EXERCISES 8

ITO'S FORMULA - GIRSANOV THEOREM

In all the exercises, $(\Omega, \mathcal{A}, \mathbb{P})$ denotes the current probability space and $(B_t)_{t\geq 0}$ a (real) Brownian motion.

Exercise 1. Let $(B_t^1, B_t^2, B_t^3)_{t\geq 0}$ be a three dimensional Brownian motion w.r.t. some filtration $(\mathcal{F}_t)_{t\geq 0}$. For a given vector $(b_1, b_2, b_3) \in \mathbb{R}^3$, we consider the process

$$\forall t \ge 0, \quad X_t = \exp\left(\sum_{i=1}^3 b_i B_t^i - \frac{1}{2} \sum_{i=1}^3 b_i^2 t\right).$$

- (1) Prove that $(X_t)_{t\geq 0}$ is a square integrable martingale.
- (2) Prove that the process $((B_t^1 + B_t^2 (b_1 + b_2)t)X_t)_{t\geq 0}$ is also a martingale.

Exercise 2. Let $(B_t^1, B_t^2, B_t^3)_{t\geq 0}$ be a three dimensional Brownian motion w.r.t. some filtration $(\mathcal{F}_t)_{t\geq 0}$. For a given matrix σ of size 3×3 , we consider the process

$$\forall t \geq 0, \quad X_t = \sigma \left(\begin{array}{c} B_t^1 \\ B_t^2 B_t^3 \end{array} \right).$$

Show that the process $(M_t = \sum_{i=1}^3 (X_t^i)^2 - \text{Trace}(\sigma \sigma^*)t)_{t\geq 0}$ is a martingale.

Exercise 3. Let $(B_t)_{t\geq 0}$ be a Brownian and $(\mathcal{F}_t)_{t\geq 0}$ its natural filtration. For $\mu\in\mathbb{R}$ et $\sigma>0$, we set

$$\forall t \ge 0, \ Y_t = \exp(\mu t + \sigma B_t),$$

referred as Geometric Brownian motion.

(1) We set $r = \mu + \sigma^2/2$ and we define

$$\forall t \geq 0, \ \widetilde{B}_t = B_t + \sigma^{-1} r t.$$

What can you say of $(\widetilde{B}_t)_{0 \le t \le 1}$ under the probability:

$$\forall A \in \mathcal{A}, \ \mathbb{Q}(A) = \mathbb{E}\left[\exp\left(-\sigma^{-1}rB_1 - \frac{1}{2}\sigma^{-2}r^2\right)\mathbf{1}_A\right].$$

(2) Show that $(Y_t)_{0 \le t \le 1}$ is, under the probability \mathbb{Q} , a martingale w.r.t. $(\mathcal{F}_t)_{0 \le t \le 1}$.

Exercise 4. Let $(B_t)_{t\geq 0}$ be a Brownian motion and $(\mathcal{F}_t)_{t\geq 0}$ its natural filtration, show that we can define a probabilty \mathbb{Q}_1 on (Ω, \mathcal{F}_1) , equivalent to \mathbb{P} , such that $(B_t + B_t^3)_{0\leq t\leq 1}$ be a martingale w.r.t. $(\mathcal{F}_t)_{t\geq 0}$ under \mathbb{Q}_1 . Hint: apply first Itô's formula to $(B_t + B_t^3)_{t\geq 0}$.

Exercise 5. Let $(B_t)_{t\geq 0}$ be a Brownian motion and $(\mathcal{F}_t)_{t\geq 0}$ its natural filtration, show that we can define a probabilty \mathbb{Q}_1 on (Ω, \mathcal{F}_1) , equivalent to \mathbb{P} , such that $((2+B_t^2)\exp(B_t))_{0\leq t\leq 1}$ be a martingale w.r.t. $(\mathcal{F}_t)_{t\geq 0}$ under \mathbb{Q}_1 . Hint: apply first Itô's formula to $((2+B_t^2)\exp(B_t))_{t\geq 0}$.