EXERCISES 6

ITO'S FORMULA

In all the exercises, $(\Omega, \mathcal{A}, \mathbb{P})$ denotes the current probability space and $\left(B_{t}\right)_{t \geq 0}$ a (real) Brownian motion.

Exercise 1. For λ and θ in \mathbb{R}, we consider the process

$$
\forall t \geq 0, \quad X_{t}=\exp (-\lambda t) \cos \left(\theta B_{t}\right)
$$

(1) Compute $d X_{t}$ for $t \geq 0$.
(2) What are the values of (λ, θ) for which the $d t$-term in $d X_{t}$ vanishes?
(3) Deduce $\mathbb{E}\left[\cos \left(\theta B_{t}\right)\right]$ for $t \geq 0$.

Exercise 2. For r and σ in \mathbb{R}, we consider the process

$$
\forall t \geq 0, X_{t}=\exp \left(r t+\sigma B_{t}\right)
$$

(1) Compute $d X_{t}$ for $t \geq 0$.
(2) What are the values of (r, σ) for which the $d t$-term vanishes?
(3) For the values of r and σ obtained above, show that, for all $0 \leq s<t$,

$$
\mathbb{E}\left[X_{t} \mid \mathcal{F}_{s}\right]=X_{s},
$$

where \mathcal{F}_{s} is the σ-field generated by $\left(B_{u}\right)_{0 \leq u \leq s}$.
Exercise 3. Let n be an integer larger than 1 .
(1) Show that

$$
\forall t \geq 0, B_{t}^{2 n}=2 n \int_{0}^{t} B_{s}^{2 n-1} d B_{s}+n(2 n-1) \int_{0}^{t} B_{s}^{2 n-2} d s
$$

(2) Deduce that

$$
\mathbb{E}\left(B_{1}^{2 n}\right)=(2 n-1) \mathbb{E}\left(B_{1}^{2 n-2}\right) .
$$

(3) Let Z be an $\mathcal{N}(0,1)$ Gaussian variable. Deduce from the above expression that

$$
\mathbb{E}\left(Z^{2 n}\right)=[(2 n)!] /\left[2^{n} \times n!\right]
$$

Exercise 4. Show that the following processes are martingales w.r.t. the filtration generated by B :
(1) $\forall t \geq 0, X_{t}=\exp (t / 2) \cos \left(B_{t}\right)$.
(2) $\forall t \geq 0, Y_{t}=\exp (t / 2) \sin \left(B_{t}\right)$.
(3) $\forall t \geq 0, Z_{t}=\left(B_{t}+t\right) \exp \left(-B_{t}-t / 2\right)$.
(4) $\forall t \geq 0, W_{t}=B_{t}^{3}-3 t B_{t}$.

Exercise 5. Let $\left(B_{t}\right)_{t \geq 0}$ be an $\left(\mathcal{F}_{t}\right)_{t \geq 0}$-Brownian motion. Show that $\left(B_{t}^{4}-6 t B_{t}^{2}+3 t^{2}\right)_{t \geq 0}$ is a martingale w.r.t. to the filtration $\left(\sigma\left(\bar{B}_{s}, s \leq t\right)\right)_{t \geq 0}$.
Exercise 6. Let $\left(B_{t}\right)_{t \geq 0}$ be an $\left(\mathcal{F}_{t}\right)_{t \geq 0}$-Brownian motion and $\left(b_{t}\right)_{t \geq 0}$ be a continuous and $\left(\mathcal{F}_{t}\right)_{t \geq 0^{-}}$ adapted process. Set

$$
\forall t \geq 0, \quad X_{t}=\int_{1}^{t} b_{s} d s+B_{t}
$$

We assume that there exist two constants K and λ such that

$$
\forall t \geq 0, \forall \omega \in \Omega,\left|b_{t}(\omega)\right| \leq K, b_{t}(\omega) X_{t}(\omega) \leq-(\lambda / 2) X_{t}^{2}(\omega)
$$

(1) Show that for all $T \geq 0, \sup _{0 \leq t \leq T} \mathbb{E}\left[X_{t}^{2}\right]<+\infty$.
(2) Applying Itô's formula to $\left(\exp (\bar{\lambda} t) X_{t}^{2}\right)_{t \geq 0}$, show

$$
\sup _{t \geq 0} \mathbb{E}\left[X_{t}^{2}\right]<+\infty .
$$

