EXERCISES 4

WIENER'S INTEGRAL - ITO'S INTEGRAL - MARTINGALES

In all the exercises, $(\Omega, \mathcal{A}, \mathbb{P})$ denotes the current probability space and $\left(B_{t}\right)_{t \geq 0}$ a (real) Brownian motion.

Exercise 1. A player begin a play with $M_{0} €$. At each step, he wins $1 €$ with probability p and loses $1 €$ with probability $1-p(p \in[0,1], p \neq 1 / 2)$. He stops the play when his wealth reaches a value M (M fixed $>M_{0}$) or reaches 0 .
(1) We call S_{n} the wealth of the player after n steps of the game (we have $S_{0}=M_{0}$). Write S_{n} as a sum of i.i.d. variables.
(2) Let $T=\inf \left\{n \geq 1: S_{n} \in\{M, 0\}\right\}$. Show that T is a stopping time (relatively to the filtration $\left.\left(\mathcal{F}_{n}=\sigma\left(S_{0}, \ldots, S_{n}\right)\right)_{n \geq 0}\right)$.
(3) Find $\alpha \neq 0$ such that $\left(e^{\alpha S_{n}}\right)_{n \geq 0}$ is a martingale. Show that $\forall n, \mathbb{E}\left(e^{\alpha S_{T \wedge n}}\right)=\mathbb{E}\left(e^{\alpha S_{0}}\right)$.
(4) We set $q=\mathbb{P}\left(S_{T}=M\right)$. Find β such that $\left(S_{n}-\beta n\right)_{n \geq 0}$ is a martingale. Show that $\forall n$, $\mathbb{E}\left(S_{T \wedge n}-\beta(n \wedge T)\right)=\mathbb{E}\left(S_{0}\right)$.
(5) Show that $\mathbb{E}(T)<\infty$.
(6) Show that $\mathbb{E}\left(e^{\alpha S_{T}}\right)=\mathbb{E}\left(e^{\alpha S_{0}}\right)$. Find $q=\mathbb{P}\left(S_{T}=M\right)$.

Exercise 2. We suppose we are in the same situation as in the Exercise above but with $p=1 / 2$. Find $q=\mathbb{P}\left(S_{T}=M\right)$ (hint: show that $S_{n}^{2}-n$ is a martingale).

Exercise 3. A player plays a game where, when you bet $k €$, you win keuro with probability p (meaning you get back your $k €$ and you win an additional $k €$) or you loose $k €$ with probability $1-p(p \in(0,1])$. The player is interested in his total gain. He starts with a gain $=0$. He wants to reach the gain +1 using the following strategy.

- He bets 1 and if he wins, he stops; if not, he carries on to the next step.
- He bets 2 and if he wins, he stops; if not, he carries on to the next step.
- He bets 4 and if he wins, he stops; if not, he carries on to the next step.
- ... etc ...
(1) Let $T=\inf \left\{n: G_{n}=1\right\}$. Show that T is a stopping time relatively to the filtration $\left(\sigma\left(G_{0}, \ldots, G_{n}\right)\right)_{n \geq 0}$.
(2) Express the gain G_{n} after the n-th step using i.i.d. variables.
(3) Show that $T<+\infty$ a.s.
(4) The more the player looses, the more he needs on his bank account to keep on playing. The sum he will need during one game is $-\min _{n \in\{0, \ldots, T-1\}}\left(G_{n}\right)+2^{n}$. Compute $\mathbb{E}\left(\min _{n \in\{0, \ldots, T\}} G_{n}\right)$.
(5) Suppose your start the game with $2^{N}-1 €$. You stop when your gain reaches -2^{N} or 1 . What is the expectation of your final gain?

Exercise 4. Let f be a deterministic locally admissible function.
(1) Show that

$$
\forall t \geq 0, \mathbb{E}\left[\exp \left(\int_{0}^{t} f_{s} d B_{s}\right)\right]=\exp \left(\frac{1}{2} \int_{0}^{t} f_{s}^{2} d s\right)
$$

(2) Show that the process

$$
\left(\exp \left(\int_{0}^{t} f_{s} d B_{s}-\frac{1}{2} \int_{0}^{t} f_{s}^{2} d s\right)_{t \geq 0}\right.
$$

is a martingale with respect to the natural filtration of B.
Exercise 5. Show that $\left(B_{t}^{2}-t\right)_{t \geq 0}$ is a martingale. (With respect to the natural filtration of B.)
Exercise 6. Let $T>0$. Show that

$$
\lim _{n \rightarrow+\infty} \mathbb{E}\left[\left(\sum_{i=1}^{n}\left(B_{T i / n}-B_{T(i-1) / n}\right)^{2}-T\right)^{2}\right]=0
$$

Exercise 7. Let $T>0$. Show that

$$
\int_{0}^{T}\left(1+\frac{B_{t}}{n}\right)^{n} d B_{t} \underset{L^{2}}{\rightarrow} \int_{0}^{T} \exp \left(B_{t}\right) d B_{t}
$$

as $n \rightarrow+\infty$. Check first that the integrals are well-defined.
Exercise 8. Let $T>0$. For a given $n \geq 1$, we define the process

$$
\forall n \geq 0, \forall t \geq 0, B_{t}^{n}=\sum_{i=0}^{n-1} B_{T i / n} \mathbf{1}_{(T i / n, T(i+1) / n]}(t) .
$$

(1) Prove that $\left(B_{t}^{n}\right)_{t \geq 0}$ is a simple process w.r.t. the filtration generated by B.
(2) Show that

$$
\lim _{n \rightarrow+\infty} \mathbb{E} \int_{0}^{T}\left|B_{t}^{n}-B_{t}\right|^{2} d t=0
$$

(3) What is the limit, in $L^{2}(\Omega)$, of

$$
\left(\int_{0}^{T} B_{t}^{n} d B_{t}\right)_{n \geq 1} ?
$$

(4) Prove that

$$
B_{T}^{2}=2 \int_{0}^{T} B_{t}^{n} d B_{t}+\sum_{i=1}^{n}\left(B_{T i / n}-B_{T(i-1) / n}\right)^{2}
$$

(5) By the previous exercise, deduce

$$
B_{T}^{2}=2 \int_{0}^{T} B_{t} d B_{t}+T
$$

