Université Nice-Sophia Antipolis
SMEMP302 - ECUE Probabilitic Computational Methods, 2022-2023
Sylvain Rubenthaler (https://math.unice.fr/~rubentha/)

Answers for final exam (duration : 2h30)

Authorized documents: course notes only.

Exercise 1.

(1)
(a) We set $X^{(1)}, X^{(2)}, \ldots$ to be independent copies of X. The law of large numbers tells us that:

$$
\frac{1}{M} \sum_{i=1}^{M} \mathbb{1}_{[l, l+1]}\left(X^{(i)}\right) \underset{M \rightarrow+\infty}{\longrightarrow} p_{l}, \text { a.s. }
$$

(b) We have

$$
\begin{aligned}
\operatorname{Var}\left(\frac{1}{M} \sum_{i=1}^{M} \mathbb{1}_{[l, l+1]}\left(X^{(i)}\right)\right) & =\frac{\operatorname{Var}\left(\mathbb{1}_{[l, l+1]}(X)\right)}{M} \\
\text { (variance of a Bernoulli variable) } & =\frac{p_{l}\left(1-p_{l}\right)}{M} .
\end{aligned}
$$

(2)
(a) We introduce X_{l} of density $f_{l}: x \in \mathbb{R} \mapsto \mathbb{1}[l,+\infty) e^{-(x-l)}$. We have

$$
\begin{aligned}
p_{l} & =\int_{0}^{+\infty} \mathbb{1}_{[l, l+1]}(x) e^{-x} d x \\
& =\int_{l}^{+\infty} \frac{\mathbb{1}_{[l, l+1]}(x) e^{-x}}{f_{l}(x)} f_{l}(x) d x \\
& =\mathbb{E}\left(\frac{\mathbb{1}_{[l, l+1]}\left(X_{l}\right) e^{-X_{l}}}{f_{l}\left(X_{l}\right)}\right)
\end{aligned}
$$

If we set $X_{l}^{(1)}, X_{l}^{(2)}, \ldots$ to be independent copies of X_{l}, then

$$
\frac{1}{M} \sum_{k=1}^{M} \frac{\mathbb{1}_{[l, l+1]}\left(X_{l}^{(k)}\right) e^{-X_{l}^{(k)}}}{f_{l}\left(X_{l}^{(k)}\right)}
$$

(b) We have

$$
\begin{aligned}
M \times \operatorname{Var}\left(\frac{1}{M} \sum_{k=1}^{M} \frac{\mathbb{1}_{[l, l+1]}\left(X_{l}^{(k)}\right) e^{-X_{l}^{(k)}}}{f_{l}\left(X_{l}^{(k)}\right)}\right) & =\mathbb{E}\left(\left(\frac{\mathbb{1}_{[l, l+1]}\left(X_{l}\right) e^{-X_{l}}}{f_{l}\left(X_{l}\right)}\right)^{2}\right)-p_{l}^{2} \\
& =\int_{l}^{l+1}\left(\frac{e^{-x}}{e^{-(x-l)}}\right)^{2} e^{-(x-l)} d x-p_{l}^{2} \\
& =\int_{l}^{l+1} e^{-x-l} d x-p_{l}^{2} .
\end{aligned}
$$

(3) We have

$$
\begin{aligned}
\frac{\int_{l}^{l+1} e^{-x-l} d x-p_{l}^{2}}{p_{l}-p_{l}^{2}} & =e^{-l} \times \frac{\int_{l}^{l+1} e^{-x} d x-e^{l}\left(\int_{l}^{l+1} e^{-x} d x\right)^{2}}{\int_{l}^{l+1} e^{-x} d x-\left(\int_{l}^{l+1} e^{-x} d x\right)^{2}} \\
& =e^{-l} \times \frac{1-e^{l}\left(\int_{l}^{l+1} e^{-x} d x\right)}{1-\left(\int_{l}^{l+1} e^{-x} d x\right)} \\
& =e^{-l} \times \frac{1-e^{l}\left(e^{-l}-e^{-(l+1)}\right)}{1-\left(e^{-l}-e^{-(l+1)}\right)} \\
& =e^{-l} \times \frac{e^{-1}}{1-\left(e^{-l}-e^{-(l+1)}\right)} \\
& \sim e^{-l-1} .
\end{aligned}
$$

Exercise 2. We have for all $k \geq 1$,

$$
\begin{aligned}
\bar{X}_{t_{k}^{n}} & =\bar{X}_{t_{k-1}^{n}}+\bar{X}_{t_{k-1}^{n}}\left(W_{t_{k}^{n}}-W_{t_{k-1}^{n}}\right) \\
& =\bar{X}_{t_{k-1}^{n}}\left(1+\Delta W_{t_{k}^{n}}\right) .
\end{aligned}
$$

So, by recurrence:

$$
\bar{X}_{t_{k}^{n}}=\prod_{l=1}^{k}\left(1+\Delta W_{t_{l}^{n}}\right)
$$

Exercise 3.

(1) We have

$$
\begin{aligned}
\mathbb{E}\left(\left(\mathbb{E}\left(f\left(X_{T}\right)\right)-Y\right)^{2}\right)= & \mathbb{E}\left(\left(\mathbb{E}\left(f\left(X_{T}\right)\right)-\mathbb{E}(Y)+\mathbb{E}(Y)-Y\right)^{2}\right) \\
= & \left(\mathbb{E}\left(f\left(X_{T}\right)\right)-\mathbb{E}(Y)\right)^{2}+\mathbb{E}\left((\mathbb{E}(Y)-Y)^{2}\right) \\
& +2 \mathbb{E}\left(\left(\mathbb{E}\left(f\left(X_{T}\right)\right)-\mathbb{E}(Y)\right) \times(\mathbb{E}(Y)-Y)^{2}\right. \\
= & \left(\mathbb{E}\left(f\left(X_{T}\right)\right)-\mathbb{E}(Y)\right)^{2}+\operatorname{Var}(Y) .
\end{aligned}
$$

(2)
(a) We have

$$
\begin{aligned}
\left(\mathbb{E}\left(f\left(X_{T}\right)\right)-\mathbb{E}(Y)\right)^{2} & =\left(\mathbb{E}\left(f\left(X_{T}\right)\right)-\mathbb{E}\left(f\left(\bar{X}_{T}^{N}\right)\right)\right)^{2} \\
& \leq \frac{C}{N^{2 \beta}} .
\end{aligned}
$$

So we want

$$
N=\left(\frac{C}{\epsilon^{2}}\right)^{\frac{1}{2 \beta}}
$$

(b) We set K to be the Lipschitz constant of f. We have

$$
\begin{aligned}
\mathbb{E}\left(\left(f\left(X_{T}\right)-f\left(\bar{X}_{T}^{N}\right)\right)^{2}\right) & \leq K^{2} \mathbb{E}\left(\left|X_{T}-\bar{X}_{T}^{N}\right|^{2}\right) \\
& \leq \frac{K^{2} C}{N^{\alpha}} \underset{N \rightarrow 0}{\longrightarrow} 0
\end{aligned}
$$

We already have that $\mathbb{E}\left(f\left(\bar{X}_{T}^{N}\right)\right) \underset{N \rightarrow 0}{\longrightarrow} \mathbb{E}\left(f\left(X_{T}\right)\right)$. The triangular inequality gives us

$$
\begin{aligned}
\left\|f\left(\bar{X}_{T}^{N}\right)\right\|_{2} & \leq\left\|f\left(X_{T}\right)\right\|_{2}+\left\|f\left(\bar{X}_{T}^{N}\right)-f\left(X_{T}\right)\right\|_{2} \\
\left\|f\left(X_{T}\right)\right\|_{2} & \leq\left\|f\left(\bar{X}_{T}^{N}\right)\right\|_{2}+\left\|f\left(X_{T}\right)-f\left(\bar{X}_{T}^{N}\right)\right\|_{2} .
\end{aligned}
$$

So

$$
\left\|f\left(X_{T}\right)\right\|_{2}-\left\|f\left(X_{T}\right)-f\left(\bar{X}_{T}^{N}\right)\right\|_{2} \leq\left\|f\left(\bar{X}_{T}^{N}\right)\right\|_{2} \leq\left\|f\left(X_{T}\right)\right\|_{2}+\left\|f\left(\bar{X}_{T}^{N}\right)-f\left(X_{T}\right)\right\|_{2} .
$$

Which implies

$$
\left\|f\left(\bar{X}_{T}^{N}\right)\right\|_{2} \underset{N \rightarrow+\infty}{\longrightarrow}\left\|f\left(X_{T}\right)\right\|_{2} .
$$

In conclusion:

$$
\operatorname{Var}\left(f\left(\bar{X}_{T}^{N}\right)\right) \underset{N \rightarrow+\infty}{\longrightarrow} \operatorname{Var}\left(f\left(X_{T}\right)\right)
$$

We have

$$
\operatorname{Var}(Y)=\frac{\operatorname{Var}\left(f\left(\bar{X}_{T}^{N}\right)\right)}{M}
$$

which we identify with

$$
\frac{\operatorname{Var}\left(f\left(X_{T}\right)\right)}{M}
$$

(as N is very big). We want

$$
\frac{\operatorname{Var}\left(f\left(X_{T}\right)\right)}{M}=\epsilon^{2},
$$

so we choose

$$
M=\frac{\operatorname{Var}\left(f\left(X_{T}\right)\right)}{\epsilon^{2}}
$$

(c) The computational time needed to attain the quadratic error $2 \epsilon^{2}$ is of order $M+N$, which is proportional to $\epsilon^{-(2+1 / \beta)}$.

