EXERCISES 1

RANDOM VARIABLES, CONDITIONAL EXPECTATION

In all the exercises, $(\Omega, \mathcal{A}, \mathbb{P})$ denotes the current probability space.

1. Random Variables

Exercise 1. Compute $\mathbb{V}(X)$ (if exists) in the following cases
(1) X is a r.v. of uniform law on $(0,1)$.
(2) X is a r.v. of Bernoulli law of parameter $p \in(0,1)$.
(3) X is a r.v. of Gaussian law $\mathcal{N}\left(m, \sigma^{2}\right)$ (i.e. of parameters $m \in \mathbb{R}$ and $\sigma>0$.

Exercise 2. Let X be a r.v. of Gaussian law $\mathcal{N}(0,1)$ (i.e. of parameters 0 and 1). For $m \in \mathbb{R}$ and $\sigma>0$, give the law of $m+\sigma X$.
Exercise 3. Let X be a r.v. of uniform law on $(0,1)$. Give the law of $1-U$.
Exercise 4. Let X be a r.v. of Gaussian law $\mathcal{N}(0,1)$ (i.e. of parameters 0 and 1). Give the law of X^{2}.

Exercise 5. Let X be a r.v. and $t \in \mathbb{R}$. Compute $\mathbb{E}[\exp (t X)]$ in the following cases:
(1) X is a Bernoulli r.v. of parameter $0<p<1$.
(2) X is a Gaussian r.v. $\mathcal{N}\left(m, \sigma^{2}\right), m \in \mathbb{R}$ and $\sigma>0$.

Exercise 6. Show that the moments of a random variable X of Gaussian law $\mathcal{N}(0,1)$ are given by

$$
\forall n \geq 0, \mathbb{E}\left(X^{2 n}\right)=\frac{(2 n)!}{2^{n} n!}, \mathbb{E}\left(X^{2 n+1}\right)=0
$$

Hint: Use the previous exercise.

2. Independent Random Variables

Exercise 7. Lett X, Y be two independent and identically distributed r.v. of law $\mathcal{N}(0,1)$. Prove that $X-Y$ and $X+Y$ are independent.

Exercise 8. Let U and V be two independent and identically distributed r.v. of uniform law on $(0,1)$. What is the law of $\max (U, V)$? What is the law of the pair $(\min (U, V), \max (U, V))$?

Exercise 9. Let X and Y be two independent and identically distributed r.v. of Gaussian law $\mathcal{N}(0,1)$. What is the law of X / Y ? Is it possible to define $\mathbb{E}[X / Y]$?
Exercise 10. Let X and Y be two independent variables such that $\mathbb{E}\left(X^{2}+Y^{2}\right)<+\infty$.
(1) Show that $\mathbb{E}(X)$ and $\mathbb{E}(Y)$ exist.
(2) Show that $\mathbb{V}(X+Y)=\mathbb{V}(X)+\mathbb{V}(Y)$.
(3) Find a counter-example to the above equality when X and Y aren't independent.

Exercise 11. We say that a r.v. X is an exponential r.v. of parameter $\lambda>0$ if the law of X has the density

$$
x \in \mathbb{R} \mapsto \lambda \mathbf{1}_{(0,+\infty)}(x) \exp (-\lambda x) .
$$

Let U and V be two independent exponential r.v. of parameter $\lambda>0$. What is the law of $\min (U, V)$?

Exercise 12. Let X and Y be two independent Gaussian random variables $\mathcal{N}\left(m_{1}, \sigma_{1}^{2}\right)$ and $\mathcal{N}\left(m_{2}, \sigma_{2}^{2}\right)$, $m_{1}, m_{2} \in \mathbb{R}$ and $\sigma_{1}, \sigma_{2}>0$. Using characteristic functions, give the law of $X_{1}+X_{2}$.

