Université Nice-Sophia Antipolis SMEMP302 - ECUE Probabilitic Computational Methods, 2022-2023 Sylvain Rubenthaler (https://math.unice.fr/~rubentha/)

Final exam (duration : 2h)

Authorized documents: course notes only.

Exercise 1. We want to compute $p_l = \mathbb{P}(X \in [l, l+1])$ where X has an exponential law of parameter 1 and $l \ge 0$.

(1)

- (a) Propose a Monte-Carlo method to compute p_l (based the simulation of M variables of exponential law).
- (b) Compute the asymptotic variance of this method (when $M \to +\infty$).
- (2)
- (a) Propose an importance sampling method.
- (b) Compute the asymptotic variance of the new method.
- (3) Compare the two variances computed above when $l \to +\infty$.

Exercise 2. One considers the geometric Brownian motion $X_t = e^{-\frac{t}{2}+W_t}$ ((W_t) being a standard Brownian motion). The process (X_t) is solution to

$$dX_t = X_t dW_t \,, \, X_0 = 1 \,.$$

For all $n \ge 1$, we introduce the Euler scheme (of order n) associated to the above equation: $(\overline{X}_{t_k^n})_{k\ge 0}$ on the interval [0,T] $(T = 1, t_{k+1}^n - t_k^n = \frac{1}{n}$ for all k). Show that, for every $n \ge 1$ and every $k \ge 1$,

$$\overline{X}_{t^n_k} = \prod_{l=1}^k (1 + \Delta W_{t^n_l}) \,,$$

where $t_l^n = \frac{lT}{n}$, $\Delta W_{t_l^n} = W_{t_l^n} - W_{t_{l-1}^n}$ $(l \ge 1)$.

Exercise 3. We are interested in the computation of $\mathbb{E}(f(X_T))$, where $f : \mathbb{R}^n \to \mathbb{R}$ is a \mathcal{C}^4 and Lipschitz function with derivatives "at most polynomial" and $(X_t)_{t \in [0,T]}$ is solution of the following EDS

$$dX_t = \sigma(X_t)dW_t + b(X_t)dt, X_0 = x_0,$$

where $(W_t)_{t\geq 0}$ is a Brownian motion in \mathbb{R}^d , $\sigma : \mathbb{R}^n \to \mathbb{R}^{n\times d}$ and $b : \mathbb{R}^n \to \mathbb{R}^n$ are \mathcal{C}^4 functions with bounded derivatives and $x_0 \in \mathbb{R}^n$. We write \overline{X}_T^N the approximation of X_T obtained by a Euler scheme with N discretization steps and whose computational time is proportional to N. We suppose the strong and weak rate of convergence are the following $(\alpha, \beta \geq 1)$:

$$\exists C < \infty, \, \forall N \in \mathbb{N}^*, \, \mathbb{E}(|X_T - \overline{X}_T^N|^2) \le \frac{C}{N^{\alpha}}, \, |\mathbb{E}(f(X_T)) - \mathbb{E}(f(\overline{X}_T^N))| \le \frac{C}{N^{\beta}}.$$

(1) Let Y be an estimator of $\mathbb{E}(f(X_T))$ such that $\mathbb{E}(Y^2) < \infty$ (remember this means that Y can be just any random variable). Show the bias/variance decomposition

$$\mathbb{E}[(\mathbb{E}(f(X_T)) - Y)^2] = (\mathbb{E}(f(X_T)) - \mathbb{E}(Y))^2 + \operatorname{Var}(Y)$$

of the quadratic error.

- (2) We suppose that $Y = \frac{1}{M} \sum_{i=1}^{M} f(\overline{X}_{T}^{i,N})$ is the empirical mean of M independent copies of $f(\overline{X}_{T}^{N})$.
 - (a) How many steps N should we choose in order to have $[\mathbb{E}(f(X_T)) \mathbb{E}(Y)]^2$ of size ϵ , where ϵ is a fixed precision level (small)?

(b) Show that $\lim_{N \to +\infty} \mathbb{E}[(f(X_T) - f(\overline{X}_T^N))^2] = 0$. Deduce from this that $\lim_{N \to +\infty} V_{2N}(f(\overline{X}^N)) = V_{2N}(f(X_T))$

$$\lim_{N \to +\infty} \operatorname{Var}(f(X_T)) = \operatorname{Var}(f(X_T)).$$

We suppose Var(f(X_T)) is a known constant. How many copies M should we choose in order to have Var(Y) = ε² (approximatively, for N very big)?
(c) Conclude that the computational time we need to attain the quadratic error 2ε² is proportional to ε^{-(2+1/β)}.