Université Côte d'Azur

SEMESTRE I Contrôle Partiel 1 2021-2022

M1 IM – Seriés Temporelles

12 Decembre	Durée: 2 HEURES	
	(NOM, PRÉNOM)	

INSTRUCTIONS

- 1. Documents et calculatrices interdits. Accès à internet interdit. La plus grande importance sera accordée lors de la correction à la justification des réponses. Les exercices sont indépendants.
- 2. Répondre à toutes les questions. La distribution des points est écrit au début de chaque question
- 3. Répondre aux questions à choix multiple sur cette feuille. Une seule réponse est correcte.
- 4. Pour les démonstration vous utiliserez le papiers qui sont distribués. Expliquer tous les pas suffisamment et précisément.
- 5. Créer un fichier texte dans lequel vous répondrez clairement aux questions de la partie pratique, en incluant vos codes R, les résultats obtenus sous R (graphiques y compris), vos interprétations, remarques
- 6. À la fin de l'épreuve, vous enverrez ce fichier à vasileiadis@unice.fr ET vous rendrez ce sujet. Il faut que vous vérifiez la réception de votre courriel avant de partir.

Questions à choix multiples.

(8*0, 5 = 4 points)

1. Soit une série $x_t = f(t) + \epsilon_t$ et f(t) une fonction quadratique de t. La série:

- (a) a une tendance quadratique
- (b) a une composant périodique
- (c) est stationnaire
- (d) toutes les réponses sont justes
- (e) aucune des réponses ci-dessus

2. L'auto-corrélation d'une série est constant.

- (a) la série est constante
- (b) la série a use tendance
- (c) la série a une composante périodique
- 3. Soit la prévision:

$$\hat{x}_{n,h} = \alpha \sum_{j=0}^{n-1} (1 - \alpha)^j x_{n-j} \quad h \in \mathbb{N}^* \text{et } \alpha \in (0, 1)$$

- (a) plus α est petit, moins on donne d'importance aux observations anciennes
- (b) la somme des poids fait 1
- (c) la prédiction ne dépend pas de h
- (d) aucune des réponses ci-dessus

4. Lequel des énoncés suivants est un exemple de problème de série chronologique?

I Estimation du nombre de chambres d'hôtel réservées au cours des 6 prochains mois.

II Estimation des ventes totales au cours des 3 prochaines années d'une compagnie d'assurance.

III Estimation du nombre d'appels pour la semaine suivante.

	(c) II et III
	(d) I et III
	(e) toutes les réponses
5.	Le paramètre de lissage proche de 1 donne plus de poids ou d'influence aux observations récentes sur la prévision.
	(a) Vrai(b) Faux
6.	On veut prévoir la demande d'un produit au temps $n+1$ (nous appelerons la série $(x_k)_{k\geq 1}$. La prévision $\hat{x}_{n,1}$ était de 70 et la demande x_n est 60. Quelle est la prévision $\hat{x}_{n,1}$ de lissage exponentiel simple avec $\alpha=0,4$ pour x_{n+1} ?
	 (a) 63,8 (b) 65 (c) 62 (d) 66
7.	Soit X_t un processus aléatoire quel que $\mathbb{E}(X_t)$ ne dépend pas de t . Le process est stationnaire.
	(a) Vrai(b) Faux
8.	Soit une série $X_t=c_t+\epsilon_t,c_t$ déterministe et ϵ_t aléatoire. On ne peut pas éliminer la partie déterministe sans l'estimer.
	(a) Vrai(b) Faux

(a) seulement III

(b) I et II

Démonstration

(2*2=4 points)

Montre que:

- 1. Si (X_t) est une série temporelle admettant une tendance polynômial de degré 3, alors (ΔX_t) admet une tendance polynômial de degré ≤ 2 .
- 2. Dans le cas $X_t = m_t + s_t + \epsilon_t$ avec m_t et s_t déterministes, ϵ_t un bruit et s qui est T-périodique, le processus $\Delta_T X$ est un processus qui ne contient plus de partie périodique. De plus, si la tendance est linéaire, elle est également supprimée.

 $\mathbf{R} \tag{2*6 = 12 points}$

Pour toutes les questions il est impérativement d'interpréter vos résultats et les commandes de R sinon vous perdrez les points.

- 1. On s'intéresse à la série lynx contenue dans R (que nous noterons x)
 - (a) Tracer le graphique des auto-corrélations (ACF) de x. Que peuton déduire de la saisonnalité de x à partir de ce graphique? Transformer x en série temporelle de période T (choisir T).
 - (b) Tracer x, la tendance, la composante saisonnière et la partie aléatoire par la méthode de la moyenne mobile.
 - (c) Faire un test permettant de savoir si la partie aléatoire est un bruit blanc (vous choisirez vous-même les paramètres)
- 2. Le fichier de données "beersales" (qui est disponible sur moodle) contient les vends mensuel de la bière aux Etats-Unis pendant la période de janvier 1975 à décembre 1990.
 - (a) Représenter graphiquement la série. Ce processus vous semble-t-il stationnaire?
 - (b) Quel modèle de lissage exponentiel vous semble le mieux approprié? Pourquoi?
 - (c) Tester la prédiction des données de 1985 à 1990 en utilisant celles de 1975 à 1984
 - (d) Prévoir les ventes de 1990-2000 en utilisant votre modèle.

Fin du contrôle