^{x}$ the set of points $y \in M$ for which there is a singular horizontal path joining x to y, it is a closed subset of M containing x.

The Sard Conjecture

Given $x \in M$, we denote by $\operatorname{Sing}_{\Delta}^{x}$ the set of points $y \in M$ for which there is a singular horizontal path joining x to y, it is a closed subset of M containing x.

Sard Conjecture

The set $\operatorname{Sing}_{\Delta}^{x}$ has Lebesgue measure zero in M.

The Sard Conjecture

Given $x \in M$, we denote by $\operatorname{Sing}_{\Delta}^{x}$ the set of points $y \in M$ for which there is a singular horizontal path joining x to y, it is a closed subset of M containing x.

Sard Conjecture

The set $\operatorname{Sing}_{\Delta}^{x}$ has Lebesgue measure zero in M.

The result is known in very few cases:

- Rank 2 in dimension 3 (much stronger result by Belotto,

Figalli, Parusinski, R).

- Some cases of Carnot groups.

The Minimizing Sard Conjecture

Given $x \in M$, we denote by $\operatorname{Abn}^{\min }(x)\left(\right.$ or $\left.\operatorname{Sing}_{\Delta, g}^{x, \min }\right)$ the set of points $y \in M$ for which there is a singular minimizing geodesic joining x to y, it is a closed subset of M containing x.

Minimizing Sard Conjecture

For every $x \in M$, the set $\operatorname{Abn}^{\min }(x)$ has Lebesgue measure zero in M.

The Minimizing Sard Conjecture

Given $x \in M$, we denote by $\operatorname{Abn}^{\text {min }}(x)\left(\right.$ or $\left.\operatorname{Sing}_{\Delta, g}^{x, m i n}\right)$ the set of points $y \in M$ for which there is a singular minimizing geodesic joining x to y, it is a closed subset of M containing x.

Minimizing Sard Conjecture

For every $x \in M$, the set $\operatorname{Abn}^{\min }(x)$ has Lebesgue measure zero in M.

Only few cases are known. In general, we have

Theorem (Agrachev, 2009)

Let M be a smooth connected manifold of dimension n equipped with a complete sub-Riemannian structure (Δ, g). Then for every $x \in M$, the closed set $\operatorname{Abn}^{\min }(x)$ has empty interior.

III. A Partial result

A Partial result

Theorem ($\mathrm{R}, 2023$)

Let M be equipped with a complete SR structure (Δ, g) and $x \in M$ be fixed. If for almost every $y \in M$ all minimizing horizontal paths from x to y have Goh-rank at most 1, then the closed set $\operatorname{Abn}^{\min }(x)$ has Lebesgue measure zero in M.

A Partial result

Theorem (R, 2023)

Let M be equipped with a complete SR structure (Δ, g) and $x \in M$ be fixed. If for almost every $y \in M$ all minimizing horizontal paths from x to y have Goh-rank at most 1, then the closed set $A b n^{\text {min }}(x)$ has Lebesgue measure zero in M.

Corollary (R, 2023)

If M is equipped with a complete SR structure (Δ, g) having minimizing co-rank 1 almost everywhere, then the Minimizing Sard Conjecture holds true.

A Partial result

> Theorem (R, 2023)
> Let M be equipped with a complete SR structure (Δ, g) and $x \in M$ be fixed. If for almost every $y \in M$ all minimizing horizontal paths from x to y have Goh-rank at most 1, then the closed set $A b n^{\text {min }}(x)$ has Lebesgue measure zero in M.

Corollary (R, 2023)

If M is equipped with a complete SR structure (Δ, g) having minimizing co-rank 1 almost everywhere, then the Minimizing Sard Conjecture holds true.

Corollary (R, 2023)

If M is equipped with a complete SR structure (Δ, g) of rank $m \geq 2$ where Δ is generic, then the Minimizing Sard Conjecture holds true.

Sketch of proof I

Let (Δ, g) be a SR structure and $x \in M$ be fixed, we define $f_{x}: M \rightarrow \mathbb{R}$ by

$$
f_{x}(y):=\frac{1}{2} d_{S R}(x, y)^{2}
$$

The following properties are equivalent:
0 The set $\mathrm{Abn}^{\min }(x)$ has Lebesgue measure zero in M.

- For a.e. $y \in M, \partial^{-} f_{x}(y) \neq \emptyset$.

- The set $\operatorname{Lip}^{-}\left(f_{x}\right)$ has full Lebesgue measure in M.
- The function f_{x} is smooth on an open subset of M of full Lebesgue measure.

Sketch of proof II

Roughly speaking, our assumptions allow to show that f_{x} Lipschitz along an hyperplane at each $y \neq x$. The main ingredient of the proof is the:

Proposition

Let $\varphi:(a, b) \rightarrow \mathbb{R}$ be a continuous function. Then, for a.e. $x \in(a, b)$, at least one of the following properties is satisfied:
(i) φ is differentiable at x.
(ii) Theres sequence $\left\{x_{k}\right\}$ converging $10 . x$ such that $0 \in \partial^{-} \varphi\left(x_{k}\right)$ gr all k.

In fact, we need a more precise version of (ii), which is given by the Denjoy-Young Saks Theorem.

The Denjoy-Young-Saks Theorem

Theorem

Let $f:(a, b) \rightarrow \mathbb{R}$ be a function. Then for a.e. $x \in(a, b)$, one of the following assertion holds:
(1) f is differentiable at x,
(2) $D^{+} f(x)=D^{-} f(x)=+\infty$, $D_{+} f(x)=D_{-} f(x)=-\infty$,)
(3) $D^{+} f(x)=+\infty, D_{-} f(x)=-\infty, D_{+} f(x)=D^{-} f(x) \in \mathbb{R}$,
(4) $D^{-} f(x)=+\infty, D_{+} f(x)=-\infty, D_{-} f(x)=D^{+} f(x) \in \mathbb{R}$.

Here, $D^{+} f, D_{+} f, D^{-} f, D_{-} f$ stand for the Dini derivatives of f defined by $\left(T_{c, d}:=(f(d)-f(c)) /(d-c)\right)$
$\begin{array}{ll}D^{+} f(x)=\limsup _{h \rightarrow 0^{+}} T_{x, x+h}, & D_{+} f(x)=\liminf _{h \rightarrow 0^{+}} T_{x, x+h} \\ D_{-} f(x)=\liminf _{h \rightarrow 0^{+}} T_{x-h, x}, & D^{-} f(x)=\limsup T_{x-h, x},\end{array}$

$$
h \rightarrow 0^{+}
$$

Thank you for your attention !!

