EXERCISES 2

INDEPENDENCE OF GAUSSIAN VECTORS - GAUSSIAN PROCESSES - BROWNIAN MOTION

In all the exercises, $(\Omega, \mathcal{A}, \mathbb{P})$ denotes the current probability space.

1. Independence

Exercise 1. Let $\left(X_{i}\right)_{1 \leq i \leq n}, n \geq 2$, be n independent and identically distributed r.v. of Gaussian law $\mathcal{N}(0,1)$. Prove that the r.v. $\bar{X}_{n}=n^{-1} \sum_{i=1}^{n} X_{i}$ and $\max _{1 \leq i \leq n} X_{i}-\min _{1 \leq i \leq n} X_{i}$ are independent. Hint: Consider the vector $\left(\bar{X}_{n}, X_{1}-\bar{X}_{n}, \ldots, X_{n}-\bar{X}_{n}\right)^{t}$.
Exercise 2. Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of I.I.D. r.v. of Gaussian law $\mathcal{N}(0,1)$. We set:

$$
B_{0}=0, \forall n \geq 1, B_{n}=\sum_{k=1}^{n} X_{k} .
$$

(1) Give the covariance matrix of $\left(B_{1}, \ldots, B_{n}\right)$ as well as its probability density (if exists).
(2) For $1 \leq m \leq n$, set $Z_{m}=B_{m}-(m / n) B_{n}$. Prove that Z_{m} and B_{n} are independent.

2. Law of a Process

Exercise 3. Let $\left(X_{t}\right)_{0 \leq t \leq 1}$ be a real-valued continuous process.
(1) Show that the following mapping is a random variable:

$$
\omega \in \Omega \mapsto \int_{0}^{1} X_{s}(\omega) d s
$$

(Hint: think of Riemann sums.)
(2) Let $\left(Y_{t}\right)_{0 \leq t \leq 1}$ be another real-valued continuous process.
(a) Assume that X and Y have the same law, prove that $\int_{0}^{1} X_{s} d s$ and $\int_{0}^{1} Y_{s} d s$ have the same law.
(b) Assume that X and Y are independent, prove that $\int_{0}^{1} X_{s} d s$ and $\int_{0}^{1} Y_{s} d s$ are independent.

3. Gaussian Processes

Exercise 4. Let $\left(X_{t}\right)_{t \geq 0}$ be a Gaussian process. For a function ψ from \mathbb{R}_{+}into itself, show that $\left(X_{\psi(t)}\right)_{t \geq 0}$ is also Gaussian.
Exercise 5. Let $\left(X_{t}\right)_{0 \leq t \leq 1}$ be a real-valued continuous Gaussian process. We suppose that the functions $t \mapsto \mathbb{E}\left(X_{t}\right)$ and $(t, s) \mapsto \mathbb{E}\left(X_{s} X_{t}\right)$ are continuous. Show that $\int_{0}^{1} X_{s} d s$ has a Gaussian law. Compute its mean and its covariance.

Exercise 6. Let $\left(B_{t}\right)_{t \geq 0}$ be a (real) Brownian motion and $\left(Z_{t}\right)_{0 \leq t \leq 1}$ be the process:

$$
\forall t \in[0,1], Z_{t}=B_{t}-t B_{1}
$$

(1) Show that $\left(Z_{t}\right)_{0 \leq t \leq 1}$ is a Gaussian process and is independent of B_{1}. Compute the mean and the covariance functions of Z.
(2) We define the time reversal of Z by:

$$
\forall t \in[0,1], Y_{t}=Z_{1-t} .
$$

Show that both processes have the same law.

4. Brownian Motion

Exercise 7. Let $\left(B_{t}\right)_{t \geq 0}$ be a (real) Brownian motion. Show that $\left(-B_{t}\right)_{t \geq 0}$ is a Brownian motion.
Exercise 8. Let $\left(B_{t}\right)_{t \geq 0}$ be a (real) Brownian motion. For a real $a>0$, show that $\left(B_{a+t}-B_{a}\right)_{t \geq 0}$ is a Brownian motion and is independent of $\left(B_{t}\right)_{0 \leq t \leq a}$.

Exercise 9. Let $\left(B_{t}\right)_{t \geq 0}$ be a (real) Brownian motion et and $\left(\widetilde{B}_{t}\right)_{t \geq 0}$ be the family of random variables given by:

$$
\widetilde{B}_{0}=0, \forall t>0, \widetilde{B}_{t}=t B_{t^{-1}} .
$$

(1) Show that $\left(\widetilde{B}_{t}\right)_{t \geq 0}$ is a centered Gaussian process with $(s, t) \in \mathbb{R}_{+}^{2} \mapsto s \wedge t$ as covariance function.
(2) Deduce that $\left(\widetilde{B}_{t}\right)_{t \geq 0}$ and $\left(B_{t}\right)_{t \geq 0}$ have the same law.

Exercise 10. A d-dimensional Brownian motion is a process of the form $\left(B_{t}=\left(B_{t}^{1}, \ldots, B_{t}^{d}\right)\right)_{t \geq 0}$, where $\left(B_{t}^{i}\right)_{t \geq 0}, 1 \leq i \leq d$, are independent (real) Brownian motions. Show that for such a B and for a matrix U of size $d \times d$ with $U U^{*}$ equal to the identity matrix, the process $\left(U B_{t}\right)_{t \geq 0}$ is also a d-dimensional Brownian motion.
(To simplify, you may choose $d=2$.)
Exercise 11. Show that the probability that a Brownian motion is non-decreasing on a given interval $[a, b], 0 \leq a<b$, is zero.
Exercise 12. Let $\left(B_{t}^{1}\right)_{t \geq 0}$ and $\left(B_{t}^{2}\right)_{t \geq 0}$ be two independent Brownian motions. Show that ($B_{t}=$ $\left.2^{-1 / 2}\left(B_{t}^{1}+B_{t}^{2}\right)\right)_{t \geq 0}$ is a Brownian motion.

