Final examination (MPA \& MathMods), A

Documents and calculators forbidden. Give back the subject with your copy (+0.5 points!).
Duration: $2 h 30$.

Part 1.

(1) b
(2) b
(3) c
(4) d
(5) d
(6) d
(7) a
(8) c
(9) d
(10) b

Part 2. Mathematics exercises (all exercises are independent)
Exercise 1. We call X_{1}, \ldots, X_{N} the N points. For all $i, m \in[0,1 / 2], \mathbb{P}\left(\left\|X_{i}\right\| \leq m\right)=v_{p} m^{p}$. For all m,

$$
\begin{aligned}
\mathbb{P}(R>m) & =\mathbb{P}\left(\left\|X_{1}\right\|>m, \ldots,\left\|X_{N}\right\|>m\right) \\
\text { (independance) } & =\prod_{i=1}^{N} \mathbb{P}\left(\left\|X_{i}\right\|>m\right) \\
& =\prod_{i=1}^{N}\left(1-\mathbb{P}\left(\left\|X_{i}\right\| \leq m\right)\right) \\
& =\left(1-v_{p} m^{p}\right)^{N} .
\end{aligned}
$$

So the median of R is m_{0} such that

$$
\begin{aligned}
\left(1-v_{p} m_{0}^{p}\right)^{N} & =\frac{1}{2} \\
v_{p} m_{0}^{p} & =1-\left(\frac{1}{2}\right)^{1 / N} \\
m_{0} & =v_{p}^{1 / p}\left(1-\left(\frac{1}{2}\right)^{1 / N}\right)^{1 / p}
\end{aligned}
$$

Exercise 2. See Section 8.5.2 of the poly.

Exercise 3.

(1) The i-th line in $X w$ is $\sum_{j=1}^{D} x_{j}^{(i)} w_{j}$. So

$$
\begin{aligned}
\left.\left(\left(\begin{array}{c}
t_{1} \\
t_{2} \\
\vdots \\
t_{N}
\end{array}\right)-X w\right)\right)^{T}\left(\left(\begin{array}{c}
t_{1} \\
t_{2} \\
\vdots \\
t_{N}
\end{array}\right)-X w\right) & =\sum_{i=1}^{N}\left(t_{i}-\sum_{j=1}^{D} x_{j}^{(i)} w_{j}\right)^{2} \\
& =\sum_{i=1}^{N}\left(t_{i}-w^{T} x^{(i)}\right)^{2}
\end{aligned}
$$

(2) For all j in $\{1,2, \ldots, D\}$,

$$
\begin{aligned}
\frac{1}{2} \frac{\partial \mathcal{L}}{\partial w_{j}} & =\sum_{i=1}^{N}\left(w^{T} x^{(i)}-t_{i}\right) x_{j}^{(i)} \\
& =\sum_{i=1}^{N} \sum_{k=1}^{D} w_{k} x_{k}^{(i)} x_{j}^{(i)}-\sum_{i=1}^{N} t_{i} x_{j}^{(i)} \\
& =\sum_{i=1}^{N} x_{j}^{(i)}(X w)_{i}-\left(X^{T} \boldsymbol{t}\right)_{j} \\
& =\left(X^{T} X w\right)_{j}-\left(X^{T} \boldsymbol{t}\right)_{j} .
\end{aligned}
$$

So

$$
\frac{1}{2} \nabla \mathcal{L}(w)=\left(X^{T} X\right) w-X^{T} \boldsymbol{t}
$$

(3) The gradient of \mathcal{L} is zero for

$$
w=\left(X^{T} X\right)^{-1} X^{T} \boldsymbol{t}
$$

For each i,

$$
w \mapsto\left(w^{T} x^{(i)}-t_{i}\right)^{2}=\left(\sum_{j=1}^{D} w_{j} x_{j}^{(i)}-t_{i}\right)^{2}
$$

is convex (as a polynomial of degree two in w_{1}, \ldots, w_{D}, with positive coefficients for the w_{j}^{2}, no double product $w_{j_{1}} w_{j_{2}}$). The function \mathcal{L} is convex as a sum of convex functions. So this point is the absolute minimum of \mathcal{L}.
(4) See Exercise 2.1, Section 2.3.2 of the poly.

