Analytic and Gevrey regularity for solutions to Hörmander operators

Paulo Domingos Cordaro

University of São Paulo - São Paulo, Brazil

February 6, 2013

I. Sum of Squares Operators

$$P = X_1^2 + \ldots + X_{\nu}^2$$

 X_1,\ldots,X_{ν} : analytic, real vector fields defined in $\Omega\subset\mathbb{R}^N$ open.

Hörmander's condition: $\mathcal{L}(X_1,\ldots,X_{\nu})$ has rank N at each point of Ω .

- P is C^{∞} -hypoelliptic in Ω (Hörmander, 1967)
- $P = \partial_t^2 + \partial_y^2 + t^2 \partial_x^2$ is not analytic hypoelliptic (ahe) in \mathbb{R}^3 (Baouendi–Goulaouic, 1972)

Positive results

$$P = X_1^2 + \dots X_{\nu}^2$$

Theorem (Tartakoff 1980), (Treves 1978)

If the characteristic set Σ of P is a symplectic manifold and if the principal symbol of P vanishes precisely of order 2 on Σ then P is (ahe).

Example:

• $P = \partial_t^2 + t^2 \partial_x^2$ is (ahe) in \mathbb{R}^2 ;

Further examples

- $P = \partial_t^2 + t^{2k} \partial_x^2$ is (ahe) in \mathbb{R}^2 Matsuzawa. 1971.
- $P = \partial_t^2 + t^{2p} \partial_{x_1}^2 + t^{2q} \partial_{x_2}^2$ is (ahe) in \mathbb{R}^3 if and only if p = q. Oleinik, 1973.
- $P = \partial_y^2 + (\partial_x + my^{m-1}\partial_s)^2$ is (ahe) in \mathbb{R}^3 if and only if m = 2. Tartakoff–Treves (m = 2), Grigis-Sjostrand (m = 3), Hanges–Himonas $(m \ge 3 \text{ odd})$, Christ $(m \ge 3)$.
- $P = \partial_t^2 + t^2 \partial_x^2 + (x \partial_x)^2$ is not (ahe) in \mathbb{R}^2 Metivier, 1981.

Global analytic hypoellipticity

 $\mathcal M$: real-analytic manifold, X_1,\dots,X_{ν} defined on $\mathcal M$ and satisfying Hörmander condition.

$$P=X_1^2+\ldots+X_{\nu}^2.$$

Definition

P is globally hypelliptic in \mathcal{M} if given $u \in C^{\infty}(\mathcal{M})$ (or even $u \in \mathcal{D}'(\mathcal{M})$) then $Pu \in C^{\omega}(\mathcal{M})$ implies $u \in C^{\omega}(\mathcal{M})$.

Assume $\mathcal M$ compact and connected. By the Bony's maximum principle, every solution to Pu=0 on $\mathcal M$ is constant and hence an equation Pu=f, with f given, has at most one solution modulo constants. So it makes sense to ask if a given P, which is not (ahe) in $\mathcal M$ in the usual sense, can be globally (ahe) in $\mathcal M$.

Examples

• In $\mathbf{T}^3 = S^1 \times S^1 \times S^1$, with coordinates written as (x,t,y) consider

$$P = \partial_t^2 + \partial_y^2 + a(t)^2 \partial_x^2,$$

where $a \in C^{\omega}(S^1)$ does not vanish identically. Then P is globally (ahe) in \mathbf{T}^3 (C-Himonas, 1993). There is a generalization to a larger class of operators due (Christ 1993).

• In $\mathbf{T}^2 = S^1 \times S^1$, with coordinates written as (x,t) consider

$$M = \partial_t^2 + \sin(t)^2 \partial_x^2 + (\sin(x)\partial_x)^2$$

Then M is not globally (ahe) in \mathbf{T}^2

Proof that M is not globally (ahe)

Argument due to J.-M. Trepréau

- There are an open neighbohood of the origin U in \mathbf{T}^2 and $u \in C^{\infty}(U) \setminus C^{\omega}(U)$ such that $Mu \in C^{\omega}(U)$ (Metivier).
- Since M is elliptic in $U \setminus \{(0,0),(0,\pi),(\pi,0),(\pi,\pi)\}$ we can assume that $u|_{U \setminus \{(0,0)\}}$ is real-analytic
- Since $H^1(\mathbf{T}^2, \mathcal{C}^\omega) = 0$ we can write

$$u|_{U\setminus\{(0,0)\}}=v|_{U\setminus\{(0,0)\}}-w|_{U\setminus\{(0,0)\}},$$

where
$$v \in C^{\omega}(U)$$
, $w \in C^{\omega}(\mathbf{T}^2 \setminus \{(0,0)\})$.

Define

$$\tilde{u} = \begin{cases} u - v & \text{in } U \\ -w & \text{in } \mathbf{T}^2 \setminus \{(0, 0)\} \end{cases}$$

Then $\tilde{u} \in C^{\infty}(\mathbf{T}^2) \setminus C^{\omega}(\mathbf{T}^2)$ but $M\tilde{u} \in C^{\omega}(\mathbf{T}^2)$.

Hörmander type

$$P = X_1^2 + \dots X_{\nu}^2$$

$$X_j = \sum_{k=1}^N a_{jk}(x) \partial/\partial x_k, \ \sigma_j(x,\xi) = \sum_{k=1}^N a_{jk}(x) \xi_k, \quad \sigma_j : T^*\Omega \to \mathbb{R}.$$

If $A \in T^*\Omega \setminus 0$ denote C^ω_A the space of germs of real-analytic functions at A by $I^k_A \subset$ the ideal of C^ω_A spanned by the germs at A of all Poisson brackets of length $\ell \leq k$:

$$\{f_{j_\ell},\ldots,\{f_{j_1},f_{j_0}\}\ldots\},\quad f_j\doteq\sigma(X_j).$$

Important remark: Hörmander condition says that for each $A \in T^*\Omega \setminus 0$ there is $k \in \mathbb{Z}_+$ such that $I_A^k = C_A^\omega$

We set

$$\rho(A) = \min\left\{k: I_A^k = C_A^\omega\right\}$$

ㅁㅏ 4륜ㅏ 4분ㅏ - 분 - 쒼오연

Theorem (Treves, 2006)

$$P=X_1^2+\ldots+X_{\nu}^2.$$

There exists a well defined partition of $\Sigma = \cup \Sigma_j$ into connected, pairwise disjoint analytic submanifolds Σ_i satisfying:

- The union is locally finite.
- For each j the functions

$$\Sigma_{j} \ni A \mapsto \dim \left(T_{A} \Sigma_{j} \cap T_{A} \Sigma_{j}^{\perp} \right)$$

$$\Sigma_{j} \ni A \mapsto \rho(A)$$

are constant on Σ_j

• Each Σ_j is maximal with respect to these properties.

Treves' conjecture: P is (ahe) if each Σ_i is symplectic.

Back to Oleinik operator

$$P = \partial_t^2 + t^{2p} \partial_{x_1}^2 + t^{2q} \partial_{x_2}^2, \ 1 \le p < q.$$

$$\Sigma = \{ t = \tau = 0 \} = \{ (x, \xi) : \xi \ne 0 \} \subset \mathbb{R}^4$$

$$\sigma_1 = \tau, \ \sigma_2 = t^p \xi_1, \ \sigma_3 = t^q \xi_2$$

$$\begin{cases} \Sigma_1 &: \quad t = \tau = 0, \ \xi_1 > 0 \\ \Sigma_2 &: \quad t = \tau = 0, \ \xi_1 < 0 \\ \Sigma_3 &: \quad t = \tau = \xi_1 = 0, \ \xi_2 > 0 \\ \Sigma_4 &: \quad t = \tau = \xi_1 = 0, \ \xi_2 < 0 \end{cases}$$

$$\rho = p \text{ on } \Sigma_1 \cup \Sigma_2; \ \rho = q \text{ on } \Sigma_3 \cup \Sigma_4.$$

 Σ_1 and Σ_2 are symplectic; Σ_3 and Σ_4 are not.

Microlocal analytic singularities of of the solutions to Pu = 0 are contained in $\Sigma_3 \cup \Sigma_4$.

A particular case

Theorem (Okaji, 1985), (C-Hanges, 2009)

If, near A, Σ is a codimension 2 symplectic manifold such that $\rho|_{\Sigma}$ is constant and if u is a solution to Pu=f with f real-analytic then u is real-analytic near A.

Example: If P is the Oleinik operator and if $Pu = f \in C^{\omega}$ then u is real-analytic in $\Sigma_1 \cup \Sigma_2$.

Gevrey hypoellipticity

$$P = X_1^2 + \ldots + X_{\nu}^2$$
 under Hörmander condition

Definition

P is G^s -hypoelliptic in Ω ($s \ge 1$) if given $U \subset \Omega$ open and $u \in \mathcal{D}'(U)$ then $Pu \in G^s(U)$ implies $u \in G^s(U)$. Here $G^s(U)$ denotes the space of gevrey functions of order s in U.

Theorem (Derridj-Zuilly, 1972)

 $\exists s_0 = s_0(P) > 1$ such that P is G^s -hypoelliptic in Ω if $s > s_0$

Examples.

- $P = \partial_t^2 + \partial_y^2 + t^2 \partial_x^2$ is G^s -hypoelliptic if and only if $s \ge 2$.
- $P = \partial_t^2 + t^2 \partial_x^2 + (x \partial_x)^2$ is G^s -hypoelliptic if and only if $s \ge 2$.
- $P = \partial_t^2 + t^{2p} \partial_{x_1}^2 + t^{2q} \partial_{x_2}^2$, $1 \le p \le q$ if G^s hypoelliptic if and only if $s \ge (q+1)/(p+1)$ (Christ, 1997).

Hypoellipticity in the hyperfunction sense

Theorem (Schapira, 1969, cf. also Kawai)

Let P(D) be a constant coefficients LPDO in \mathbb{R}^N . If the following property holds, for every $\Omega \subset \mathbb{R}^N$ open:

$$u \in B(\Omega), \ P(D)u \in C^{\infty}(\Omega) \Longrightarrow u \in \mathcal{D}'(\Omega)$$

then P(D) is elliptic.

Theorem

P(x, D): analytic LPDO in $\Omega \subset \mathbb{R}^N$. P(x, D) is said to be \mathfrak{H} -hypoelliptic in Ω if, given any $U \subset \Omega$ open, and any $u \in B(U)$ then $P(x, D)u \in C^{\infty}(U)$ implies $u \in C^{\infty}(U)$.

Hypoellipticity in the hyperfunction sense

Example. P(D) is \mathfrak{H} -hypoelliptic if and only if it is elliptic. More precisely, if P(D) is hypoelliptic but not elliptic and if

$$s_0 = \min\{s : P(D) \text{ is } G^s\text{-hypoelliptic}\}$$

then $\forall U \subset \mathbb{R}^N$ open and for every $1 < s < s_0 \ \exists u \in \mathcal{D}^{(s)'}(U) \setminus \mathcal{D}'(U)$: P(D)u = 0 (C-Hanges, 2009).

Natural question (proposed by J.M.Bony)

$$P(x, D)$$
 analytic LPDO in $\Omega \subset \mathbb{R}^N$

$$P(x, D)$$
 (ahe) $\stackrel{?}{\Longrightarrow} {}^t P(x, D)$ \mathfrak{H} -hypoelliptic

An abstract result

Theorem (C-Hanges, 2009)

P(x,D) analytic LPDO in $\Omega \subset \mathbb{R}^N$. If P(x,D) is (ahe) and L^2 -solvable on any $U \subset\subset \Omega$ open then the following holds, for any $U \subset\subset \Omega$ open

$$u \in B(U), \quad {}^tP(x,D)u \in L^2(U) \implies u \in L^2(U).$$

Corollary

Let P be a sum of squares operator satisfying Hörmander's condition. If P is (ahe) then P^* is \mathfrak{H} -hypoelliptic.

Okaji's example

$$P = \left(\partial_t + it^k \,\partial_x\right)^2 + c \,\partial_x$$

$$k \text{ even, } c \in \mathbb{C}, \ c \neq 0.$$

Theorem (Okaji, 1988)

P is (ahe) near the origin and ${}^{t}P$ is not solvable in any neighborhood of the origin. In particular P is not (he) in any neighborhood of the origin.

C.-Trépreau (1998):

$$P \text{ (ahe)} \implies {}^tP: B_0 \to B_0 \text{ surjective.}$$

Thus $\exists f \in C_0^{\infty}$:

$$\exists u \in \mathcal{D}'_0 : {}^t Pu = f$$

$$\exists v \in B_0: \ ^tPv = f.$$

Hence tP is not \mathfrak{H} -hypoelliptic near 0.

Classical methods for disproving (ahe)

P(x, D) analytic LPDO in Ω .

• If P(x, D) is (ahe) then given $x_0 \in \Omega$ there is C > 0 such that for every solution of P(x, D)f = 0 on Ω it holds that

$$|(\partial^{\alpha} f)(x_0)| \leq C^{|\alpha|+1} \alpha! \left(\sup_{\Omega} |f|\right).$$

- In general it is only possible to construct asymptotic solutions to $P(x,D)f_{\lambda}\sim 0$.
- This requires non homogeneous a priori inequalities. (cf. Metivier, 1980)

A new method (C-Hanges, 2012)

$$P(x, D_x)$$
 analytic LPDO in Ω $P(z, D_z)$ defined in $\Omega_{ullet} \subset \mathbb{C}^N$, $\Omega_{ullet} \cap \mathbb{R}^N = \Omega$ $U \subset\subset \Omega$, $\Gamma \subset \mathbb{R}^N \setminus 0$ open, convex cone, $\delta > 0$ $\mathcal{W}_{\delta}(U, \Gamma) = \{x + iy : x \in U, y \in \Gamma, |y| < \delta\} \subset \Omega_{ullet}$

Theorem

Assume that, for some s>1, $u\in \mathcal{D}^{(s)\prime}(U)$, $P(x,D)u\in C^{\infty}(U)\Rightarrow u\in C^{\infty}(U)$. Given $K_0\subset\subset U$ there are compact sets $K\subset\mathcal{W}_{\delta}(U;\Gamma)\cup (U+i\{0\})$, $K'\subset U$, $M\in\mathbb{Z}_+$ and C>0 such that

$$\sup_{K_0} |F| \le C \left(\sup_{\mathcal{W}_{\delta}(U;\Gamma) \cap K} |F(x+iy)| e^{-1/|y|^{1/(s-1)}} + \right.$$
$$+ \| P(x,D_x)F\|_{C^M(K')} \right), \qquad F \in \mathcal{O}(\Omega_{\bullet}).$$

A perturbation of the Baouendi-Goulaouici operator

$$P=P^*=\partial_{x_1}^2+\partial_{x_2}^2+x_1^2g(x_2)^2\partial_{x_3}^2.$$
 $g\in\mathcal{O}(D(r_0)), \ \mathrm{real \ on \ }]-r_0,r_0[, \ \ g(0)=1$ _ o _

$$F_{\lambda}(z) = e^{i\lambda z_3} f_{\lambda}(\lambda^{1/2} z_1, z_2), \quad \lambda \geq 1,$$

with $f_{\lambda} = f_{\lambda}(\zeta, z_2)$ holomorphic. Then

$$PF_{\lambda}(z) = e^{i\lambda z_3} (Q_{\lambda} f_{\lambda}) (\lambda^{1/2} z_1, z_2),$$
$$Q_{\lambda} = \partial_{z_2}^2 - \lambda \left\{ \zeta^2 g(z_2)^2 - \partial_{\zeta}^2 \right\}$$

We interpret the equation $Q_{\lambda}f_{\lambda}\sim 0$ as a second order ODE in $z_2\in D(r_0)$ valued in a convenient scale of Banach spaces of entire functions in the variable ζ (Ovcyannikov method).

For each $\beta > 1/2$ we can prove the existence of $f_{\lambda}(\zeta, z_2) \in \mathcal{O}(\mathbb{C} \times D(r_0))$:

- $f_{\lambda}(0,0)=1$;
- There are a > 0, C > 0 such that

$$|f_{\lambda}(\zeta,z_2)| \leq C e^{a(|\Im \zeta|^2 + \lambda^{\beta})}, \ (\zeta,z_2) \in \mathbb{C} \times D(r_0).$$

• $\forall M \in \mathbb{Z}_{+}$.

$$\lambda^{M} \sum_{p+q \leq M} \sup_{\mathbb{R} \times]-r_{0},r_{0}[} |(\partial_{\xi}^{p} \partial_{x}^{q} Q_{\lambda} f_{\lambda})(\xi,x)| \stackrel{\lambda \to \infty}{\longrightarrow} 0$$

With $\Gamma \subset \mathbb{R}^3 \setminus 0$ to be chosen, applying our a priori estimate with $K = \{0\}$ and $\delta < 1$ gives

$$c \leq \sup_{y \in \Gamma, \, |y_1| \leq 1, |z_2| < r_0} |e^{i\lambda z_3} f_{\lambda}(\sqrt{\lambda} z_1, z_2)|e^{-1/|y|^{1/(s-1)}} + R(\lambda)$$

where c > 0 and $R(\lambda) \to 0$ when $\lambda \to \infty$.

$$c \leq \sup_{y \in \Gamma, |y_1| \leq 1, |z_2| \leq r_0} |e^{i\lambda z_3} f_{\lambda}(\sqrt{\lambda} z_1, z_2)|e^{-1/|y|^{1/(s-1)}} + R(\lambda)$$

$$\leq \sup_{y \in \Gamma} \left\{ e^{-\lambda(y_3 - a|y_1|) + a\lambda^{\beta} - |y|^{-1/(s-1)}} \right\} + R(\lambda).$$

Take $\Gamma \subset \{y_3 > a | y_1 |\}$ and 1 < s < 2. Let $\beta > 1/2$ with $s < 1/\beta$. If $\beta(s-1) < \theta < 1-\beta$ we estimate the exponent as

- If $y \in \Gamma$ and $|y| \le \lambda^{-\theta}$ then $|y|^{-1/(s-1)} \ge \lambda^{\theta/(s-1)}$ and the exponent is $< -\lambda^{\theta/(s-1)} + a\lambda^{\beta}$
- $\exists \epsilon > 0$ such that $y_3 a|y_1| \ge \epsilon |y|$ on Γ . Hence if $y \in \Gamma$ and $|y| > \lambda^{-\theta}$ then $(y_3 - a|y_1|) > \epsilon \lambda^{-\theta}$ and the exponent is now $< -\epsilon \lambda^{1-\theta} + a\lambda^{\beta}$.

Hence P is not (ahe) and for each 1 < s < 2 there exists $u \in \mathcal{D}^{(s)'}(U) \setminus \mathcal{D}'(U)$ such that $Pu \in C^{\infty}(U)$.