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Background: Fine’s Theorem

In the early 1970s, every normal modal logic L known was either

• determined by an elementary class of Kripke frames and

canonical, i.e., L is valid in the ultrafilter frame of the

Lindanbaum-Tarski algebra of L, or

• not determined by any elementary class of Kripke frames and

not canonical.

Fine gave an explanation to this empirical fact:

Theorem (Fine)

Suppose a normal modal logic L is determined by an elementary

class of Kripke frames. Then L is canonical.
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Background: Monotonic Modal Logics

Our goal is to extend Fine’s theorem for monotonic modal logics,

which generalize normal modal logics by dropping the K axiom

�(p → q)→ (�p → �q)

and instead requiring only that

` φ→ ψ =⇒ ` �φ→ �ψ.

Monotonic modal logics arise in the following:

Game theory �φ means “agents can force φ to be true”.

Probability theory �φ means “the probability of φ holding is

greater than p” for some p ∈ [0, 1].

In our result, a logic called coalgebraic predicate logic proposed by

Chang (1973) plays the rôle of first-order logic.
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Frames for Monotonic Modal Logics

Definition

A monotonic neighborhood frame is a pair (F ,NF ) of a set F and

a neighborhood function NF : F →P(P(F )) s.t. for every w ∈ F

the family NF (w) is closed under supersets. A member of NF (w)

is a neighborhood of w .

For a monotonic neighborhood model M = (F ,NF ,P0,P1, . . . )

and w ∈ F :

M,w nbhd �φ ⇐⇒ {w ∈ M | w nbhd φ} ∈ NF (w).
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A First-Order-Like Language for Nbhd Frames: CPL

Coalgebraic predicate logic (CPL) is a logic for nbhd frames.

• CPL admits compactness, the downward and upward

Löwenheim-Skolem theorems, and the omitting type theorem.

• There is an embedding ST from modal logic into CPL s.t. for

a nbhd model M and w ∈ M:

M,w nbhd φ ⇐⇒ (M,w) |= ST(φ).

• The image of ST can be characterized à la van Benthem

(Litak, Pattinson, and Schröder).
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Syntax of CPL

Definition (Chang; Litak et al.)

The language L of coalgebraic predicate logic based on a language

L0 of f.-o. logic has atomic formulas of L0 and is closed under

• Boolean combinations,

• existential quantification, and

• formation of formulas of the form

x �y φ. (φ ∈ L, x is a term, and y is a variable)

We define

F |= w �y φ(y) ⇐⇒ {v ∈ F | F |= φ(v)} ∈ NF (w).

The language L= of nbhd frames is based on ∅. The language of

nbhd models is based on {P0,P1, . . . }.
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A Topological Example: Topological Neighborhood Frames

For a topological space X = (X , τ), we associate a monotonic

neighborhood frame X ∗ = (X ,N) defined by

U ∈ N(w) ⇐⇒ w ∈ U◦.

(X ∗ is a topological neighborhood frame.)

Note the relationship between this setting and topological

semantics:

(X ,P0,P1, . . . ),w top φ ⇐⇒ (X ∗,P0,P1, . . . ),w nbhd φ.
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A Topological Example: What Can One Say in CPL?

The specialization preorder of X is the preorder . on X defined by

x . y ⇐⇒ x ∈ {y}. It is “definable” in L=:

x . y ⇐⇒ x 6∈ (−{y})◦

⇐⇒ X ∗ |= ¬(x �z z 6= y).

Hence, there is an L=-sentence φ s.t. for topological spaces X

X ∗ |= φ ⇐⇒ X is T0

i.e., the ∗-image of the class of T0 spaces is CPL-elementary

relative to the class of topological neighborhood frames. The same

goes for T1 spaces.
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Modal-Logical Examples

For a modal formula α of the form

〈purely propositional positive formula〉 → 〈positive formula〉 (1)

there exists an L=-sentence φ (a correspondent of α) s.t. for

monotonic neighborhood frames F

F  α ⇐⇒ F |= φ.

(One uses the “minimum valuation argument.”)

It follows from Hansen’s result that such an α axiomatizes a

complete monotonic modal logic.
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BAMs

Definition

A monotonic Boolean algebra expansion (BAM) (B,�) is a

Boolean algebra B expanded with an operation � : B → B that is

monotonic, i.e., for x , y ∈ B, �x ≤ �y whenever x ≤ y .

Definition

The underlying BAM F+ of a monotonic neighborhood frame F is

the BAM (P(F ),�F ), where

�F (X ) = {w ∈ F | X ∈ NF (w)}
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Canonicity

Definition

The ultrafilter frame Uf(A) of A is a frame (Uf(A),Nσ) where

U ∈ Nσ(u) ⇐⇒ ∃X ⊆ U ∀a ∈ A([a] ⊇ X ⇒ �(a) ∈ u),

where Uf(A) is the set of ultrafilters of the Boolean reduct A|Bool
of A, u ∈ Uf(A), and X ranges over closed subsets of the Stone

space of A|Bool.

This is in line with the definition of lower canonical extensions of

BAMs.

Definition

A monotonic modal logic is canonical if it is valid in the ultrafilter

frame of the Lindenbaum-Tarski algebra of L.
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Result

Theorem

Suppose a monotonic modal logic L is determined by a class of

CPL-elementary relative to the classes of monotonic neighborhood

frames. Then L is canonical.

There are several other classes relative to which K can be

CPL-elementary for the result to still obtain (e.g., the class of

topological neighborhood frames).
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A Consequence

Reconsider an arbitrary modal formula α of the form

〈purely propositional positive formula〉 → 〈positive formula〉 (1)

and a correspondent φ of α:

K := {F | F nbhd α} = {F | F |= φ}.

Recall that the monotonic modal logic L axiomatized by α is

determined by K (completeness of L).

By the Theorem, such a logic is canonical.
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Proof of the Theorem

We use the following lemma, an analogue of what van Benthem

used to Fine’s theorem:

Lemma

For a monotonic neighborhood frame F , there exists another G s.t.

• F and G satisfies the same L= sentences and

• there is a surjective bounded morphism G � Uf(F+), i.e., for

each w ∈ G :

f −1(U ′) ∈ NG (w) =⇒ U ′ ∈ Nσ(f (w)) (“forth”)

U ′ ∈ Nσ(f (w)) =⇒ f −1(U ′) ∈ NG (w). (“back”)

One can impose more closure conditions on F and G ; e.g., if F is a

topological neighborhood frame, so is G .
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Proof of the Lemma

We basically follow van Benthem’s model-theoretic proof.

Proof.

1. Expand F by a predicate for each subset of F .

2. Obtain G by “ℵ0-saturating” F .

3. G may not even be a monotonic nbhd frame. So tweak G :

(i) Remove indefinable neighborhoods from G .

(ii) Close off each NG (w) by intersections of a certain kind.

(iii) Close off each NG (w) upward.

4. F and G will still satisfy the same L=-sentences.

5. Show that the surjective function that assigns to each w ∈ G

the “type” realized by w is a bounded morphism.
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Open Questions

• Are there more expressive first-order-like languages than CPL

that admit similar results?

• Are there other classes of monotonic neighborhood frames

relative to which similar results hold? Can we characterize

such classes?
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