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Introduction and history: semantics

Semantics for modal logic

Topological semantics

A. Tarski (1938)

J. C. C. McKinsey and A. Tarski (1944)

Kripke semantics

S. Kripke (1963)

Neighborhood semantics

D. Scott (1970)

R. Montague (1970)
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Introduction and history: products

Product of Kripke frames

V.Shehtman (1978) [in russian]

D. Gabbay and V. Shehtman (1998)

Product of topological spaces.

J. van Benthem et al. (2006)

Product of neighborhood frames.

K. Sano (2011)

For logics L1 and L2 we de�ne

L1 × L2 is the logic of products of L1- and L2- Kripke frames.

L1 ×t L2 is the logic of products of L1- and L2- topological spaces.

L1 ×n L2 is the logic of products of L1- and L2- neighbourhood frames.
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The product of topological spaces

(van Benthem et al, 2006)
For two topological space X1 = (X1, T1) and X2 = (X2, T2)

X1 × X2 = (X1 ×X2, T
∗
1 , T

∗
2 ), where T ∗1 has base {U1 × {x2} |U1 ∈ T1 & x2 ∈ X2}

T ∗2 has base {{x1} × U2 |x1 ∈ X1 & U2 ∈ T2}
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The product of topological spaces

(van Benthem et al, 2006)
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Neighborhood frames

A (normal) neighborhood frame (or an n-frame) is a pair X = (X, τ), where

X 6= ∅;

τ : X → 22X

τ � neighborhood function of X,
τ(x) � a family of neighborhoods of x.

Filter on X: nonempty F ⊆ 2X such that
1) U ∈ F & U ⊆ V ⇒ V ∈ F
2) U, V ∈ F ⇒ U ∩ V ∈ F (�lter base)

The neighborhood model (n-model) is a pair (X, V ), where X = (X, τ) is a
n-frame and V : PV → 2X is a valuation.
Similar: neighborhood k-frame (n-k-frame) is (X, τ1, . . . τk) such that τi is a
neighborhood function on X for each i.
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Product of neighborhood frames

De�nition

Let X1 = (X1, τ1) and X2 = (X2, τ2) be two n-frames. Then the product of
these n-frames is an n-frame de�ned as follows

X1 ×X2 = (X1 ×X2, τ
′
1, τ
′
2),

τ ′1(x1, x2) = {U ⊆ X1 ×X2| ∃V (V ∈ τ1(x1) & V × {x2} ⊆ U)} ,
τ ′2(x1, x2) = {U ⊆ X1 ×X2| ∃V (V ∈ τ2(x2) & {x1} × V ⊆ U)},
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Fusion of logics

De�nition

Let L1 and L2 be two modal logics with one modality 2 then the fusion of
these logics is

L1 ⊗ L2 = K2 + L1(2→21) + L2(2→22);

where Li(2→2i) is the set of all formulas from Li where all 2 replaced by 2i.
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Logics

K is the minimal logic.
We will use the following logics:
T = K + 2p→ p,
D = K + 2p→ 3p,
D4 = D + 2p→ 22p,
S4 = T + 2p→ 22p.
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Known products of logics

Theorem (Shehtman and Gabbay, 1998)

If L1, L2 are Horn logics then

L1 × L2 = L1 ⊗ L2 + 2122p↔ 2221p+♦122p→ 22♦1p.

Theorem (van Benthem, 2006)

S4×t S4 = S4⊗ S4.

Theorem (Kudinov, 2012)

Let L1, L2 ∈ {D4,D,T,S4}, then

L1 ×n L2 = L1 ⊗ L2.
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Epistemic logic

2iφ is reading as �agent i knows φ�.
The logic for one agent is usually S5, but can be others: S4,D4,K,T, . . ..
If the logic for each agent is S4 then the logic of two agents is the fusion
S4⊗ S4.
And S4×t S4 = S4⊗ S4.
An open neighborhood of a possible world x is all the worlds that
indistinguishable from x with certain information.
With two agents we have two sets of information for each agent.
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Adding the standard product topology

In topology there is a di�erent product of topologies.

De�nition

Let X1 = (X1, T1) and X2 = (X2, T2) we de�ne the plus-product:

X1 ×+ X2 = (X1 ×X2, T
′
1, T

′
2, T ),

where {U1 × U2 |U1 ∈ T1, U2 ∈ T2} is the base for T .
For two unimodal logics L1 and L2 we de�ne t-plus-product of them as

L1 ×+
t L2 = L(X1 ×+ X2 | X1 |= L1 & X2 |= L2).
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Products with additional modality

De�nition

Let X1 = (X1, τ1) and X2 = (X2, τ2) be two n-frames. Then the product of
these n-frames with additional modality is an n-3-frame de�ned as follows

X1 ×+ X2 = (X1 ×X2, τ
′
1, τ
′
2, τ),

τ ′1(x1, x2) = {U ⊆ X1 ×X2| ∃V (V ∈ τ1(x1) & V × {x2} ⊆ U)} ,
τ ′2(x1, x2) = {U ⊆ X1 ×X2| ∃V (V ∈ τ2(x2) & {x1} × V ⊆ U)},
τ(x1, x2) = {U |∃V1 ∈ τ1(x) & ∃V2 ∈ τ2(y)(V1 × V2 ⊆ U)}.

For two unimodal logics L1 and L2 we de�ne n-plus-product of them as

L1 ×+
n L2 = L(X1 ×+ X2 | X1 |= L1 & X2 |= L2).
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Adding the standard-product-topology-like modal operator

De�nition

LS4 = S4⊗ S4⊗ S4 + 2p→ 21p ∧ 22p;

LD4 = D4⊗D4⊗D4 + 2p→ 21p ∧ 22p;

LD = D⊗D⊗D + 2p→ 21p ∧ 22p;

LT = T⊗ T⊗ T + 2p→ 21p ∧ 22p.

Theorem (Benthem, J., G. Bezhanishvili, B. Cate and D. Sarenac, 2006)

Log(Q×+ Q) = LS4 = S4×+
t S4

Theorem (Kudinov A., 2013)

Logd(Q×+ Q) = LD4 = D4×+
n D4
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Back to epistemic logic

This additional modality is similar to common knowledge (or belief) operator.
It contains all the agents' knowledges, and it is transitive (in case of S4 and
D4).
In case of logics T and D we should consider the following logics:

L4D = D⊗D⊗D4 + 2p→ 21p ∧ 22p;

L4T = T⊗ T⊗ S4 + 2p→ 21p ∧ 22p.

The corresponding completeness theorems can be proved using similar methods.
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3 and more agents

Another way to generalize the results of [van Benthem et al., 2006] is to
consider 3 and more agents:
If we have 3 agents (21,22 and 23) then there can be 4 additional modalities:
21,2,22,3,21,3,21,2,3.

We also can consider more then 3 agents.

The corresponding completeness theorems also can be proved by same
methods.
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Conclusion

We can try and extend the technique to non-serial logics such as K,K4 and so
on.
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THANK YOU!
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Tω,ω,ω

T2,2, T2,2,6 (Benthem, J., G. Bezhanishvili, B. Cate and D. Sarenac, 2006).
Tω,ω,ω
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Tω,ω,ω

Lemma

LD is complete with respect to Tω,ω,ω.
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Bounded morphism

De�nition

Let X = (X, τ1, . . . ) and Y = (Y, σ1, . . . ) be n-frames. Then function
f : X → Y is a bounded morphism if
1. f is surjective;
2. For any x ∈ X and U ∈ τi(x) we have f(U) ∈ σi(f(x));
3. For any x ∈ X and V ∈ σi(f(x)) there exists U ∈ τi(x), such that
f(U) ⊆ V .
In notation f : X � Y.

Lemma

If f : X � Y then L(X ) ⊆ L(Y), where f is a bound morphism.
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Pseudo-in�nite paths

De�nition

For a nonempty set A, such that 0 /∈ A we de�ne fF : XA → A? which
"forgets" all zeros, where A? is the set of all �nite sequences of elements from
A, including the empty sequence Λ and

XA = {a1, a2 . . . | ai ∈ A ∪ {0} & ∃N ∀k ≥ N(ak = 0)}.
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Pseudo-in�nite paths

For α ∈ XA such that α = a1a2 . . . we de�ne

st(α) = min{N | ∀k > N(ak = 0)};
α|k = a1 . . . ak;

Uk(α) = {β | α|m = β|m & fF (α)RfF (β), m = max(k, st(α))},

where aRb⇔ ∃c ∈ A (b = a · c).
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Results

Theorem

There is a function f , such that f : Nω(D)×+ Nω(D) � Tω,ω,ω.

Corollary

D ×+
n D = LD.
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