Exam for MathMods, MPA

Documents and calculators are not allowed. The grading will be function of your justifications. The exercises are independent.

Exercise 1. [6 points] When multiplying a scalar by a vector (or matrix), we multiply each element of the vector (or matrix) by that scalar. For $\mathbf{x}_{n}=\left[x_{n, 1}, x_{n, 2}\right]^{T}(1 \leq n \leq N)$, $\mathbf{t}=$ $\left[t_{1}, \ldots, t_{N}\right]^{T}, \mathbf{w}=\left[w_{0}, w_{1}\right]$ and

$$
\mathbf{X}=\left[\begin{array}{c}
\mathbf{x}_{1}^{T} \\
\mathbf{x}_{2}^{T} \\
\vdots \\
\mathbf{x}_{N}^{T}
\end{array}\right]
$$

(1) show that

$$
\sum_{n=1}^{N} \mathbf{x}_{n} t_{n}=\mathbf{X}^{T} \mathbf{t}
$$

(2) and

$$
\sum_{n=1}^{N} \mathbf{x}_{n} \mathbf{x}_{n}^{T} \mathbf{w}=\mathbf{X}^{T} \mathbf{X} \mathbf{w}
$$

Exercise 2. [6 points] We have an a priori law on a parameters μ (in \mathbb{R}^{d}):

$$
p(\mu)=\mathcal{N}\left(\mu_{0}, A\right)
$$

where A is a $d \times d$ matrix, definite, positive. We suppose that $\Sigma=I_{d}$ (identity matrix of size d). We observe $x_{1}, \ldots, x_{N}\left(N\right.$ in $\left.\mathbb{N}^{*}\right)$, independent and identically distributed, of law $\mathcal{N}(\mu, \Sigma)$. We want to compute the a posteriori law on μ (knowing these observations). We write $p\left(\mu \mid x_{1}, \ldots, x_{N}\right)$ for this a posteriori law.
(1) We suppose first that $d=1$ (A is then a real number). Compute $p\left(\mu \mid x_{1}, \ldots, x_{n}\right)$.
(2) We suppose d is in \mathbb{N}^{*}. Remember that if X is of law $\mathcal{N}(m, B)$ in \mathbb{R}^{d}, then its density is

$$
x \in \mathbb{R}^{d} \mapsto \frac{e^{-\frac{1}{2} x^{T} B^{-1} x}}{(2 \pi)^{d / 2} \sqrt{|\operatorname{det}(B)|}}
$$

Compute $p\left(\mu \mid x_{1}, \ldots, x_{n}\right)$.
Exercise 3. [6 points] For $\mathbf{z} \in\left(\mathbb{R}^{+}\right)^{n}, \mathbf{y} \in\left(\mathbb{R}^{+}\right)^{n}$ such that $\sum_{i=1}^{n} y_{i}=1, \sum_{i=1}^{n} z_{i}=1$, we define

$$
H(y, z)=-\sum_{i=1}^{n} y_{i} \log \left(z_{i}\right)
$$

We set $S=\left\{\mathbf{z} \in\left(\mathbb{R}^{+}\right)^{n}: \sum_{i=1}^{n} z_{i}=1\right\}$. We fix \mathbf{y} in S and define

$$
\Phi: \mathbf{z} \in S \mapsto H(\mathbf{y}, \mathbf{z})
$$

Show that $\mathbf{z}=\mathbf{y}$ is an absolute minimum of Φ.
Exercise 4. [6 points] We observe $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ in $\mathbb{R}^{d}(d=3)$, variables of law $\mathcal{N}(\mu, \Sigma)$ (independent).
(1) Write the density of the law $p\left(\mathbf{x}_{\mathbf{1}}, \ldots, \mathbf{x}_{N} \mid \mu, \Sigma\right)$.
(2) What is the max-likelihood estimator of μ, Σ, knowing $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$? (To solve this question, you should find a critical point. After what you can assume that this point is a maximum.)

Machine Learning- 2019-2029
http://math.unice.fr/~rubentha/cours.html

Exam for IM, EDHEC

Documents and calculators are not allowed. The grading will be function of your justifications. The exercises are independent.

Exercise 1. [7 points] When multiplying a scalar by a vector (or matrix), we multiply each element of the vector (or matrix) by that scalar. For $\mathbf{x}_{n}=\left[x_{n, 1}, x_{n, 2}\right]^{T}(1 \leq n \leq N)$, $\mathbf{t}=$ $\left[t_{1}, \ldots, t_{N}\right]^{T}, \mathbf{w}=\left[w_{0}, w_{1}\right]$ and

$$
\mathbf{X}=\left[\begin{array}{c}
\mathbf{x}_{1}^{T} \\
\mathbf{x}_{2}^{T} \\
\vdots \\
\mathbf{x}_{N}^{T}
\end{array}\right]
$$

(1) show that

$$
\sum_{n=1}^{N} \mathbf{x}_{n} t_{n}=\mathbf{X}^{T} \mathbf{t}
$$

(2) and

$$
\sum_{n=1}^{N} \mathbf{x}_{n} \mathbf{x}_{n}^{T} \mathbf{w}=\mathbf{X}^{T} \mathbf{X} \mathbf{w}
$$

Exercise 2. [7 points] We have an a priori law on a parameters μ (in \mathbb{R}):

$$
p(\mu)=\mathcal{N}\left(\mu_{0}, A\right)
$$

where A is in \mathbb{R}^{+*}. We suppose that $\Sigma=1$ (identity matrix of size d). We observe x_{1}, \ldots, x_{N} (N in \mathbb{N}^{*}), independent and identically distributed, of law $\mathcal{N}(\mu, \Sigma)$. We want to compute the a posteriori law on μ (knowing these observations). We write $p\left(\mu \mid x_{1}, \ldots, x_{N}\right)$ for this a posteriori law.

Compute $p\left(\mu \mid x_{1}, \ldots, x_{n}\right)$.
Exercise 3. [7 points] We observe $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$ in $\mathbb{R}^{d}(d=3)$, variables of law $\mathcal{N}(\mu, \Sigma)$ (independent). We suppose that the system $\left(x_{1}, \ldots, x_{N}\right)$ is a basis of \mathbb{R}^{d} (this happens with probability $1)$.
(1) Write the density of the law $p\left(\mathbf{x}_{\mathbf{1}}, \ldots, \mathbf{x}_{N} \mid \mu, \Sigma\right)$.
(2) What is the max-likelihood estimator of μ, Σ, knowing $\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}$? (To solve this question, you should find a critical point. After what you can assume that this point is a maximum.)

