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Using the spectral element method (SEM), or more generally hp-finite elements (hp-FEM), it is possible to solve with 
high accuracy various kinds of problems governed by partial differential equations (PDEs), see e.g. [1,2]. However, as soon 
as the physical domain is not polygonal, the accuracy quickly deteriorates if curved elements are not implemented. This 
is the reason why various methods have been developed during the last decades, starting from the celebrated transfinite 
interpolation proposed for quadrangular elements in [3]. In this note we revisit this problem for triangular elements, based 
on the use of Fekete points for interpolations and of Gauss points for quadratures, i.e. when using the so-called Fekete–Gauss 
approximation. As detailed in [4], such an approach shows the so-called spectral accuracy. However, differently to the 
quadrangles based SEM, it does not involve diagonal mass matrices, see e.g. [5–7] and references herein for works trying to 
preserve this nice property that is especially useful when addressing evolution problems with an explicit time marching. In 
the frame of the Fekete–Gauss T SEM (T , for triangle), the present study clearly points out the importance of a good choice 
of the bending procedure by comparing different isoparametric mappings for the Poisson and Grad–Shafranov PDEs.

Let � be a two-dimensional domain and consider an affine finite element mesh Th of � composed of simplices. As is
well known, if � is not polygonal then the mesh Th is no-longer satisfactory if using a high order PN approximation, where 
N is the total degree of the polynomial approximation. Usually, one substitutes an isoparametric PN mapping to the affine 
P1 one for the triangles that should approximate the boundary � of �. If T ∈ Th is such a triangle, we assume it to be 
in the simple case where one of the vertices, say A1, is in � whereas the two others, A2 and A3, are on �, and that the 
segment A2 A3 is curved whereas A1 A2 and A1 A3 remain straight, see Fig. 1. This may not be sufficient to address some 
more complex situations where the whole mesh should be deformed and not only the boundary cells, see e.g. [8–10]. Here 
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Fig. 1. Curved triangles and location of the interpolation points for the different isoparametric mappings (N = 6).

we keep in mind the situation where the required mapping is local and not global, so that its computational cost remains 
negligible.

In the frame of a nodal T SEM, everything is given once knowing a set of interpolation points and a set of quadrature 
points in the reference element T̂ = {(r, s) : r ∈ (−1, 1), s ∈ (−1, −r)}, and the images of the interpolation points in each 
element T of the mesh. As first described in [4], for the Fekete–Gauss approach matrices are set up to compute at the Gauss 
points of T̂ the derivatives, with respect to r and s, of the polynomial interpolant uN of any scalar function u defined by its 
values at the Fekete points. Such matrices, say Dr and Ds , are rectangular and of size mp ×np , where mp ≥ np is the number 
of quadrature points, generally chosen for exact integration of polynomials of degree m = 2N , and np = (N + 1)(N + 2)/2
is the number of interpolation points. Then, since knowing the images of the interpolation points, one can compute the 
Jacobian matrix and determinant at the quadrature points without expressing explicitly the isoparametric mapping from T̂
to T . Thus, the problem resumes to localize at best the interpolation points in the element T .

Four approaches are investigated hereafter:

– The bending procedure that we introduced in [11];
– The transfinite interpolation discussed for the triangles in [12];
– The harmonic extension;
– The linear elasticity approach, see e.g. [10].

Before going into the details of these different approaches, we assume to have at hand a parametric description of the 
boundary of �, i.e., � is defined by a vector function, say x�(t) = (x�(t), y�(t)), where t ∈ [tmin, tmax]. Then, for all the four 
approaches it is assumed that the boundary nodes, i.e. the interpolation points of �, are at the intersection of the lines 
joining the inner vertex A1 and the interpolation points of the straight line A2 A3, i.e. the edge of the element, say T̃ , pro-
vided by the piecewise linear P1 mapping. This requires one to solve, in general using a simple numerical procedure, N − 1
(number of nodes of an edge without the end points) generally non-linear equations. We prefer using such a geometrical 
approach rather than the parametrization itself, simply because the same curve may be obtained in very different manners. 
It remains to define n′

p inner interpolation points, with n′
p = np − 3N = (N − 1)(N − 2)/2.

The bending procedure: Assume that F̃ is the interpolation point obtained with the affine P1 mapping. Let G̃ and G be 
the points at the intersections of A1 F̃ with the line A2 A3 and the boundary �, respectively. Then, the bending procedure 
[11] consists of stating that F is homothetic to F̃ by the homothety of center A1 and of ratio A1G/A1G̃ , so that:

A1 F = A1G

A1G̃
A1 F̃ and d ≡ F̃ F = (

A1G

A1G̃
− 1)A1 F̃

where d stands for displacement. One notices that for this bending procedure, only the point G of � influences the location 
of the interpolation point F . In order to define the inner interpolation points, one has to solve n′

p equations.

The transfinite interpolation: For the triangle, the method makes use of the barycentric coordinates, say (λ1, λ2, λ3). 
Recall that λi = 0 stands for the edge opposite to the vertex i, λi = Constant to a line parallel to this edge and that vertex 
i belongs to λi = 1. General transfinite interpolation formula are given in [12] (different approaches are however possible, 
see e.g. [13]). For the triangle, if the displacement d vanishes at the two edges A1 A2 and A1 A3, again assuming that A2 A3
is the curved edge, one has:

d(λ1, λ2, λ3) = λ2 d(0,1 − λ3, λ3) + λ3 d(0, λ2,1 − λ2) .

This means that two points of the boundary � influence the location of an inner interpolation point F . They are those at 
the intersections of � with the lines parallel to A1 A2 and A1 A3 and passing by the point F̃ . One notices that the method 
requires solving 2n′

p equations.
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Fig. 2. Computational domain and meshes: coarse (69 elts), medium (151 elts) and fine (293 elts).

Harmonic extension: The goal is here to define the inner interpolation points by solving, for each curved element T , the 
weak form of the Laplace Dirichlet problem:

�d = 0 in T̃ , d|∂ T̃ = g

with g given on A2 A3 and g = 0 on the two other sides. To resolve this vector Laplace problem, that in fact yields two 
uncoupled scalar problems, one has to set up the differentiation matrices, say Dx̃ and D ỹ that allows one to compute 
derivatives in T̃ . To this end, one makes use of the differentiation matrices Dr and Ds and applies the chain rule. Since the 
mapping from T̂ to T̃ is affine, the Jacobian matrix and determinant Jacobian are constant. For the same reason, one may 
solve directly for the interpolation point coordinates. Finally, one should invert a matrix of size n′

p ×n′
p , in order to compute 

the coordinates of the inner interpolation points. The approach is thus rather simple and in practice not costly. In [9], where 
global mappings are considered, it is however outlined that the harmonic extension may fail to define a mapping.

Linear elasticity: Here the curved domain is viewed as the deformation of triangles, that is governed by the equation 
of linear elasticity. Introducing the Lame coefficients λ and μ, the displacement field is governed by the Navier–Cauchy 
equation:

μ�d + (λ + μ)∇(∇ · d) = 0 in T̃ , d|∂ T̃ = g .

There is now a coupling between the components of the displacement field. Using the ingredients previously described for 
the harmonic extension, the weak form of this elasticity problem yields a matrix system of size 2n′

p . The solution of this 
system provides the displacements of the inner interpolation points. Again, one can also compute directly their coordinates. 
Because the forcing term is zero, the mapping is here parametrized by the ratio μ/(λ + μ) = 1 − 2η, where η ∈ (−1, 0.5) is 
the so called Poisson ratio.

Fig. 1 shows the distribution of the interpolation points in a triangle, as obtained with the different strategies for a 
polynomial approximation degree N = 6. Of course, only the inner nodes differ. In these examples, the curved boundary is 
defined parametrically by: x = t , t ∈ (−1, 1), and y = 0.3 sin(πt) (left), y = 0.3 cos(πt/2) (center) and y = −0.3 cos(πt/2)

(right).
In the rest of the paper the different isoparametric mappings are compared for the Poisson equation, −�u = f , with 

exact solution uex = cos(10x) cos(10y) so that f = 200 uex , and, from an example given in [14], for the Grad–Shafranov PDE

−∇ · ( 1

μx
∇u) = f ,

with

uex = − κ

2ρ3q

(
1

4
(x2 − ρ2) + 1

κ2
x2 y2 − a2ρ2

)
, f = 1 + κ2

μκρ3q
x .

In both cases the boundary � of the computational domain is defined by

� = {(x, y) : x2 = ρ2 + 2aρ g(t) , y = κa
ρ

x
sin(t) ,0 ≤ t < 2π} , g(t) = cos(t) + 0.75 exp(−2(t − π)2)

and Dirichlet boundary conditions are used. Moreover, as in [15,16] we take ρ = 1, a = 0.32, κ = 1.7 and q = 1, but with 
g(t) 	= cos(t) to obtain a non-convex domain that includes different types of curved elements. For the Grad–Shafranov prob-
lem, the 1/(μx) value at the Gauss points is computed by interpolation of (μx) from the Fekete to the Gauss points, so that 
it is exact for non-deformed triangles. For the linear elasticity extension, as in [10] we use η = 0.4, yielding μ/(λ + μ) = 0.2. 
Computations have also been carried out without curving the boundary triangles, then (i) assigning to the boundary points 
of the straight edge the corresponding values of uex on the curved boundary or (ii) simply using uex , just like if the compu-
tational domain was a polygon.
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Fig. 3. Max norm of the error vs the polynomial degree N for the Laplace (at left) and Grad–Shafranov (at right) problems, using the coarse (top), medium 
(middle) and fine (bottom) meshes.

Computations have been carried out for the three P1 meshes shown in Fig. 2 and for the polynomial approximation 
degrees N ∈ {1, 2, 3, 6, 9}. With uN for the numerical solution and {xk} for the interpolation points, log–log plots of the 
l∞ error, ε = maxk |uN − uex|(xk)/ maxk |uex|(xk), with respect to the polynomial degree N are shown in Fig. 3. Of course, 
if the boundary triangles are not curved then the results are bad for the real domain and on the contrary excellent for 
the polygonal one. If curved elements are involved, the convergence curves look more algebraic than exponential, with 
however high convergence rates. One notices that for N ≤ 2 all methods show the same accuracy, since then there is no 
inner interpolation point. With respect to the polygonal case, the loss of accuracy may be attributed to a failure of the Gauss 
quadrature formula: Indeed, since the Jacobian matrix and determinant are no longer constant in each element, polynomials 
of degree greater than 2N are numerically integrated. We have checked that this was negligible, since using values m > 2N
yields no valuable gain in accuracy, see Table 1. For curved elements the differentiation matrices are however no-longer a 
simple combination of the matrices Dr and Ds defined for the reference element, which implies a sensitive loss of accuracy. 
With respect to the standard SEM, i.e. based on quadrangular elements, the fact that the interpolation and quadrature points 



R. Pasquetti / Journal of Computational Physics 316 (2016) 573–577 577
Table 1
Max norm of the error for the Laplace and Grad–Shafranov problems for m ≥ 2N , using the 
transfinite interpolation, the medium mesh and for N = 6.

m 12 14 16 18

Laplace 3.8025 × 10−4 4.0246 × 10−4 4.0065 × 10−4 4.0078 × 10−4

Grad–Shafranov 2.4653 × 10−5 2.6421 × 10−5 2.6306 × 10−5 2.6313 × 10−5

do not coincide certainly constitutes another source of inaccuracy, see e.g. the SEM results in [15]. From the results of this 
Note, the bending and the transfinite interpolation methods appear to be less satisfactory for elements of high degree, 
especially in the Grad–Shafranov case, since a slow-down in the decrease of the error is clearly observed. Our explanation 
is that isoparametric mappings based on PDEs are more consistent than those based on interpolations, in the sense that the 
locations of the inner nodes do not only result from some particular points of the actual boundary but from its polynomial 
interpolant, which indeed defines the boundary of the computational domain. One may conjecture that such a conclusion 
could extend to the tetrahedron and to T SEM approximations different from the Fekete–Gauss one.
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