EXERCISES 5

CONDITIONAL EXPECTATIONS

In all the exercises, $(\Omega, \mathcal{A}, \mathbb{P})$ denotes the current probability space and $(B_t)_{t\geq 0}$ a (real) Brownian motion.

Exercise 1. Let \mathcal{G} and \mathcal{F} be two σ -subalgebras of \mathcal{A} , with $\mathcal{G} \subset \mathcal{F}$. Let X be an integrable random variable. Prove that

$$\mathbb{P}$$
-a.s., $\mathbb{E}[\mathbb{E}[X|\mathcal{F}]|\mathcal{G}] = \mathbb{E}[X|\mathcal{G}].$

Exercise 2. Let \mathcal{B} a σ -field of \mathcal{A} , X and Y be two r.v., and $f: \mathbb{R}^2 \to \mathbb{R}$ be a bounded Borel mapping. We assume that X is \mathcal{B} -measurable and that Y is independent of \mathcal{B} .

Prove that:

$$\mathbb{P}$$
-a.s., $\mathbb{E}[f(X,Y)|\mathcal{B}] = \phi(X)$,

where $\phi: \mathbb{R}^n \to \mathbb{R}$ is given by:

$$\forall x \in \mathbb{R}^n, \ \phi(x) = \mathbb{E}[f(x, Y)].$$

Exercise 3. Let X and Y be two independent r.v. of uniform law on [0,1]. We set $U = \inf(X,Y)$ and $V = \sup(X,Y)$. What is $\mathbb{E}(U|V)$?

Exercise 4. Show that $(B_t^4 - 6tB_t^2 + 3t^2)_{t \ge 0}$ is a martingale w.r.t. to the filtration $(\sigma(B_s, s \le t))_{t \ge 0}$.