Exam for MathMods, MPA \rightarrow ANSWERS

Exercise 1.

(1) We have

$$
\mathbf{X}^{T}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathbf{N}}\right]
$$

(it is a $2 \times N$ matrix). So

$$
\begin{aligned}
\mathbf{X}^{T} \mathbf{t} & =\left[\begin{array}{l}
x_{1,1} t_{1}+x_{2,1} t_{2}+\cdots+x_{N, 1} t_{N} \\
x_{1,2} t_{1}+x_{2,2} t_{2}+\cdots+x_{N, 2} t_{N}
\end{array}\right] \\
& =\sum_{n=1}^{N} \mathbf{x}_{n} t_{n} .
\end{aligned}
$$

(2) We have

$$
\begin{aligned}
\mathbf{X}^{T} \mathbf{X} \mathbf{w} & =\left[\begin{array}{cc}
\sum_{n=1}^{N} x_{n, 1}^{2} & \sum_{n=1}^{N} x_{n, 1} x_{n, 2} \\
\sum_{n=1}^{N} x_{n, 1} x_{n, 2} & \sum_{n=1}^{N} x_{n, 2}^{2}
\end{array}\right] \times\left[w_{0}, w_{1}\right] \\
& =\left[\begin{array}{cc}
\sum_{n=1}^{N} x_{n, 1}^{2} & \sum_{n=1}^{N} x_{n, 1} x_{n, 2} \\
\sum_{n=1}^{N} x_{n, 1} x_{n, 2} & \sum_{n=1}^{N} x_{n, 2}^{2}
\end{array}\right] \\
& =\sum_{n=1}^{N} \mathbf{x}_{n} \mathbf{x}_{n}^{T} \mathbf{w} .
\end{aligned}
$$

Exercise 2.

(1) We have

$$
\begin{aligned}
p\left(\mu \mid x_{1}, \ldots, x_{N}\right) \propto & p\left(x_{1}, \ldots, x_{N} \mid \mu\right) p(\mu) \\
= & \prod_{i=1}^{N} \frac{e^{-\frac{1}{2}\left(x_{i}-\mu\right)^{2}}}{\sqrt{2 \pi}} \times \frac{e^{-\frac{1}{2 A}\left(\mu-\mu_{0}\right)^{2}}}{\sqrt{2 \pi A}} \\
\propto & \exp \left[-\frac{1}{2}\left(N+\frac{1}{A}\right)\left(\mu-\frac{\mu_{0}}{A}(N+1 / A)^{-1}-(N+1 / A)^{-1} \sum_{i=1}^{N} x_{i}\right)^{2}\right. \\
& \left.+\frac{1}{2}\left(N+\frac{1}{A}\right)^{-1} \frac{\mu_{0}^{2}}{A^{2}}+\frac{1}{2}\left(N+\frac{1}{A}\right)^{-1}\left(\sum_{i=1}^{N} x_{i}\right)^{2}\right] \\
\propto & \frac{1}{\sqrt{2 \pi} \sqrt{(N+1 / A)^{-1}}} \exp \left[-\frac{1}{2}\left(N+\frac{1}{A}\right)\left(\mu-\frac{\mu_{0}}{A}(N+1 / A)^{-1}-(N+1 / A)^{-1} \sum_{i=1}^{N} x_{i}\right)^{2}\right] .
\end{aligned}
$$

So the desired law is

$$
\mathcal{N}\left(\frac{\mu_{0}}{A}(N+1 / A)^{-1}+(N+1 / A)^{-1} \sum_{i=1}^{N} x_{i},(N+1 / A)^{-1}\right) .
$$

(2) The computation in dimension d is similar. We have (with $\bar{x}=\sum_{i=1}^{N} x_{i}$)
$p\left(\mu \mid x_{1}, \ldots, x_{N}\right)=p\left(x_{1}, \ldots, x_{N} \mid \mu\right) p(\mu)$

$$
\begin{gathered}
=\prod_{i=1}^{N} \frac{e^{-\frac{1}{2}\left(x_{i}-\mu\right)^{T}\left(x_{i}-\mu\right)}}{(2 \pi)^{d / 2}} \times \frac{e^{-\frac{1}{2}\left(\mu-\mu_{0}\right)^{T} A^{-1}\left(\mu-\mu_{0}\right)}}{(2 \pi)^{d / 2} \sqrt{|\operatorname{det}(A)|}} \\
\propto \exp \left(-\frac{1}{2}\left(\mu-\left(N I_{d}+A^{-1}\right)^{-1}\left(\bar{x}+A^{-1} \mu_{0}\right)\right)^{T}\left(N I_{d}+A^{-1}\right)\left(\mu-\left(N I_{d}+A^{-1}\right)^{-1}\left(\bar{x}+A^{-1} \mu_{0}\right)\right)\right)
\end{gathered}
$$

So the desired law is

$$
\mathcal{N}\left(\left(N I_{d}+A^{-1}\right)^{-1}\left(\bar{x}+A^{-1} \mu_{0}\right),\left(N I_{d}+A^{-1}\right)^{-1}\right)
$$

Exercise 3. We want to find the minimum of Φ under the constraint : $\Psi(\mathbf{z}):=\sum_{i=1}^{n} z_{i}=1$. We have

$$
\nabla \Phi(\mathbf{z})=\left[\begin{array}{c}
-y_{1} / z_{1} \\
\vdots \\
-y_{n} / z_{n}
\end{array}\right]
$$

and

$$
\nabla \Psi(\mathbf{z})=\left[\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right]
$$

We look for a \mathbf{z} in S such that $\nabla \Phi(\mathbf{z})$ and $\nabla \Psi(\mathbf{z})$ are colinear. That is :

$$
\begin{aligned}
& \exists \lambda \text { such that } y_{i}=\lambda z_{i}, \forall i, \\
& \text { and } \sum_{i=1}^{n} y_{i}=\sum_{i=1}^{n} z_{i}=1
\end{aligned}
$$

This leads to $y_{i}=z_{i}(\forall i)$.
Let us now show that Φ is convex. For $\mathbf{z}, \mathbf{z}^{\prime}$ in S and $\lambda \in[0,1]$, we have

$$
\begin{aligned}
& \qquad \begin{aligned}
\Phi\left(\lambda \mathbf{z}+(1-\lambda) \mathbf{z}^{\prime}\right) & =\sum_{i=1}^{n}-y_{i} \log \left(\lambda z_{i}+(1-\lambda) z_{i}^{\prime}\right) \\
\text { (because } \log \text { is concave) } & \leq \sum_{i=1}^{n}-y_{i}\left(\lambda \log \left(z_{i}\right)+(1-\lambda) \log \left(z_{i}^{\prime}\right)\right) \\
& =\lambda \Phi(\mathbf{z})+(1-\lambda) \Phi\left(\mathbf{z}^{\prime}\right)
\end{aligned} .
\end{aligned}
$$

As Φ is convex, the critical point we have found is an absolute minimum.

Exercise 4.

(1) We have

$$
p\left(x_{1}, \ldots, x_{N} \mid \mu, \Sigma\right)=\prod_{i=1}^{N} \frac{e^{-\frac{1}{2}\left(x_{i}-\mu\right)^{T} \Sigma^{-1}\left(x_{i}-\mu\right)}}{(2 \pi)^{3 / 2}(\operatorname{det}(\Sigma))^{1 / 2}}
$$

(2) When x_{1}, \ldots, x_{N} is fixed, we set $\Phi(\mu, \Sigma)=p\left(x_{1}, \ldots, x_{N} \mid \mu, \Sigma\right)$. We want to find the maximum of Φ. This is the same as the maximum of

$$
\mathcal{L}(\mu, \Sigma)=\log \left(p\left(x_{1}, \ldots, x_{N} \mid \mu, \Sigma\right)\right)=-\frac{N}{2} \log \left((2 \pi)^{3} \operatorname{det}(\Sigma)\right)-\sum_{i=1}^{N} \frac{1}{2}\left(x_{i}-\mu\right)^{T} \Sigma^{-1}\left(x_{i}-\mu\right) .
$$

We have the following differentials (for all matrix H, for all vector h)

$$
\begin{gathered}
(\operatorname{det})^{\prime}(\Sigma) \cdot H=\operatorname{Tr}\left(\operatorname{Com}(\Sigma)^{T} H\right), \\
(\Sigma+H)^{-1}=\Sigma^{-1}-\Sigma^{-1} H \Sigma^{-1}+o(H), \\
\mathcal{L}(\mu+h, \Sigma)=\sum_{i=1}^{N} \frac{1}{2}\left(x_{i}-\mu\right)^{T} \Sigma^{-1} h .
\end{gathered}
$$

We look for a point where the differentials are zero. So μ should be

$$
\begin{equation*}
\mu=\bar{x}:=\frac{1}{N} \sum_{i=1}^{N} x_{i} \tag{0.1}
\end{equation*}
$$

Then for all matrix H, we have

$$
\mathcal{L}(\mu, \Sigma+H)=\mathcal{L}(\mu, \Sigma)-\frac{N}{2} \frac{\operatorname{Tr}\left(\operatorname{Com}(\Sigma)^{T} H\right)}{\operatorname{det}(\Sigma)}+\frac{1}{2} \sum_{k=1}^{N}\left(x_{k}-\mu\right)^{T} \Sigma^{-1} H \Sigma^{-1}\left(x_{k}-\mu\right)+o(H) .
$$

We want the first order term to be zero for all H in $\mu=\bar{x}$, that is :

$$
\begin{equation*}
\frac{N}{2} \frac{\operatorname{Tr}\left(\operatorname{Com}(\Sigma)^{T} H\right)}{\operatorname{det}(\Sigma)}=\frac{1}{2} \sum_{k=1}^{N}\left(x_{k}-\bar{x}\right)^{T} \Sigma^{-1} H \Sigma^{-1}\left(x_{k}-\bar{x}\right) . \tag{0.2}
\end{equation*}
$$

This implies that for all $H^{\prime},\left(\right.$ remember $\left.\operatorname{Com}(\Sigma)^{T} \Sigma=\operatorname{det}(\Sigma)\right)$

$$
\begin{aligned}
\frac{N}{2} \frac{\operatorname{Tr}\left(\operatorname{Com}(\Sigma)^{T} \Sigma H^{\prime} \Sigma\right)}{\operatorname{det}(\Sigma)} & =\frac{1}{2} \sum_{k=1}^{N}\left(x_{k}-\bar{x}\right)^{T} H^{\prime}\left(x_{k}-\bar{x}\right) \\
\operatorname{Tr}\left(H^{\prime} \Sigma\right) & =\frac{1}{N} \sum_{k=1}^{N}\left(x_{k}-\bar{x}\right)^{T} H^{\prime}\left(x_{k}-\bar{x}\right) .
\end{aligned}
$$

With $H^{\prime}=\left(\left(\delta_{j, i}\right)\right)_{1 \leq i, j \leq 3}$, we obtain (for all $\left.i, j\right)$

$$
\Sigma_{i, j}=\frac{1}{N} \sum_{k=1}^{N}\left(x_{k}-\bar{x}\right)_{i}\left(x_{k}-\bar{x}\right)_{j} .
$$

So

$$
\begin{equation*}
\Sigma=\Sigma_{0}:=\frac{1}{N} \sum_{k=1}^{N}\left(x_{k}-\bar{x}\right)\left(x_{k}-\bar{x}\right)^{T} \tag{0.3}
\end{equation*}
$$

Under the assumption that $\left(x_{1}, \ldots, x_{N}\right)$ is a basis, this Σ is invertible (easy exercise) so Equation (0.2) is satisfied

Exam for IM, EDHEC \rightarrow ANSWERS

Documents and calculators are not allowed. The grading will be function of your justifications. The exercises are independent.

Exercise 1.

(1) We have

$$
\mathbf{X}^{T}=\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{\mathbf{N}}\right]
$$

(it is a $2 \times N$ matrix). So

$$
\begin{aligned}
\mathbf{X}^{T} \mathbf{t} & =\left[\begin{array}{l}
x_{1,1} t_{1}+x_{2,1} t_{2}+\cdots+x_{N, 1} t_{N} \\
x_{1,2} t_{1}+x_{2,2} t_{2}+\cdots+x_{N, 2} t_{N}
\end{array}\right] \\
& =\sum_{n=1}^{N} \mathbf{x}_{n} t_{n}
\end{aligned}
$$

(2) We have

$$
\begin{aligned}
\mathbf{X}^{T} \mathbf{X} \mathbf{w} & =\left[\begin{array}{cc}
\sum_{n=1}^{N} x_{n, 1}^{2} & \sum_{n=1}^{N} x_{n, 1} x_{n, 2} \\
\sum_{n=1}^{N} x_{n, 1} x_{n, 2} & \sum_{n=1}^{N} x_{n, 2}^{2}
\end{array}\right] \times\left[w_{0}, w_{1}\right] \\
& =\left[\begin{array}{cc}
\sum_{n=1}^{N} x_{n, 1}^{2} & \sum_{n=1}^{N} x_{n, 1} x_{n, 2} \\
\sum_{n=1}^{N} x_{n, 1} x_{n, 2} & \sum_{n=1}^{N} x_{n, 2}^{2}
\end{array}\right] \\
& =\sum_{n=1}^{N} \mathbf{x}_{n} \mathbf{x}_{n}^{T} \mathbf{w} .
\end{aligned}
$$

Exercise 2. We have
$p\left(\mu \mid x_{1}, \ldots, x_{N}\right) \propto p\left(x_{1}, \ldots, x_{N} \mid \mu\right) p(\mu)$

$$
\begin{aligned}
= & \prod_{i=1}^{N} \frac{e^{-\frac{1}{2}\left(x_{i}-\mu\right)^{2}}}{\sqrt{2 \pi}} \times \frac{e^{-\frac{1}{2 A}\left(\mu-\mu_{0}\right)^{2}}}{\sqrt{2 \pi A}} \\
\propto & \exp \left[-\frac{1}{2}\left(N+\frac{1}{A}\right)\left(\mu-\frac{\mu_{0}}{A}(N+1 / A)^{-1}-(N+1 / A)^{-1} \sum_{i=1}^{N} x_{i}\right)^{2}\right. \\
& \left.+\frac{1}{2}\left(N+\frac{1}{A}\right)^{-1} \frac{\mu_{0}^{2}}{A^{2}}+\frac{1}{2}\left(N+\frac{1}{A}\right)^{-1}\left(\sum_{i=1}^{N} x_{i}\right)^{2}\right] \\
\propto & \frac{1}{\sqrt{2 \pi} \sqrt{(N+1 / A)^{-1}}} \exp \left[-\frac{1}{2}\left(N+\frac{1}{A}\right)\left(\mu-\frac{\mu_{0}}{A}(N+1 / A)^{-1}-(N+1 / A)^{-1} \sum_{i=1}^{N} x_{i}\right)^{2}\right] .
\end{aligned}
$$

So the desired law is

$$
\mathcal{N}\left(\frac{\mu_{0}}{A}(N+1 / A)^{-1}+(N+1 / A)^{-1} \sum_{i=1}^{N} x_{i},(N+1 / A)^{-1}\right)
$$

Exercise 3. We write the answer for $d=1$ (this is not altogether correct).
(1) We have

$$
p\left(x_{1}, \ldots, x_{N} \mid \mu, \Sigma\right)=\prod_{i=1}^{N} \frac{e^{-\frac{1}{2 \Sigma}\left(x_{i}-\mu\right)^{2}}}{\sqrt{2 \pi \Sigma}}
$$

(2) When x_{1}, \ldots, x_{N} is fixed, we set $\Phi(\mu, \Sigma)=p\left(x_{1}, \ldots, x_{N} \mid \mu, \Sigma\right)$. We want to find the maximum of Φ. This is the same as the maximum of

$$
\mathcal{L}(\mu, \Sigma)=\log \left(p\left(x_{1}, \ldots, x_{N} \mid \mu, \Sigma\right)\right)=-\frac{N}{2} \log (2 \pi \Sigma)-\sum_{i=1}^{N} \frac{1}{2 \Sigma}\left(x_{i}-\mu\right)^{2} .
$$

We compute

$$
\begin{gathered}
\frac{\partial \mathcal{L}}{\partial \mu}(\mu, \Sigma)=\sum_{i=1}^{N} \frac{\left(x_{i}-\mu\right)}{\Sigma} \\
\frac{\partial \mathcal{L}}{\partial \Sigma}(\mu, \Sigma)=-\frac{N}{2 \Sigma}+\sum_{i=1}^{N} \frac{\left(x_{i}-\mu\right)^{2}}{2 \Sigma^{2}} .
\end{gathered}
$$

So, there is only one point where $\nabla \mathcal{L}$ is zero and that is

$$
\mu_{0}=\frac{1}{N} \sum_{i=1}^{N} x_{i}, \Sigma_{0}=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\mu_{0}\right)^{2}
$$

