Université Nice-Sophia Antipolis

SMEMP302 - ECUE Probabilitic computational methods, 2022-2023
Sylvain Rubenthaler (https://math.unice.fr/~~rubentha/)

Home Project

We consider on the one hand the sequence of random variables recursively defined by

$$
Y_{k+1}=Y_{k}(1+\mu \Delta)+\sigma \sqrt{\Delta} Z_{k+1}, k \geq 0, Y_{0}=0
$$

where $\mu>0,1 \geq \Delta>0$, are positive real numbers, and the Ornstein-Uhlenbeck process solution to the SDE

$$
\begin{equation*}
d X_{t}=\mu X_{t} d t+\sigma d W_{t}, X_{0}=x \tag{0.1}
\end{equation*}
$$

where $\left(W_{t}\right)_{t \geq 0}$ is a standard Brownian Motion in \mathbb{R}. The exact strong solution of Equation (0.1) is:

$$
\begin{equation*}
X_{t}=x e^{\mu t}+\sigma \int_{0}^{t} e^{\mu(t-s)} d W_{s} \tag{0.2}
\end{equation*}
$$

Set $t_{k}=k \Delta, k \geq 0$ and $Z_{k}=\frac{W_{t_{k}}-W_{t_{k-1}}}{\sqrt{\Delta}}, k \geq 1$.
(1) Show that, for every $k>0$,

$$
\mathbb{E}\left(Y_{k}^{2}\right)=\frac{\sigma^{2}}{\mu} \times \frac{(1+\mu \Delta)^{2 k}-1}{2+\mu \Delta}
$$

(2) Show that, for every $k \geq 0, X_{t_{k+1}}=e^{\mu \Delta} X_{t_{k}}+\sigma e^{\mu t_{k+1}} \int_{t_{k}}^{t_{k+1}} e^{-\mu s} d W_{s}$.
(3) Show that, for every $k \geq 0$, for every $\Delta>0$,

$$
\begin{aligned}
\mathbb{E}\left(\left(Y_{k+1}-X_{t_{k+1}}\right)^{2} \leq(1+\Delta) e^{2 \mu \Delta}\right. & \mathbb{E}\left(\left(Y_{k}-X_{t_{k}}\right)^{2}\right) \\
& +\left(1+\frac{1}{\Delta}\right) \mathbb{E}\left(\left(Y_{k}\right)^{2}\right)\left(e^{\mu \Delta}-1-\mu \Delta\right)^{2}+\sigma^{2} \int_{0}^{\Delta}\left(e^{\mu u}-1\right)^{2} d u
\end{aligned}
$$

(Hint: show that for all $a, b \geq 0,2 a b \leq \Delta a^{2}+b^{2} / \Delta$.) In what follows, we assume that $\bar{\Delta}=\Delta_{n}=T / n$ where T is a positive real number and n is in \mathbb{N}^{*} (n may vary). However, we keep on using the notation Y_{k} rather then $Y_{k}^{(n)}$.
(4) Show that, for every $k \in\{0, \ldots, n\}, \mathbb{E}\left(\left(Y_{k}\right)^{2}\right) \leq \frac{\sigma^{2} e^{2 \mu T}}{2 \mu}$.
(5) Deduce the existence of a real constant $C=C_{\mu, \sigma, T}^{2 \mu}>0$ such that, for every $k \in$ $\{0,1, \ldots, n-1\}$,

$$
\mathbb{E}\left(\left(Y_{k+1}-X_{t_{k+1}}\right)^{2}\right) \leq\left(1+\Delta_{n}\right) e^{2 \mu \Delta_{n}} \mathbb{E}\left(\left(Y_{k}-X_{t_{k}}\right)^{2}\right)+C \Delta_{n}^{3}
$$

We suppose that $\Delta_{n}<1$. Conclude that $\mathbb{E}\left(\left(Y_{k+1}-X_{t_{k+1}}\right)^{2}\right) \leq C^{\prime}\left(\frac{T}{n}\right)^{2}$ for some real constant $C^{\prime}=C_{\mu, \sigma, T}^{\prime}$.
(6) From now, we take $\mu=-1, \sigma=1, T=1, x=1$. For all function f, we set

$$
{\overline{f\left(Y_{n}\right)^{M}}}^{M}:=\frac{1}{M} \sum_{j=1}^{M} f\left(Y_{n}^{j}\right)
$$

)(where $\left(Y_{n}^{j}\right)_{j \geq 1}$ are i.i.d. copies of $\left.Y_{n}\right)$. We are interested in the error $\mathbb{E}\left(f\left(X_{T}\right)\right)-$ $\mathbb{E}\left(f\left(\bar{Y}^{M}\right)\right)$ for some Lipshitz function f (Lipshitz constant named $f_{\text {Lip }}$). This error can be decomposed into

$$
\begin{aligned}
\left|\mathbb{E}\left(f\left(X_{T}\right)\right)-\overline{f\left(Y_{n}\right)^{M}}\right| & \leq\left|\mathbb{E}\left(f\left(X_{T}\right)-f\left(Y_{n}\right)\right)\right|+\left|f\left(Y_{n}\right)-\overline{f\left(Y_{n}\right)^{M}}\right| \\
& \leq f_{\operatorname{Lip}}^{1 / 2} \mathbb{E}\left(\left(X_{T}-Y_{n}\right)^{2}\right)^{1 / 2}+\left|f\left(Y_{n}\right)-\overline{f\left(Y_{n}\right)}{ }^{M}\right|
\end{aligned}
$$

(We admit this computation .) For a fixed n, we will choose $M=M_{n}=n^{2}$ so that the two terms in the error above are of the same order. Write a python function that simulate
a variable Y_{n}^{j} for any given n and plot the trajectory $\left(Y_{n}^{j}\right)_{0 \leq j \leq n}$ (add the plot for $n=1000$ in your report).
(7) Write a python function that compute ${\overline{f\left(Y_{n}\right)}}^{M_{n}}$ for any given n.
(8) Write a python code that compute a Monte-Carlo approximation of $\left|\mathbb{E}\left(f\left(X_{T}\right)\right)-\overline{f\left(Y_{n}\right)^{M}}{ }^{M_{n}}\right|$ for any given n (and $f=\mathrm{Id}$).
(9) Repeat the above code for various n 's and plot $\left|\mathbb{E}\left(f\left(X_{T}\right)\right)-\overline{f\left(Y_{n}\right)^{M}}\right|$ vs n, in log-log scale (and $f=\mathrm{Id}$).
(10) Use a linear regression to find the slope of the above plot (the result does not have to be very precise).

