## EXERCISES 8

## ITO'S FORMULA - GIRSANOV THEOREM

In all the exercises, $(\Omega, \mathcal{A}, \mathbb{P})$ denotes the current probability space and $\left(B_{t}\right)_{t \geq 0}$ a (real) Brownian motion.

Exercise 1. Let $\left(B_{t}^{1}, B_{t}^{2}, B_{t}^{3}\right)_{t \geq 0}$ be a three dimensional Brownian motion w.r.t. some filtration $\left(\mathcal{F}_{t}\right)_{t \geq 0}$. For a given vector $\left(b_{1}, \bar{b}_{2}, b_{3}\right) \in \mathbb{R}^{3}$, we consider the process

$$
\forall t \geq 0, \quad X_{t}=\exp \left(\sum_{i=1}^{3} b_{i} B_{t}^{i}-\frac{1}{2} \sum_{i=1}^{3} b_{i}^{2} t\right)
$$

(1) Prove that $\left(X_{t}\right)_{t \geq 0}$ is a square integrable martingale.
(2) Prove that the process $\left(\left(B_{t}^{1}+B_{t}^{2}-\left(b_{1}+b_{2}\right) t\right) X_{t}\right)_{t \geq 0}$ is also a martingale.

Exercise 2. Let $\left(B_{t}^{1}, B_{t}^{2}, B_{t}^{3}\right)_{t \geq 0}$ be a three dimensional Brownian motion w.r.t. some filtration $\left(\mathcal{F}_{t}\right)_{t \geq 0}$. For a given matrix $\sigma$ of size $3 \times 3$, we consider the process

$$
\forall t \geq 0, \quad X_{t}=\sigma\binom{B_{t}^{1}}{B_{t}^{2} B_{t}^{3}} .
$$

Show that the process $\left(M_{t}=\sum_{i=1}^{3}\left(X_{t}^{i}\right)^{2}-\operatorname{Trace}\left(\sigma \sigma^{*}\right) t\right)_{t \geq 0}$ is a martingale.
Exercise 3. Let $\left(B_{t}\right)_{t \geq 0}$ be a Brownian and $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ its natural filtration. For $\mu \in \mathbb{R}$ et $\sigma>0$, we set

$$
\forall t \geq 0, Y_{t}=\exp \left(\mu t+\sigma B_{t}\right)
$$

referred as Geometric Brownian motion.
(1) We set $r=\mu+\sigma^{2} / 2$ and we define

$$
\forall t \geq 0, \widetilde{B}_{t}=B_{t}+\sigma^{-1} r t .
$$

What can you say of $\left(\widetilde{B}_{t}\right)_{0 \leq t \leq 1}$ under the probability:

$$
\forall A \in \mathcal{A}, \mathbb{Q}(A)=\mathbb{E}\left[\exp \left(-\sigma^{-1} r B_{1}-\frac{1}{2} \sigma^{-2} r^{2}\right) \mathbf{1}_{A}\right]
$$

(2) Show that $\left(Y_{t}\right)_{0 \leq t \leq 1}$ is, under the probability $\mathbb{Q}$, a martingale w.r.t. $\left(\mathcal{F}_{t}\right)_{0 \leq t \leq 1}$.

Exercise 4. Let $\left(B_{t}\right)_{t \geq 0}$ be a Brownian motion and $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ its natural filtration, show that we can define a probabilty $\mathbb{Q}_{1}$ on $\left(\Omega, \mathcal{F}_{1}\right)$, equivalent to $\mathbb{P}$, such that $\left(B_{t}+B_{t}^{3}\right)_{0 \leq t \leq 1}$ be a martingale w.r.t. $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ under $\mathbb{Q}_{1}$. Hint: apply first Itô's formula to $\left(B_{t}+B_{t}^{3}\right)_{t \geq 0}$.
Exercise 5. Let $\left(B_{t}\right)_{t \geq 0}$ be a Brownian motion and $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ its natural filtration, show that we can define a probabilty $\mathbb{Q}_{1}$ on $\left(\Omega, \mathcal{F}_{1}\right)$, equivalent to $\mathbb{P}$, such that $\left(\left(2+B_{t}^{2}\right) \exp \left(B_{t}\right)\right)_{0 \leq t \leq 1}$ be a martingale w.r.t. $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ under $\mathbb{Q}_{1}$. Hint: apply first Itô's formula to $\left(\left(2+B_{t}^{2}\right) \exp \left(B_{t}\right)\right)_{t \geq 0}$.

