EXERCISES 7

ITO'S FORMULA AND GIRSANOV FORMULA

Exercise 1. Let $(B_t)_{t\geq 0}$ be a Brownian motion w.r.t. a filtration $(\mathcal{F}_t)_{t\geq 0}$ and $(u_t)_{t\geq 0}$ be a continuous and $(\mathcal{F}_t)_{t\geq 0}$ -adapted process such that

$$\forall t \geq 0, \ \forall \omega \in \Omega, \ |u_t(\omega)| \leq K,$$

for some constant K > 0. We admit the following inequality $\mathbb{E}\left[\exp\left(\int_0^t u_s dB_s\right)\right] \leq \exp(K^2 t/2)$.

- (1) Show that the process $\forall t \geq 0$, $M_t = \exp\left(\int_0^t u_s dB_s \frac{1}{2} \int_0^t u_s^2 ds\right)$, is a martingale w.r.t. $(\mathcal{F}_t)_{t>0}$. (Use Itô's formula.)
- (2) We set $\forall t \geq 0$, $Y_t = -\int_0^t u_s ds + B_t$. Show that the process $(Y_t M_t)_{t\geq 0}$ is a martingale w.r.t. $(\mathcal{F}_t)_{t\geq 0}$.

Exercise 2. Expand as an Itô process the process

$$\forall t \ge 0, \ X_t = (B_t^1)^2 + (B_t^2)^2 + (B_t^3)^2,$$

where $(B_t^1, B_t^2, B_t^3)_{t\geq 0}$ stands for a Brownian motion of dimension 3.

Exercise 3. Let $(B_t = (B_t^1, B_t^2))_{t\geq 0}$ be two independent Brownian motion w.r.t. a filtration $(\mathcal{F}_t)_{t\geq 0}$ and $(u_t)_{t\geq 0}$ and $(v_t)_{t\geq 0}$ be two continuous and $(\mathcal{F}_t)_{t\geq 0}$ -adapted processes, bounded by some constant K. Show that

$$\forall t \ge 0, \quad M_t = \exp\left(\int_0^t u_s dB_s^1 + \int_0^t v_s dB_s^2 - \frac{1}{2} \int_0^t (u_s^2 + v_s^2) ds\right),$$

is a martingale.

Exercise 4. Let $(B_t)_{t\geq 0}$ be a Brownian motion w.r.t. a filtration $(\mathcal{F}_t)_{t\geq 0}$ and $(u_t)_{t\geq 0}$ and $(v_t)_{t\geq 0}$ ne two continuous and adapted processes such that

$$\forall t \ge 0, \quad \mathbb{E} \int_0^t (u_s^4 + v_s^4) ds < +\infty,$$

show that

$$\left(\left(\int_0^t u_s dB_s \right) \left(\int_0^t v_s dB_s \right) - \int_0^t u_s v_s ds \right)_{t \ge 0}$$

is a martingale.

Exercise 5. Let $(B_t^1, B_t^2)_{t\geq 0}$ be a Brownian motion with values in \mathbb{R}^2 . We assume that there exists a function u in $\mathcal{C}^{1,2}([0,+\infty)\times\mathbb{R}^2)$, bounded with bounded derivatives, such that

$$(\star) \qquad \forall (t,x) \in [0,+\infty[\times\mathbb{R}^2, \ \frac{\partial u}{\partial t}(t,x) - \frac{1}{2}(\frac{\partial^2 u}{\partial x_1^2} + \frac{\partial^2 u}{\partial x_2^2})(t,x) = 0 \ , \ u(0,x) = h(x) \ .$$

- (1) Show that for any T > 0 any $x \in \mathbb{R}$, the process $(u(T t, x + B_t))_{0 \le t \le T}$ is a martingale.
- (2) Deduce that $u(T, x) = \mathbb{E}(h(x + B_T))$.

(3) Deduce that (\star) admits at most one solution $\mathcal{C}^{1,2}$, bounded with bounded derivatives, with $u(0,\cdot)$ as initial condition.

Exercise 6. Let f be a deterministic locally admissible function.

(1) Show that

$$\forall t \geq 0, \ \mathbb{E}\left[\exp\left(\int_0^t f_s dB_s\right)\right] = \exp\left(\frac{1}{2}\int_0^t f_s^2 ds\right).$$

(2) Show that the process

$$\left(\exp\left(\int_0^t f_s dB_s - \frac{1}{2} \int_0^t f_s^2 ds\right)_{t \ge 0}\right)$$

is a martingale with respect to the natural filtration of B.

Exercise 7. Let $(B_t^1, B_t^2, B_t^3)_{t\geq 0}$ be a three dimensional Brownian motion w.r.t. some filtration $(\mathcal{F}_t)_{t\geq 0}$. For a given vector $(b_1, b_2, b_3) \in \mathbb{R}^3$, we consider the process

$$\forall t \ge 0, \quad X_t = \exp\left(\sum_{i=1}^3 b_i B_t^i - \frac{1}{2} \sum_{i=1}^3 b_i^2 t\right).$$

- (1) Prove that $(X_t)_{t\geq 0}$ is a square integrable martingale.
- (2) Prove that the process $((B_t^1 + B_t^2 (b_1 + b_2)t)X_t)_{t\geq 0}$ is also a martingale.

Exercise 8. Let $(B_t^1, B_t^2, B_t^3)_{t\geq 0}$ be a three dimensional Brownian motion w.r.t. some filtration $(\mathcal{F}_t)_{t\geq 0}$. For a given matrix σ of size 3×3 , we consider the process

$$\forall t \ge 0, \quad X_t = \sigma \times \begin{pmatrix} B_t^1 \\ B_t^2 \\ B_t^3 \end{pmatrix}.$$

Show that the process $(M_t = \sum_{i=1}^3 (X_t^i)^2 - \text{Trace}(\sigma \sigma^*)t)_{t\geq 0}$ is a martingale.

Exercise 9. Let $(B_t)_{t\geq 0}$ be a Brownian and $(\mathcal{F}_t)_{t\geq 0}$ its natural filtration. For $\mu\in\mathbb{R}$ et $\sigma>0$, we set

$$\forall t \ge 0, \ Y_t = \exp(\mu t + \sigma B_t),$$

referred as Geometric Brownian motion.

(1) We set $r = \mu + \sigma^2/2$ and we define $\forall t \geq 0$, $\widetilde{B}_t = B_t + \sigma^{-1}rt$. What can you say of $(\widetilde{B}_t)_{0 \leq t \leq 1}$ under the probability:

$$\forall A \in \mathcal{A}, \ \mathbb{Q}(A) = \mathbb{E}\left[\exp\left(-\sigma^{-1}rB_1 - \frac{1}{2}\sigma^{-2}r^2\right)\mathbf{1}_A\right].$$

(2) Show that $(Y_t)_{0 \le t \le 1}$ is, under the probability \mathbb{Q} , a martingale w.r.t. $(\mathcal{F}_t)_{0 \le t \le 1}$.

Exercise 10. Let $(B_t)_{t\geq 0}$ be a Brownian motion and $(\mathcal{F}_t)_{t\geq 0}$ its natural filtration, show that we can define a probabilty \mathbb{Q}_1 on (Ω, \mathcal{F}_1) , equivalent to \mathbb{P} , such that $(B_t + B_t^3)_{0\leq t\leq 1}$ $(B_t^3 = (B_t)^3)$ be a martingale w.r.t. $(\mathcal{F}_t)_{t\geq 0}$ under \mathbb{Q}_1 . Hint: apply first Itô's formula to $(B_t + B_t^3)_{t\geq 0}$.

Exercise 11. Let $(B_t)_{t\geq 0}$ be a Brownian motion and $(\mathcal{F}_t)_{t\geq 0}$ its natural filtration, show that we can define a probabilty \mathbb{Q}_1 on (Ω, \mathcal{F}_1) , equivalent to \mathbb{P} , such that $((2+B_t^2)\exp(B_t))_{0\leq t\leq 1}$ $(B_t^2=(B_t)^2)$ be a martingale w.r.t. $(\mathcal{F}_t)_{t\geq 0}$ under \mathbb{Q}_1 . Hint: apply first Itô's formula to $((2+B_t^2)\exp(B_t))_{t\geq 0}$.