Machine Learning- 2019-2029 http://math.unice.fr/~rubentha/cours.html

Exam for MathMods, MPA

Documents and calculators are not allowed. The grading will be function of your justifications. The exercises are independent.

Exercise 1. [6 points] When multiplying a scalar by a vector (or matrix), we multiply each element of the vector (or matrix) by that scalar. For $\mathbf{x}_n = [x_{n,1}, x_{n,2}]^T$ $(1 \le n \le N)$, $\mathbf{t} = [t_1, \ldots, t_N]^T$, $\mathbf{w} = [w_0, w_1]$ and

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1^T \\ \mathbf{x}_2^T \\ \vdots \\ \mathbf{x}_N^T \end{bmatrix}$$

(1) show that

$$\sum_{n=1}^{N} \mathbf{x}_n t_n = \mathbf{X}^T \mathbf{t} \,,$$

(2) and

$$\sum_{n=1}^{N} \mathbf{x}_n \mathbf{x}_n^T \mathbf{w} = \mathbf{X}^T \mathbf{X} \mathbf{w} \,.$$

Exercise 2. [6 points] We have an a priori law on a parameters μ (in \mathbb{R}^d):

$$p(\mu) = \mathcal{N}(\mu_0, A) \,,$$

where A is a $d \times d$ matrix, definite, positive. We suppose that $\Sigma = I_d$ (identity matrix of size d). We observe x_1, \ldots, x_N (N in \mathbb{N}^*), independent and identically distributed, of law $\mathcal{N}(\mu, \Sigma)$. We want to compute the a posteriori law on μ (knowing these observations). We write $p(\mu|x_1, \ldots, x_N)$ for this a posteriori law.

- (1) We suppose first that d = 1 (A is then a real number). Compute $p(\mu|x_1, \ldots, x_n)$.
- (2) We suppose d is in \mathbb{N}^* . Remember that if X is of law $\mathcal{N}(m, B)$ in \mathbb{R}^d , then its density is $e^{-\frac{1}{2}x^TB^{-1}x}$

$$x \in \mathbb{R}^d \mapsto \frac{e^{-2^{d-2}}}{(2\pi)^{d/2}\sqrt{|\det(B)|}}$$

Compute $p(\mu|x_1,\ldots,x_n)$.

Exercise 3. [6 points] For $\mathbf{z} \in (\mathbb{R}^+)^n$, $\mathbf{y} \in (\mathbb{R}^+)^n$ such that $\sum_{i=1}^n y_i = 1$, $\sum_{i=1}^n z_i = 1$, we define

$$H(y,z) = -\sum_{i=1}^{n} y_i \log(z_i).$$

We set $S = \{ \mathbf{z} \in (\mathbb{R}^+)^n : \sum_{i=1}^n z_i = 1 \}$. We fix **y** in S and define

$$\Phi \,:\, \mathbf{z} \in S \mapsto H(\mathbf{y}, \mathbf{z}) \,.$$

Show that $\mathbf{z} = \mathbf{y}$ is an absolute minimum of Φ .

Exercise 4. [6 points] We observe $\mathbf{x}_1, \ldots, \mathbf{x}_N$ in \mathbb{R}^d (d = 3), variables of law $\mathcal{N}(\mu, \Sigma)$ (independent).

- (1) Write the density of the law $p(\mathbf{x}_1, \ldots, \mathbf{x}_N | \mu, \Sigma)$.
- (2) What is the max-likelihood estimator of μ , Σ , knowing $\mathbf{x}_1, \ldots, \mathbf{x}_N$? (To solve this question, you should find a critical point. After what you can assume that this point is a maximum.)

Machine Learning- 2019-2029

http://math.unice.fr/~rubentha/cours.html

Exam for IM, EDHEC

Documents and calculators are not allowed. The grading will be function of your justifications. The exercises are independent.

Exercise 1. [7 points] When multiplying a scalar by a vector (or matrix), we multiply each element of the vector (or matrix) by that scalar. For $\mathbf{x}_n = [x_{n,1}, x_{n,2}]^T$ $(1 \le n \le N)$, $\mathbf{t} = [t_1, \ldots, t_N]^T$, $\mathbf{w} = [w_0, w_1]$ and

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1^T \\ \mathbf{x}_2^T \\ \vdots \\ \mathbf{x}_N^T \end{bmatrix}$$

(1) show that

$$\sum_{n=1}^{N} \mathbf{x}_n t_n = \mathbf{X}^T \mathbf{t} \,,$$

(2) and

$$\sum_{n=1}^{N} \mathbf{x}_n \mathbf{x}_n^T \mathbf{w} = \mathbf{X}^T \mathbf{X} \mathbf{w} \,.$$

Exercise 2. [7 points] We have an a priori law on a parameters μ (in \mathbb{R}) :

$$p(\mu) = \mathcal{N}(\mu_0, A) \,,$$

where A is in \mathbb{R}^{+*} . We suppose that $\Sigma = 1$ (identity matrix of size d). We observe x_1, \ldots, x_N (N in \mathbb{N}^*), independent and identically distributed, of law $\mathcal{N}(\mu, \Sigma)$. We want to compute the a posteriori law on μ (knowing these observations). We write $p(\mu|x_1, \ldots, x_N)$ for this a posteriori law.

Compute $p(\mu|x_1,\ldots,x_n)$.

Exercise 3. [7 points] We observe $\mathbf{x}_1, \ldots, \mathbf{x}_N$ in \mathbb{R}^d (d = 3), variables of law $\mathcal{N}(\mu, \Sigma)$ (independent). We suppose that the system (x_1, \ldots, x_N) is a basis of \mathbb{R}^d (this happens with probability 1).

- (1) Write the density of the law $p(\mathbf{x_1}, \ldots, \mathbf{x}_N | \mu, \Sigma)$.
- (2) What is the max-likelihood estimator of μ , Σ , knowing $\mathbf{x}_1, \ldots, \mathbf{x}_N$? (To solve this question, you should find a critical point. After what you can assume that this point is a maximum.)