On the minimizing Sard Conjecture in sub-Riemannian geometry

Ludovic Rifford

Université Côte d'Azur & AIMS-Senegal

Fudan International Seminar on Analysis, PDEs, and Fluid Mechanics Zoom, 1 February 2024

A (1) < A (1) < A (1) </p>

Outline

- I. Introduction to sub-Riemannian geometry
- II. The Minimizing Sard Conjecture
- III. A Partial result

イロト イポト イヨト イヨト

÷.

5900

I. Introduction to sub-Riemannian geometry

Ξ.

JQC

Sub-Riemannian structures

Let M be a smooth connected manifold of dimension n.

Definition

A sub-Riemannian structure of rank $m \le n$ on M is given by a pair (Δ, g) where:

• Δ is a **totally nonholonomic distribution** of rank $m \le n$ on M which is defined locally by

$$\Delta(x) = {\sf Span}\Big\{X^1(x), \cdots, X^m(x)\Big\} \subset T_x M,$$

where X^1, \ldots, X^m is a family of *m* linearly independent smooth vector fields satisfying the **Hörlmander condition**;

Da A

Sub-Riemannian structures

Let M be a smooth connected manifold of dimension n.

Definition

A sub-Riemannian structure of rank $m \le n$ on M is given by a pair (Δ, g) where:

• Δ is a **totally nonholonomic distribution** of rank $m \le n$ on M which is defined locally by

$$\Delta(x) = {\sf Span}\Big\{X^1(x), \cdots, X^m(x)\Big\} \subset T_x M,$$

where X^1, \ldots, X^m is a family of *m* linearly independent smooth vector fields satisfying the **Hörlmander condition**;

• g is smooth and for every $x \in M$, g_x is a scalar product over $\Delta(x)$.

na n

The Hörmander condition

We say that a family of smooth vector fields X^1, \ldots, X^m , satisfies the **Hörmander condition** if

Lie $\{X^1,\ldots,X^m\}(x) = T_x M \qquad \forall x,$

where $\text{Lie}\{X^1, \ldots, X^m\}$ denotes the Lie algebra generated by X^1, \ldots, X^m , *i.e.* the smallest subspace of smooth vector fields that contains all the X^1, \ldots, X^m and which is stable under Lie brackets.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □ □

SQ (V

The Hörmander condition

We say that a family of smooth vector fields X^1, \ldots, X^m , satisfies the **Hörmander condition** if

Lie $\{X^1,\ldots,X^m\}$ $(x) = T_x M \qquad \forall x,$

where $\text{Lie}\{X^1, \ldots, X^m\}$ denotes the Lie algebra generated by X^1, \ldots, X^m , *i.e.* the smallest subspace of smooth vector fields that contains all the X^1, \ldots, X^m and which is stable under Lie brackets.

Reminder

Given smooth vector fields X, Y in \mathbb{R}^n , the Lie bracket [X, Y] at $x \in \mathbb{R}^n$ is defined by

$$[X, Y](x) = DY(x)X(x) - DX(x)Y(x).$$

3

SQ (~

Lie Bracket: Dynamic Viewpoint

Remark

There holds

$$[X, Y](x) = \lim_{t\downarrow 0} \frac{\left(e^{-tY} \circ e^{-tX} \circ e^{tY} \circ e^{tX}\right)(x) - x}{t^2}.$$

Ludovic Rifford On the minimizing Sard Conjecture in SR geometry 6 / 29

÷.

590

The Chow-Rashevsky Theorem

Definition

We call **horizontal path** any $\gamma \in W^{1,2}([0,1]; M)$ such that

$$\dot{\gamma}(t)\in\Delta(\gamma(t))$$
 a.e. $t\in[0,1].$

< 🗆 🕨

▲ 伊 ▶ ▲ 王 ▶ ▲ 王 ▶

JQ P

E

The Chow-Rashevsky Theorem

Definition

We call **horizontal path** any $\gamma \in W^{1,2}([0,1]; M)$ such that

 $\dot{\gamma}(t)\in\Delta(\gamma(t))$ a.e. $t\in[0,1].$

The following result is the cornerstone of sub-Riemannian geometry. (Recall that M is assumed to be connected.)

Theorem (Chow-Rashevsky, 1938)

Let Δ be a totally nonholonomic distribution on M, then every pair of points can be joined by an horizontal path.

< □ > < 三 > < 三 >

The Chow-Rashevsky Theorem

Definition

We call **horizontal path** any $\gamma \in W^{1,2}([0,1]; M)$ such that

 $\dot{\gamma}(t)\in\Delta(\gamma(t))$ a.e. $t\in[0,1].$

The following result is the cornerstone of sub-Riemannian geometry. (Recall that M is assumed to be connected.)

Theorem (Chow-Rashevsky, 1938)

Let Δ be a totally nonholonomic distribution on M, then every pair of points can be joined by an horizontal path.

Since the distribution is equipped with a metric, we can measure the lengths of horizontal paths and consequently we can associate a metric with the sub-Riemannian structure.

JQ (V

Examples of sub-Riemannian structures

Example: Riemannian case

Every Riemannian manifold (M, g) gives rise to a sub-Riemannian structure with $\Delta = TM$.

イロト (同) (王) (王) (王)

SQ (P

Examples of sub-Riemannian structures

Example: Riemannian case

Every Riemannian manifold (M, g) gives rise to a sub-Riemannian structure with $\Delta = TM$.

Example: Heisenberg

In
$$\mathbb{R}^3$$
, $\Delta = \operatorname{Span}\{X^1, X^2\}$ with

$$X^1 = \partial_x, \quad X^2 = \partial_y + x \partial_z \quad \text{et} \quad g = dx^2 + dy^2,$$

Other examples of sub-Riemannian structures

Example: Martinet

In \mathbb{R}^3 , $\Delta = \operatorname{Span}\{X^1, X^2\}$ with

$$X^1 = \partial_x, \quad X^2 = \partial_y + x^2 \partial_z.$$

Since $[X^1, X^2] = 2x\partial_z$ and $[X^1, [X^1, X^2]] = 2\partial_z$, only one bracket is sufficient to generate \mathbb{R}^3 if $x \neq 0$, however we needs two brackets if x = 0.

< □ > < 三 > < 三 >

Other examples of sub-Riemannian structures

Example: Martinet

In
$$\mathbb{R}^3$$
, $\Delta = \mathsf{Span}\{X^1, X^2\}$ with

$$X^1 = \partial_x, \quad X^2 = \partial_y + x^2 \partial_z.$$

Since $[X^1, X^2] = 2x\partial_z$ and $[X^1, [X^1, X^2]] = 2\partial_z$, only one bracket is sufficient to generate \mathbb{R}^3 if $x \neq 0$, however we needs two brackets if x = 0.

Example: Rank 2 distribution in dimension 4

In \mathbb{R}^4 , $\Delta = \operatorname{Span}\{X^1, X^2\}$ with

$$X^1 = \partial_x, \quad X^2 = \partial_y + x \partial_z + z \partial_w$$

satisfies $Vect{X^1, X^2, [X^1, X^2], [[X^1, X^2], X^2]} = \mathbb{R}^4$.

SQ P

The sub-Riemannian distance

The ${\bf length}$ of an horizontal path γ is defined by

$$\operatorname{length}^{g}(\gamma) := \int_{0}^{T} |\dot{\gamma}(t)|_{\gamma(t)}^{g} dt.$$

Definition

Given $x, y \in M$, the **sub-Riemannian distance** between x and y is defined by

$$d_{SR}(x,y) := \inf \Big\{ \operatorname{length}^{g}(\gamma) \,|\, \gamma \text{ hor.}, \gamma(0) = x, \gamma(1) = y \Big\}.$$

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

SQ (V

э

The sub-Riemannian distance

The ${\rm length}$ of an horizontal path γ is defined by

$$\operatorname{length}^{g}(\gamma) := \int_{0}^{T} |\dot{\gamma}(t)|_{\gamma(t)}^{g} dt.$$

Definition

Given $x, y \in M$, the **sub-Riemannian distance** between x and y is defined by

$$d_{SR}(x,y) := \inf \Big\{ \operatorname{length}^g(\gamma) | \gamma \text{ hor.}, \gamma(0) = x, \gamma(1) = y \Big\}.$$

Proposition

The manifold M equipped with the distance d_{SR} is a metric space whose topology coincides with the one of M (as a manifold).

Sub-Riemannian geodesics

Definition

Given $x, y \in M$, we call **minimizing horizontal path** between x and y any horizontal path $\gamma : [0, 1] \rightarrow M$ joining x to y satisfying $d_{SR}(x, y) = \text{length}^g(\gamma)$.

イロト (同) (王) (王) (王)

SQ (P

Sub-Riemannian geodesics

Definition

Given $x, y \in M$, we call **minimizing horizontal path** between x and y any horizontal path $\gamma : [0, 1] \rightarrow M$ joining x to y satisfying $d_{SR}(x, y) = \text{length}^g(\gamma)$.

The **energy** of the horizontal path $\gamma : [0,1] \rightarrow M$ is given by

ener^g
$$(\gamma) := \int_0^1 \left(|\dot{\gamma}(t)|_{\gamma(t)}^g \right)^2 dt.$$

Definition

We call **minimizing geodesic** between x and y any horizontal path $\gamma : [0, 1] \rightarrow M$ joining x to y such that

$$d_{SR}(x,y)^2 = \operatorname{ener}^g(\gamma).$$

 (M, d_{SR}) gives existence of minimizing geodesics.

II. The Minimizing Sard Conjecture

<ロ> < 団> < 団> < 豆> < 豆>

Ξ.

JQC

Study of minimizing geodesics I

Let $x, y \in M$ and $\overline{\gamma}$ be a **minimizing geodesic** between xand y be fixed. The SR structure admits an orthonormal parametrization along $\bar{\gamma}$, which means that there exists a neighborhood $\mathcal V$ of $ar\gamma([0,1])$ and an orthonomal family of mvector fields X^1, \ldots, X^m such that

> $\Delta(z) = \operatorname{Span} \left\{ X^1(z), \ldots, X^m(z) \right\}$ $\forall z \in \mathcal{V}.$

Study of minimizing geodesics II

There exists a control $\bar{u} \in L^2([0,1];\mathbb{R}^m)$ such that

$$\dot{\bar{\gamma}}(t) = \sum_{i=1}^{m} \bar{u}_i(t) X^i(\bar{\gamma}(t))$$
 a.e. $t \in [0,1]$.

イロト イポト イヨト イヨト

3

5900

Study of minimizing geodesics II

There exists a control $\overline{u} \in L^2([0,1];\mathbb{R}^m)$ such that

$$\dot{\overline{\gamma}}(t) = \sum_{i=1}^{m} \overline{u}_i(t) X^i(\overline{\gamma}(t))$$
 a.e. $t \in [0,1]$.

Moreover, any control $u \in U \subset L^2([0, 1]; \mathbb{R}^m)$ (*u* sufficiently close to \overline{u}) gives rise to a trajectory γ_u solution of

$$\dot{\gamma}_u = \sum_{i=1}^m u^i X^i (\gamma_u) \quad \text{sur } [0, T], \quad \gamma_u(0) = x.$$

Study of minimizing geodesics II

There exists a control $\overline{u} \in L^2([0,1];\mathbb{R}^m)$ such that

$$\dot{\overline{\gamma}}(t) = \sum_{i=1}^{m} \overline{u}_i(t) X^i(\overline{\gamma}(t))$$
 a.e. $t \in [0,1]$.

Moreover, any control $u \in U \subset L^2([0, 1]; \mathbb{R}^m)$ (*u* sufficiently close to \overline{u}) gives rise to a trajectory γ_u solution of

$$\dot{\gamma}_u = \sum_{i=1}^m u^i X^i (\gamma_u) \quad \text{sur } [0, T], \quad \gamma_u(0) = x.$$

Furthermore, for every horizontal path $\gamma : [0, 1] \rightarrow \mathcal{V}$ there exists a unique control $u \in L^2([0, 1]; \mathbb{R}^m)$ for which the above equation is satisfied.

Study of minimizing geodesics III

Consider the End-Point mapping

$$E^{\times,1}$$
 : $L^2([0,1];\mathbb{R}^m) \longrightarrow M$

defined by

$$E^{x,1}(\boldsymbol{u}) := \gamma_{\boldsymbol{u}}(1),$$

and set $C(u) = ||u||_{L^2}^2$, then \overline{u} is a solution to the following **optimization problem with constraints**:

▲ 伊 ▶ ▲ 王 ▶ ▲ 王 ▶

Study of minimizing geodesics III

Consider the End-Point mapping

$$E^{\times,1}$$
 : $L^2([0,1];\mathbb{R}^m) \longrightarrow M$

defined by

$$E^{x,1}(\mathbf{u}) := \gamma_{\mathbf{u}}(1),$$

and set $C(u) = ||u||_{L^2}^2$, then \overline{u} is a solution to the following **optimization problem with constraints**:

 \bar{u} minimize C(u) among all $u \in \mathcal{U}$ s.t. $E^{x,1}(u) = y$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Study of minimizing geodesics III

Consider the End-Point mapping

$$E^{\times,1}$$
 : $L^2([0,1];\mathbb{R}^m) \longrightarrow M$

defined by

$$E^{\times,1}(\mathbf{u}) := \gamma_{\mathbf{u}}(1),$$

and set $C(u) = ||u||_{L^2}^2$, then \overline{u} is a solution to the following **optimization problem with constraints**:

 \overline{u} minimize C(u) among all $u \in \mathcal{U}$ s.t. $E^{x,1}(u) = y$.

(Since the family X^1, \ldots, X^m is orthonormal, we have

$$\operatorname{ener}^{g}(\gamma_{\boldsymbol{u}}) = C(\boldsymbol{u}) \qquad \forall \boldsymbol{u} \in \mathcal{U}.)$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ …

Study of minimizing geodesics IV

Proposition (Lagrange Multipliers)

There exist $p \in T_y^* M \simeq (\mathbb{R}^n)^*$ and $\lambda_0 \in \{0, 1\}$ with $(\lambda_0, p) \neq (0, 0)$ such that

$$p \cdot d_{\overline{u}} E^{x,1} = \lambda_0 d_{\overline{u}} C.$$

- 4 同 ト 4 三 ト - 4 三 ト -

э.

Study of minimizing geodesics IV

Proposition (Lagrange Multipliers)

There exist $p \in T_y^*M \simeq (\mathbb{R}^n)^*$ and $\lambda_0 \in \{0,1\}$ with $(\lambda_0, p) \neq (0, 0)$ such that

$$p \cdot d_{\overline{u}} E^{x,1} = \lambda_0 d_{\overline{u}} C.$$

As a matter of fact, the function given by

$$\Phi(u) := (C(u), E^{x,1}(u))$$

cannot be a submersion at \bar{u} . Otherwise $D_{\bar{u}}\Phi$ would be surjective and so open at \bar{u} , which means that the image of Φ would contain some points of the form $(C(\bar{u}) - \delta, y)$ with $\delta > 0$ small.

 \rightsquigarrow Two cases may appear: $\lambda_0 = 1$ or $\lambda_0 = 0$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

ъ

Study of minimizing geodesics V

First case : $\lambda_0 = 1$

This is the good case, the Riemannian-like case. The minimizing geodesic can be shown to be solution of a "geodesic equation". In fact, it is the projection of a **normal extremal**. It is smooth, there is a "geodesic flow"...

Second case : $\lambda_0 = 0$

In this case, we have

$$p \cdot D_{\overline{u}} E^{x,1} = 0$$
 with $p \neq 0$,

which means that \bar{u} is **singular** as a critical point of the mapping $E^{x,1}$.

3

SQ (A

Study of minimizing geodesics V

First case : $\lambda_0 = 1$

This is the good case, the Riemannian-like case. The minimizing geodesic can be shown to be solution of a "geodesic equation". In fact, it is the projection of a **normal extremal**. It is smooth, there is a "geodesic flow"...

Second case : $\lambda_0 = 0$

In this case, we have

$$p \cdot D_{\overline{u}} E^{x,1} = 0$$
 with $p \neq 0$,

which means that \bar{u} is **singular** as a critical point of the mapping $E^{x,1}$.

 \rightsquigarrow As shown by R. Montgomery, the case $\lambda_0 = 0$ cannot be ruled out.

31

SQ (V

Singular horizontal paths and Examples

Definition

An horizontal path is called **singular** if it is, through the correspondence $\gamma \leftrightarrow u$, a critical point of the End-Point mapping $E^{x,1}: L^2 \rightarrow M$.

3

SQ (V

Singular horizontal paths and Examples

Definition

An horizontal path is called **singular** if it is, through the correspondence $\gamma \leftrightarrow u$, a critical point of the End-Point mapping $E^{x,1}: L^2 \rightarrow M$.

Example: Riemannian case

Let $\Delta(x) = T_x M$, any path in $W^{1,2}$ is horizontal. There are no singular curves.

<ロト < 同ト < 巨ト < 巨ト -

э

Singular horizontal paths and Examples

Definition

An horizontal path is called **singular** if it is, through the correspondence $\gamma \leftrightarrow u$, a critical point of the End-Point mapping $E^{x,1}: L^2 \rightarrow M$.

Example: Riemannian case

Let $\Delta(x) = T_x M$, any path in $W^{1,2}$ is horizontal. There are no singular curves.

Example: Heisenberg, fat distributions

In \mathbb{R}^3 , Δ given by $X^1 = \partial_x, X^2 = \partial_y + x \partial_z$ does not admin nontrivial singular horizontal paths.

Э.

5900

Martinet-like distributions

In \mathbb{R}^3 , let $\Delta = \text{Vect}\{X^1, X^2\}$ with X^1, X^2 of the form

$$X^1 = \partial_{x_1}$$
 and $X^2 = (1 + x_1 \phi(x)) \partial_{x_2} + x_1^2 \partial_{x_3}$,

where ϕ is a smooth function and let g be a metric over Δ .

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

3

SQ (V

Martinet-like distributions

In \mathbb{R}^3 , let $\Delta = \text{Vect}\{X^1, X^2\}$ with X^1, X^2 of the form

$$X^1 = \partial_{x_1}$$
 and $X^2 = (1 + x_1 \phi(x)) \partial_{x_2} + x_1^2 \partial_{x_3}$,

where ϕ is a smooth function and let g be a metric over Δ .

Theorem (Montgomery, 1991)

There exists $\overline{\epsilon} > 0$ such that for every $\epsilon \in (0, \overline{\epsilon})$, the singular horizontal path

$$\gamma(t) = (0, t, 0) \qquad \forall t \in [0, \epsilon],$$

is minimizing (w.r.t. g) among all horizontal paths joining 0 to $(0, \epsilon, 0)$.

< 回 > < 三 > < 三 > <

Э

SQ (V

Martinet-like distributions

In \mathbb{R}^3 , let $\Delta = \text{Vect}\{X^1, X^2\}$ with X^1, X^2 of the form

$$X^1=\partial_{x_1} \quad ext{and} \quad X^2=ig(1+x_1\phi(x)ig)\,\partial_{x_2}+x_1^2\partial_{x_3}$$

where ϕ is a smooth function and let g be a metric over Δ .

Theorem (Montgomery, 1991)

There exists $\overline{\epsilon} > 0$ such that for every $\epsilon \in (0, \overline{\epsilon})$, the singular horizontal path \mathbf{z}

$$\gamma(t) = (0, t, 0) \quad \forall t \in [0, \epsilon],$$

is minimizing (w.r.t. g) among all horizontal paths joining 0 to $(0, \epsilon, 0)$. Moreover, if $\{X^1, X^2\}$ is orthonormal w.r.t. g and $\phi(0) \neq 0$, then γ is not the projection of a normal extremal $(\lambda_0 = 1)$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

э

Given a complete sub-Riemannian structure (Δ, g) on M and a minimizing geodesic γ from x to y, two cases may happen:

- The geodesic γ is the projection of a normal extremal so it is smooth..
- The geodesic γ is a singular curve and could be non-smooth.

- (目) - (ヨ) - (ヨ)

э.

Given a complete sub-Riemannian structure (Δ, g) on M and a minimizing geodesic γ from x to y, two cases may happen:

- The geodesic γ is the projection of a normal extremal so it is smooth..
- The geodesic γ is a singular curve and could be non-smooth.

Questions:

When? How many? How?

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

E

The Sard Conjecture

Given $x \in M$, we denote by $\operatorname{Sing}_{\Delta}^{x}$ the set of points $y \in M$ for which there is a **singular horizontal path** joining x to y, it is a closed subset of M containing x.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Given $x \in M$, we denote by $\operatorname{Sing}_{\Delta}^{x}$ the set of points $y \in M$ for which there is a **singular horizontal path** joining x to y, it is a closed subset of M containing x.

Sard Conjecture

The set $\operatorname{Sing}_{\Delta}^{\times}$ has Lebesgue measure zero in M.

▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶

Given $x \in M$, we denote by $\operatorname{Sing}_{\Lambda}^{x}$ the set of points $y \in M$ for which there is a **singular horizontal path** joining x to y, it is a closed subset of M containing x.

Sard Conjecture

The set $Sing^{x}_{\Lambda}$ has Lebesgue measure zero in M.

The result is known in very few cases:

- Rank 2 in dimension 3 (much stronger result by Belotto, Eigalli, Parusinski, R). 125=4[0Å
- Some cases of Carnot groups.

・ロト ・同ト ・ミト ・ミト

The Minimizing Sard Conjecture

Given $x \in M$, we denote by $Abn^{min}(x)$ (or $Sing_{\Delta,g}^{x,min}$) the set of points $y \in M$ for which there is a **singular minimizing geodesic** joining x to y, it is a closed subset of M containing x.

Minimizing Sard Conjecture

For every $x \in M$, the set $Abn^{min}(x)$ has Lebesgue measure zero in M.

The Minimizing Sard Conjecture

Given $x \in M$, we denote by $Abn^{min}(x)$ (or $Sing_{\Delta,g}^{x,min}$) the set of points $y \in M$ for which there is a **singular minimizing geodesic** joining x to y, it is a closed subset of M containing x.

Minimizing Sard Conjecture

For every $x \in M$, the set $Abn^{min}(x)$ has Lebesgue measure zero in M.

Only few cases are known. In general, we have

Theorem (Agrachev, 2009)

Let M be a smooth connected manifold of dimension n equipped with a complete sub-Riemannian structure (Δ, g) . Then for every $x \in M$, the closed set $Abn^{min}(x)$ has empty interior.

3

SQ (V

III. A Partial result

< □ > < □ > < □ > < □ > < □ > .

5900

÷.

A Partial result

Theorem (R, 2023)

Let M be equipped with a complete SR structure (Δ, g) and $x \in M$ be fixed. If for almost every $y \in M$ all minimizing horizontal paths from x to y have Goh-rank at most 1, then the closed set Abn^{min}(x) has Lebesgue measure zero in M.

A Partial result

Theorem (R, 2023)

Let M be equipped with a complete SR structure (Δ, g) and $x \in M$ be fixed. If for almost every $y \in M$ all minimizing horizontal paths from x to y have Goh-rank at most 1, then the closed set Abn^{min}(x) has Lebesgue measure zero in M.

Corollary (R, 2023)

If *M* is equipped with a complete SR structure (Δ, g) having minimizing co-rank 1 almost everywhere, then the Minimizing Sard Conjecture holds true.

A Partial result

Theorem (R, 2023)

Let M be equipped with a complete SR structure (Δ, g) and $x \in M$ be fixed. If for almost every $y \in M$ all minimizing horizontal paths from x to y have Goh-rank at most 1, then the closed set Abn^{min}(x) has Lebesgue measure zero in M.

Corollary (R, 2023)

If *M* is equipped with a complete SR structure (Δ, g) having minimizing co-rank 1 almost everywhere, then the Minimizing Sard Conjecture holds true.

Corollary (R, 2023)

If *M* is equipped with a complete SR structure (Δ, g) of rank $m \ge 2$ where Δ is generic, then the Minimizing Sard Conjecture holds true.

Sketch of proof I

< /₽ > < E >

 $\mathcal{A} \subset \mathcal{A}$

Roughly speaking, our assumptions allow to show that f_x is Lipschitz along an hyperplane at each $y \neq x$. The main ingredient of the proof is the:

Proposition

Let φ: (a, b) → ℝ be a continuous function. Then, for a.e.
x ∈ (a, b), at least one of the following properties is satisfied:
(i) φ is differentiable at x.
(ii) There is a sequence {x_k} converging to x such that
0 ∈ ∂⁻φ(x_k) is r all k.

In fact, we need a more precise version of (ii), which is given by the Denjoy-Young Saks Theorem.

・ロト ・(型ト ・ヨト ・ヨト

э

The Denjoy-Young-Saks Theorem

Theorem

Let $f : (a, b) \to \mathbb{R}$ be a function. Then for a.e. $x \in (a, b)$, one of the following assertion holds:

- (1) f is differentiable at x,
- (2) $D^+f(x) = D^-f(x) = +\infty$, $D_+f(x) = D_-f(x) = -\infty$, (3) $D^+f(x) = +\infty$, $D_-f(x) = -\infty$, $D_+f(x) = D^-f(x) \in \mathbb{R}$,
- (4) $D^{-}f(x) = +\infty, D_{+}f(x) = -\infty, D_{-}f(x) = D^{+}f(x) \in \mathbb{R}.$

Here, D^+f , D_+f , D^-f , D_-f stand for the Dini derivatives of f defined by $(T_{c,d} := (f(d) - f(c))/(d - c))$

Thank you for your attention !!

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Ð,

5900