Université Nice-Sophia Antipolis

SMEMP302 - ECUE Probabilitic Computational Methods, 2022-2023
Sylvain Rubenthaler (https://math.unice.fr/~rubentha/)

Final exam (duration : 2h)

Authorized documents: course notes only.

Exercise 1. We want to compute $p_{l}=\mathbb{P}(X \in[l, l+1])$ where X has an exponential law of parameter 1 and $l \geq 0$.
(1)
(a) Propose a Monte-Carlo method to compute p_{l} (based the simulation of M variables of exponential law).
(b) Compute the asymptotic variance of this method (when $M \rightarrow+\infty$).
(2)
(a) Propose an importance sampling method.
(b) Compute the asymptotic variance of the new method.
(3) Compare the two variances computed above when $l \rightarrow+\infty$.

Exercise 2. One considers the geometric Brownian motion $X_{t}=e^{-\frac{t}{2}+W_{t}}\left(\left(W_{t}\right)\right.$ being a standard Brownian motion). The process $\left(X_{t}\right)$ is solution to

$$
d X_{t}=X_{t} d W_{t}, X_{0}=1
$$

For all $n \geq 1$, we introduce the Euler scheme (of order n) associated to the above equation: $\left(\bar{X}_{t_{k}^{n}}\right)_{k \geq 0}$ on the interval $[0, T]\left(T=1, t_{k+1}^{n}-t_{k}^{n}=\frac{1}{n}\right.$ for all $\left.k\right)$. Show that, for every $n \geq 1$ and every $k \geq 1$,

$$
\bar{X}_{t_{k}^{n}}=\prod_{l=1}^{k}\left(1+\Delta W_{t_{l}^{n}}\right)
$$

where $t_{l}^{n}=\frac{l T}{n}, \Delta W_{t_{l}^{n}}=W_{t_{l}^{n}}-W_{t_{l-1}^{n}}(l \geq 1)$.
Exercise 3. We are interested in the computation of $\mathbb{E}\left(f\left(X_{T}\right)\right)$, where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a \mathcal{C}^{4} and Lipschitz function with derivatives "at most polynomial" and $\left(X_{t}\right)_{t \in[0, T]}$ is solution of the following EDS

$$
d X_{t}=\sigma\left(X_{t}\right) d W_{t}+b\left(X_{t}\right) d t, X_{0}=x_{0}
$$

where $\left(W_{t}\right)_{t \geq 0}$ is a Brownian motion in $\mathbb{R}^{d}, \sigma: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times d}$ and $b: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ are \mathcal{C}^{4} functions with bounded derivatives and $x_{0} \in \mathbb{R}^{n}$. We write \bar{X}_{T}^{N} the approximation of X_{T} obtained by a Euler scheme with N discretization steps and whose computational time is proportional to N. We suppose the strong and weak rate of convergence are the following ($\alpha, \beta \geq 1$):

$$
\exists C<\infty, \forall N \in \mathbb{N}^{*}, \mathbb{E}\left(\left|X_{T}-\bar{X}_{T}^{N}\right|^{2}\right) \leq \frac{C}{N^{\alpha}},\left|\mathbb{E}\left(f\left(X_{T}\right)\right)-\mathbb{E}\left(f\left(\bar{X}_{T}^{N}\right)\right)\right| \leq \frac{C}{N^{\beta}}
$$

(1) Let Y be an estimator of $\mathbb{E}\left(f\left(X_{T}\right)\right)$ such that $\mathbb{E}\left(Y^{2}\right)<\infty$ (remember this means that Y can be just any random variable). Show the bias/variance decomposition

$$
\mathbb{E}\left[\left(\mathbb{E}\left(f\left(X_{T}\right)\right)-Y\right)^{2}\right]=\left(\mathbb{E}\left(f\left(X_{T}\right)\right)-\mathbb{E}(Y)\right)^{2}+\operatorname{Var}(Y)
$$

of the quadratic error.
(2) We suppose that $Y=\frac{1}{M} \sum_{i=1}^{M} f\left(\bar{X}_{T}^{i, N}\right)$ is the empirical mean of M independent copies of $f\left(\bar{X}_{T}^{N}\right)$.
(a) How many steps N should we choose in order to have $\left[\mathbb{E}\left(f\left(X_{T}\right)\right)-\mathbb{E}(Y)\right]^{2}$ of size ϵ, where ϵ is a fixed precision level (small)?
(b) Show that $\lim _{N \rightarrow+\infty} \mathbb{E}\left[\left(f\left(X_{T}\right)-f\left(\bar{X}_{T}^{N}\right)\right)^{2}\right]=0$. Deduce from this that

$$
\lim _{N \rightarrow+\infty} \operatorname{Var}\left(f\left(\bar{X}_{T}^{N}\right)\right)=\operatorname{Var}\left(f\left(X_{T}\right)\right)
$$

We suppose $\operatorname{Var}\left(f\left(X_{T}\right)\right)$ is a known constant. How many copies M should we choose in order to have $\operatorname{Var}(Y)=\epsilon^{2}$ (approximatively, for N very big)?
(c) Conclude that the computational time we need to attain the quadratic error $2 \epsilon^{2}$ is proportional to $\epsilon^{-(2+1 / \beta)}$.

