EXERCISES 6

ITO'S FORMULA

In all the exercises, $(\Omega, \mathcal{A}, \mathbb{P})$ denotes the current probability space and $(B_t)_{t>0}$ a (real) Brownian motion.

Exercise 1. For λ and θ in \mathbb{R} , we consider the process

$$\forall t \geq 0, \ X_t = \exp(-\lambda t)\cos(\theta B_t).$$

- (1) Compute dX_t for $t \geq 0$.
- (2) What are the values of (λ, θ) for which the dt-term in dX_t vanishes?
- (3) Deduce $\mathbb{E}[\cos(\theta B_t)]$ for $t \geq 0$.

Exercise 2. For r and σ in \mathbb{R} , we consider the process

$$\forall t \geq 0, \ X_t = \exp(rt + \sigma B_t).$$

- (1) Compute dX_t for $t \geq 0$.
- (2) What are the values of (r, σ) for which the dt-term vanishes?
- (3) For the values of r and σ obtained above, show that, for all $0 \le s < t$,

$$\mathbb{E}[X_t|\mathcal{F}_s] = X_s,$$

where \mathcal{F}_s is the σ -field generated by $(B_u)_{0 \le u \le s}$.

Exercise 3. Let n be an integer larger than 1.

(1) Show that

$$\forall t \ge 0, \ B_t^{2n} = 2n \int_0^t B_s^{2n-1} dB_s + n(2n-1) \int_0^t B_s^{2n-2} ds.$$

(2) Deduce that

$$\mathbb{E}(B_1^{2n}) = (2n-1)\mathbb{E}(B_1^{2n-2}).$$

(3) Let Z be an $\mathcal{N}(0,1)$ Gaussian variable. Deduce from the above expression that

$$\mathbb{E}(Z^{2n}) = [(2n)!]/[2^n \times n!].$$

Exercise 4. Show that the following processes are martingales w.r.t. the filtration generated by B:

- $(1) \forall t \ge 0, \ X_t = \exp(t/2)\cos(B_t).$
- (2) $\forall t \geq 0, \ Y_t = \exp(t/2)\sin(B_t).$ (3) $\forall t \geq 0, \ Z_t = (B_t + t)\exp(-B_t t/2).$ (4) $\forall t \geq 0, \ W_t = B_t^3 3tB_t.$

Exercise 5. Let $(B_t)_{t\geq 0}$ be an $(\mathcal{F}_t)_{t\geq 0}$ -Brownian motion. Show that $(B_t^4 - 6tB_t^2 + 3t^2)_{t\geq 0}$ is a martingale w.r.t. to the filtration $(\sigma(B_s, s \leq t))_{t>0}$.

Exercise 6. Let $(B_t)_{t\geq 0}$ be an $(\mathcal{F}_t)_{t\geq 0}$ -Brownian motion and $(b_t)_{t\geq 0}$ be a continuous and $(\mathcal{F}_t)_{t\geq 0}$ adapted process. Set

$$\forall t \ge 0, \ X_t = \int_0^t b_s ds + B_t.$$

We assume that there exist two constants K and λ such that

$$\forall t \geq 0, \ \forall \omega \in \Omega, \ |b_t(\omega)| \leq K, \ b_t(\omega) X_t(\omega) \leq -(\lambda/2) X_t^2(\omega).$$

- (1) Show that for all $T \geq 0$, $\sup_{0 \leq t \leq T} \mathbb{E}[X_t^2] < +\infty$. (2) Applying Itô's formula to $(\exp(\lambda t)X_t^2)_{t \geq 0}$, show

$$\sup_{t\geq 0}\mathbb{E}[X_t^2]<+\infty.$$