EXERCISES 4

WIENER'S INTEGRAL - ITO'S INTEGRAL - MARTINGALES

In all the exercises, $(\Omega, \mathcal{A}, \mathbb{P})$ denotes the current probability space and $(B_t)_{t\geq 0}$ a (real) Brownian motion.

Exercise 1. A player begin a play with $M_0 \in$. At each step, he wins $1 \in$ with probability p and loses $1 \in$ with probability 1 - p ($p \in [0, 1]$, $p \ne 1/2$). He stops the play when his wealth reaches a value M (M fixed $> M_0$) or reaches 0.

- (1) We call S_n the wealth of the player after n steps of the game (we have $S_0 = M_0$). Write S_n as a sum of i.i.d. variables.
- (2) Let $T = \inf\{n \geq 1 : S_n \in \{M, 0\}\}$. Show that T is a stopping time (relatively to the filtration $(\mathcal{F}_n = \sigma(S_0, \ldots, S_n))_{n \geq 0}$).
- (3) Find $\alpha \neq 0$ such that $(e^{\alpha S_n})_{n\geq 0}$ is a martingale. Show that $\forall n, \mathbb{E}(e^{\alpha S_{T\wedge n}}) = \mathbb{E}(e^{\alpha S_0})$.
- (4) We set $q = \mathbb{P}(S_T = M)$. Find β such that $(S_n \beta n)_{n \geq 0}$ is a martingale. Show that $\forall n$, $\mathbb{E}(S_{T \wedge n} \beta(n \wedge T)) = \mathbb{E}(S_0)$.
- (5) Show that $\mathbb{E}(T) < \infty$.
- (6) Show that $\mathbb{E}(e^{\alpha S_T}) = \mathbb{E}(e^{\alpha S_0})$. Find $q = \mathbb{P}(S_T = M)$.

Exercise 2. We suppose we are in the same situation as in the Exercise above but with p = 1/2. Find $q = \mathbb{P}(S_T = M)$ (hint: show that $S_n^2 - n$ is a martingale).

Exercise 3. A player plays a game where, when you bet $k \in$, you win keuro with probability p (meaning you get back your $k \in$ and you win an additional $k \in$) or you loose $k \in$ with probability 1-p ($p \in (0,1]$). The player is interested in his total gain. He starts with a gain = 0. He wants to reach the gain +1 using the following strategy.

- He bets 1 and if he wins, he stops; if not, he carries on to the next step.
- He bets 2 and if he wins, he stops; if not, he carries on to the next step.
- He bets 4 and if he wins, he stops; if not, he carries on to the next step.
- ... etc ...
- (1) Let $T = \inf\{n : G_n = 1\}$. Show that T is a stopping time relatively to the filtration $(\sigma(G_0, \ldots, G_n))_{n \geq 0}$.
- (2) Express the gain G_n after the n-th step using i.i.d. variables.
- (3) Show that $T < +\infty$ a.s.
- (4) The more the player looses, the more he needs on his bank account to keep on playing. The sum he will need during one game is $-\min_{n\in\{0,\dots,T-1\}}(G_n)+2^n$. Compute $\mathbb{E}(\min_{n\in\{0,\dots,T\}}G_n)$.
- (5) Suppose your start the game with $2^N 1 \in \mathbb{N}$. You stop when your gain reaches -2^N or 1. What is the expectation of your final gain?

Exercise 4. Let f be a deterministic locally admissible function.

(1) Show that

$$\forall t \ge 0, \ \mathbb{E}\left[\exp\left(\int_0^t f_s dB_s\right)\right] = \exp\left(\frac{1}{2}\int_0^t f_s^2 ds\right).$$

(2) Show that the process

$$\left(\exp\left(\int_0^t f_s dB_s - \frac{1}{2} \int_0^t f_s^2 ds\right)_{t \ge 0}\right)$$

is a martingale with respect to the natural filtration of B.

Exercise 5. Show that $(B_t^2 - t)_{t \ge 0}$ is a martingale. (With respect to the natural filtration of B.)

Exercise 6. Let T > 0. Show that

$$\lim_{n \to +\infty} \mathbb{E} \left[\left(\sum_{i=1}^{n} (B_{Ti/n} - B_{T(i-1)/n})^2 - T \right)^2 \right] = 0.$$

Exercise 7. Let T > 0. Show that

$$\int_0^T \left(1 + \frac{B_t}{n}\right)^n dB_t \xrightarrow{L^2} \int_0^T \exp(B_t) dB_t,$$

as $n \to +\infty$. Check first that the integrals are well-defined.

Exercise 8. Let T > 0. For a given $n \ge 1$, we define the process

$$\forall n \ge 0, \forall t \ge 0, \ B_t^n = \sum_{i=0}^{n-1} B_{Ti/n} \mathbf{1}_{(Ti/n, T(i+1)/n]}(t).$$

- (1) Prove that $(B_t^n)_{t\geq 0}$ is a simple process w.r.t. the filtration generated by B.
- (2) Show that

$$\lim_{n \to +\infty} \mathbb{E} \int_0^T |B_t^n - B_t|^2 dt = 0.$$

(3) What is the limit, in $L^2(\Omega)$, of

$$\left(\int_0^T B_t^n dB_t\right)_{n\geq 1}?$$

(4) Prove that

$$B_T^2 = 2 \int_0^T B_t^n dB_t + \sum_{i=1}^n (B_{Ti/n} - B_{T(i-1)/n})^2$$

(5) By the previous exercise, deduce

$$B_T^2 = 2\int_0^T B_t dB_t + T.$$