UNIVERSITÉ DE NICE SOPHIA-ANTIPOLIS

Licence MASS - Intégration et Probabilités - 2005-2006 Sylvain Rubenthaler

Partiel - 15/11/05

Durée : 2h.

Documents et calculatrices interdits.

La plus grande importance sera accordée lors de la correction à la justification des réponses.

- 1. Pour tout $n \in \mathbb{N}$, on pose $I_n = [n, n+1/2^n[$ et $A_n = \bigcup_{0 \le k \le n} I_k$. Soit λ la mesure de Lebesgue sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.
 - (a) Montrer que pour tout $n, A_n \subset A_{n+1}$.
 - (b) En déduire que $\lambda(\bigcup_{n\geq 0}A_n)=\lim_{n\to+\infty}\lambda(A_n)$.
 - (c) Montrer que $\lim_{n\to+\infty} \lambda(A_n) = \sum_{n\geq 0} \frac{1}{2^n}$.
 - (d) Calculer $\sum_{n\geq 0} \frac{1}{2^n}$.
- 2. Soit μ mesure sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ de densité $\mathbf{1}_{x \in [0,1]} \sin(x)$ (par rapport à la mesure de Lebesgue). Calculer $\mu(\{1/2\})$.
- 3. Calculer les limites suivantes
 - (a) $\lim_{n \to +\infty} \int_1^{+\infty} \frac{1}{x^2} \sin\left(\frac{1}{nx}\right) dx$
 - (b) $\lim_{n \to +\infty} \int_0^1 (1 x/n)^n dx$
 - (c) $\lim_{n \to +\infty} \int_0^1 \exp(1 + (\sin x)^n) dx$.