Product of neighborhood frames with additional modality

Rajab Aghamov ${ }^{1}$ Andrey Kudinov ${ }^{1} 23$
${ }^{1}$ Higher School of Economics
${ }^{2}$ Institute for Information Transmission Problems
${ }^{3}$ Moscow Institute of Physics and Technology

June 17, 2019

Introduction and history: semantics

Semantics for modal logic

Topological semantics

- A. Tarski (1938)
- J. C. C. McKinsey and A. Tarski (1944)

Kripke semantics
■ S. Kripke (1963)
Neighborhood semantics

- D. Scott (1970)
- R. Montague (1970)

Introduction and history: products

Product of Kripke frames

■ V.Shehtman (1978) [in russian]
■ D. Gabbay and V. Shehtman (1998)
Product of topological spaces.

- J. van Benthem et al. (2006)

Product of neighborhood frames.

- K. Sano (2011)

For logics L_{1} and L_{2} we define

- $L_{1} \times L_{2}$ is the logic of products of L_{1} - and L_{2} - Kripke frames.
- $L_{1} \times_{t} L_{2}$ is the logic of products of $L_{1^{-}}$and $L_{2^{-}}$topological spaces.
- $L_{1} \times_{n} L_{2}$ is the logic of products of $L_{1^{-}}$and $L_{2^{-}}$neighbourhood frames.

Introduction and history: products

Product of Kripke frames

■ V.Shehtman (1978) [in russian]

- D. Gabbay and V. Shehtman (1998)

Product of topological spaces.

- J. van Benthem et al. (2006)

Product of neighborhood frames.

- K. Sano (2011)

For logics L_{1} and L_{2} we define
■ $L_{1} \times L_{2}$ is the logic of products of L_{1} - and $L_{2^{-}}$Kripke frames.

- $L_{1} \times_{t} L_{2}$ is the logic of products of L_{1} - and $L_{2^{-}}$topological spaces.
- $L_{1} \times n L_{2}$ is the logic of products of $L_{1^{-}}$and $L_{2^{-}}$neighbourhood frames.

Introduction and history: products

Product of Kripke frames

■ V.Shehtman (1978) [in russian]
■ D. Gabbay and V. Shehtman (1998)

Product of topological spaces.

- J. van Benthem et al. (2006)

Product of neighborhood frames.

- K. Sano (2011)

For logics L_{1} and L_{2} we define

- $L_{1} \times L_{2}$ is the logic of products of L_{1} - and $L_{2^{-}}$Kripke frames.
- $L_{1} \times_{t} L_{2}$ is the logic of products of L_{1} - and $L_{2^{-}}$topological spaces.
- $L_{1} \times{ }_{n} L_{2}$ is the logic of products of $L_{1^{-}}$and $L_{2^{-}}$neighbourhood frames.

The product of topological spaces

(van Benthem et al, 2006)
For two topological space $\mathfrak{X}_{1}=\left(X_{1}, T_{1}\right)$ and $\mathfrak{X}_{2}=\left(X_{2}, T_{2}\right)$
$\mathfrak{X}_{1} \times \mathfrak{X}_{2}=\left(X_{1} \times X_{2}, T_{1}^{*}, T_{2}^{*}\right)$, where T_{1}^{*} has base $\left\{U_{1} \times\left\{x_{2}\right\} \mid U_{1} \in T_{1} \& x_{2} \in X_{2}\right\}$ T_{2}^{*} has base $\left\{\left\{x_{1}\right\} \times U_{2} \mid x_{1} \in X_{1} \& U_{2} \in T_{2}\right\}$

The product of topological spaces

(van Benthem et al, 2006)
For two topological space $\mathfrak{X}_{1}=\left(X_{1}, T_{1}\right)$ and $\mathfrak{X}_{2}=\left(X_{2}, T_{2}\right)$
$\mathfrak{X}_{1} \times \mathfrak{X}_{2}=\left(X_{1} \times X_{2}, T_{1}^{*}, T_{2}^{*}\right)$, where T_{1}^{*} has base $\left\{U_{1} \times\left\{x_{2}\right\} \mid U_{1} \in T_{1} \& x_{2} \in X_{2}\right\}$ T_{2}^{*} has base $\left\{\left\{x_{1}\right\} \times U_{2} \mid x_{1} \in X_{1} \& U_{2} \in T_{2}\right\}$

Neighborhood frames

A (normal) neighborhood frame (or an n-frame) is a pair $\mathfrak{X}=(X, \tau)$, where

- $X \neq \varnothing$;
- $\tau: X \rightarrow 2^{2^{X}}$
τ - neighborhood function of \mathfrak{X},
$\tau(x)$ — a family of neighborhoods of x.
Filter on X : nonempty $\mathcal{F} \subseteq 2^{X}$ such that

1) $U \in \mathcal{F} \& U \subseteq V \Rightarrow V \in \mathcal{F}$
2) $U, V \in \mathcal{F} \Rightarrow U \cap V \in \mathcal{F}$ (filter base)
The neighborhood model (n-model) is a pair (\mathfrak{X}, V), where $\mathfrak{X}=(X, \tau)$ is a
n -frame and $V: P V \rightarrow 2^{X}$ is a valuation.
Similar: neighborhood k-frame ($n-k$ - frame) is ($\mathrm{X}, \tau_{1}, \ldots, \tau_{k}$) such that τ_{i} is a neighborhood function on X for each i.

Neighborhood frames

A (normal) neighborhood frame (or an n-frame) is a pair $\mathfrak{X}=(X, \tau)$, where - $X \neq \varnothing$;

- $\tau: X \rightarrow 2^{2^{X}}$, such that $\tau(x)$ is a filter on X;
τ — neighborhood function of \mathfrak{X},
$\tau(x)$ - a family of neighborhoods of x.
Filter on X : nonempty $\mathcal{F} \subseteq 2^{X}$ such that

1) $U \in \mathcal{F} \& U \subseteq V \Rightarrow V \in \mathcal{F}$
2) $U, V \in \mathcal{F} \Rightarrow U \cap V \in \mathcal{F}$ (filter base)

The neighborhood model (n-model) is a pair (\mathfrak{X}, V), where $\mathfrak{X}=(X, \tau)$ is a
n -frame and
Similar: neighborhood k-frame (n-k-frame) is $\left(X, \tau_{1}, \ldots \tau_{k}\right)$ such that τ_{i} is a neighborhood function on X for each i.

Neighborhood frames

A (normal) neighborhood frame (or an n-frame) is a pair $\mathfrak{X}=(X, \tau)$, where - $X \neq \varnothing$;

- $\tau: X \rightarrow 2^{2^{X}}$, such that $\tau(x)$ is a filter on X;
τ — neighborhood function of \mathfrak{X},
$\tau(x)$ - a family of neighborhoods of x.
Filter on X : nonempty $\mathcal{F} \subseteq 2^{X}$ such that

1) $U \in \mathcal{F} \& U \subseteq V \Rightarrow V \in \mathcal{F}$
2) $U, V \in \mathcal{F} \Rightarrow U \cap V \in \mathcal{F}$ (filter base)

The neighborhood model (n-model) is a pair (\mathfrak{X}, V), where $\mathfrak{X}=(X, \tau)$ is a n-frame and $V: P V \rightarrow 2^{X}$ is a valuation.
Similar: neighborhood k -frame (n - k -frame) is $\left(X, \tau_{1}, \ldots \tau_{k}\right)$ such that τ_{i} is a neighborhood function on X for each i.

Product of neighborhood frames

Definition

Let $\mathcal{X}_{1}=\left(X_{1}, \tau_{1}\right)$ and $\mathcal{X}_{2}=\left(X_{2}, \tau_{2}\right)$ be two n －frames．Then the product of these n－frames is an n－frame defined as follows

$$
\begin{gathered}
\mathcal{X}_{1} \times \mathcal{X}_{2}=\left(X_{1} \times X_{2}, \tau_{1}^{\prime}, \tau_{2}^{\prime}\right) \\
\tau_{1}^{\prime}\left(x_{1}, x_{2}\right)=\left\{U \subseteq X_{1} \times X_{2} \mid \exists V\left(V \in \tau_{1}\left(x_{1}\right) \& V \times\left\{x_{2}\right\} \subseteq U\right)\right\} \\
\tau_{2}^{\prime}\left(x_{1}, x_{2}\right)=\left\{U \subseteq X_{1} \times X_{2} \mid \exists V\left(V \in \tau_{2}\left(x_{2}\right) \&\left\{x_{1}\right\} \times V \subseteq U\right)\right\}
\end{gathered}
$$

Fusion of logics

Definition

Let L_{1} and L_{2} be two modal logics with one modality \square then the fusion of these logics is

$$
L_{1} \otimes L_{2}=K_{2}+L_{1\left(\square \rightarrow \square_{1}\right)}+L_{2\left(\square \rightarrow \square_{2}\right)} ;
$$

where $L_{i\left(\square \rightarrow \square_{i}\right)}$ is the set of all formulas from L_{i} where all \square replaced by \square_{i}.

Logics

K is the minimal logic.
We will use the following logics:
$\mathbf{T}=\mathbf{K}+\square p \rightarrow p$,
$\mathbf{D}=\mathbf{K}+\square p \rightarrow \diamond p$,
$\mathbf{D} 4=\mathbf{D}+\square p \rightarrow \square \square p$,
$\mathbf{S 4}=\mathbf{T}+\square p \rightarrow \square \square p$.

Known products of logics

Theorem (Shehtman and Gabbay, 1998)
If L_{1}, L_{2} are Horn logics then

$$
L_{1} \times L_{2}=L_{1} \otimes L_{2}+\square_{1} \square_{2} p \leftrightarrow \square_{2} \square_{1} p+\diamond_{1} \square_{2} p \rightarrow \square_{2} \diamond_{1} p .
$$

Theorem (van Benthem, 2006)
$S 4 \times{ }_{t} S 4=S 4 \otimes S 4$.
Theorem (Kudinov, 2012)
Let $L_{1}, L_{2} \in\{$ D4, D, T, S4\}, then

$$
L_{1} \times_{n} L_{2}=L_{1} \otimes L_{2} .
$$

Epistemic logic

$\square_{i} \phi$ is reading as "agent i knows ϕ ".
The logic for one agent is usually S5, but can be others: S4, D4, K, T, ... If the logic for each agent is $\mathbf{S 4}$ then the logic of two agents is the fusion $\mathbf{S 4} \otimes$ S4 .
And S4 $\times{ }_{t} \mathrm{~S} 4=\mathrm{S} 4 \otimes \mathrm{~S} 4$.
An open neighborhood of a possible world x is all the worlds that
indistinguishable from x with certain information.
With two agents we have two sets of information for each agent.

Epistemic logic

$\square_{i} \phi$ is reading as "agent i knows ϕ ".
The logic for one agent is usually S5, but can be others: S4, D4, K, T, If the logic for each agent is $\mathbf{S 4}$ then the logic of two agents is the fusion $\mathbf{S 4} \otimes \mathbf{S 4}$.
And S4 $\times_{t} \mathbf{S 4}=\mathbf{S 4} \otimes \mathbf{S 4}$.
An open neighborhood of a possible world x is all the worlds that indistinguishable from x with certain information.
With two agents we have two sets of information for each agent.

Adding the standard product topology

In topology there is a different product of topologies.

Definition

Let $\mathfrak{X}_{1}=\left(X_{1}, T_{1}\right)$ and $\mathfrak{X}_{2}=\left(X_{2}, T_{2}\right)$ we define the plus-product:

$$
\mathfrak{X}_{1} \times^{+} \mathfrak{X}_{2}=\left(X_{1} \times X_{2}, T_{1}^{\prime}, T_{2}^{\prime}, T\right),
$$

where $\left\{U_{1} \times U_{2} \mid U_{1} \in T_{1}, U_{2} \in T_{2}\right\}$ is the base for T.
For two unimodal logics L_{1} and L_{2} we define t-plus-product of them as

$$
L_{1} \times_{t}^{+} L_{2}=L\left(\mathfrak{X}_{1} \times^{+} \mathfrak{X}_{2} \mid \mathfrak{X}_{1} \models L_{1} \& \mathfrak{X}_{2} \models L_{2}\right) .
$$

Products with additional modality

Definition

Let $\mathcal{X}_{1}=\left(X_{1}, \tau_{1}\right)$ and $\mathcal{X}_{2}=\left(X_{2}, \tau_{2}\right)$ be two n -frames. Then the product of these n -frames with additional modality is an n -3-frame defined as follows

$$
\begin{gathered}
\mathcal{X}_{1} \times^{+} \mathcal{X}_{2}=\left(X_{1} \times X_{2}, \tau_{1}^{\prime}, \tau_{2}^{\prime}, \tau\right), \\
\tau_{1}^{\prime}\left(x_{1}, x_{2}\right)=\left\{U \subseteq X_{1} \times X_{2} \mid \exists V\left(V \in \tau_{1}\left(x_{1}\right) \& V \times\left\{x_{2}\right\} \subseteq U\right)\right\} \\
\tau_{2}^{\prime}\left(x_{1}, x_{2}\right)=\left\{U \subseteq X_{1} \times X_{2} \mid \exists V\left(V \in \tau_{2}\left(x_{2}\right) \&\left\{x_{1}\right\} \times V \subseteq U\right)\right\} \\
\tau\left(x_{1}, x_{2}\right)=\left\{U \mid \exists V_{1} \in \tau_{1}(x) \& \exists V_{2} \in \tau_{2}(y)\left(V_{1} \times V_{2} \subseteq U\right)\right\}
\end{gathered}
$$

For two unimodal logics L_{1} and L_{2} we define n-plus-product of them as

$$
L_{1} \times_{n}^{+} L_{2}=L\left(\mathfrak{X}_{1} \times^{+} \mathfrak{X}_{2} \mid \mathfrak{X}_{1} \models L_{1} \& \mathfrak{X}_{2} \models L_{2}\right) .
$$

Aghamov, Kudinov

Adding the standard-product-topology-like modal operator

Definition

$$
\begin{aligned}
\mathbf{L S 4} & =\mathbf{S 4} \otimes \mathbf{S 4} \otimes \mathbf{S 4}+\square p \rightarrow \square_{1} p \wedge \square_{2} p \\
\mathbf{L D} 4 & =\mathbf{D} 4 \otimes \mathbf{D} 4 \otimes \mathbf{D} 4+\square p \rightarrow \square_{1} p \wedge \square_{2} p \\
\mathbf{L D} & =\mathbf{D} \otimes \mathbf{D} \otimes \mathbf{D}+\square p \rightarrow \square_{1} p \wedge \square_{2} p \\
\mathbf{L T} & =\mathbf{T} \otimes \mathbf{T} \otimes \mathbf{T}+\square p \rightarrow \square_{1} p \wedge \square_{2} p
\end{aligned}
$$

Theorem (Benthem, J., G. Bezhanishvili, B. Cate and D. Sarenac, 2006)
$\log \left(\mathbb{Q} \times{ }^{+} \mathbb{Q}\right)=\boldsymbol{L S} 4=\mathbf{S 4} \times_{t}^{+} \mathbf{S 4}$
Theorem (Kudinov A., 2013)
$\operatorname{Lon}_{d}(\mathbb{D}) \times+(\mathbb{D})=\boldsymbol{I} \boldsymbol{D} \mathbf{4}=\boldsymbol{D} \mathbf{4} \times{ }^{+} D 4$

Adding the standard-product-topology-like modal operator

Definition

$$
\begin{aligned}
\mathbf{L S 4} & =\mathbf{S 4} \otimes \mathbf{S 4} \otimes \mathbf{S 4}+\square p \rightarrow \square_{1} p \wedge \square_{2} p \\
\mathbf{L D} 4 & =\mathbf{D} 4 \otimes \mathbf{D} 4 \otimes \mathbf{D} 4+\square p \rightarrow \square_{1} p \wedge \square_{2} p \\
\mathbf{L D} & =\mathbf{D} \otimes \mathbf{D} \otimes \mathbf{D}+\square p \rightarrow \square_{1} p \wedge \square_{2} p \\
\mathbf{L T} & =\mathbf{T} \otimes \mathbf{T} \otimes \mathbf{T}+\square p \rightarrow \square_{1} p \wedge \square_{2} p
\end{aligned}
$$

Theorem (Benthem, J., G. Bezhanishvili, B. Cate and D. Sarenac, 2006)
$\log \left(\mathbb{Q} \times{ }^{+} \mathbb{Q}\right)=\boldsymbol{L S} 4=\mathbf{S 4} \times_{t}^{+} \mathbf{S 4}$

Theorem (Kudinov A., 2013)
$\log _{d}\left(\mathbb{Q} \times{ }^{+} \mathbb{Q}\right)=\boldsymbol{L D} \mathbf{4}=\boldsymbol{D} \mathbf{4} \times{ }_{n}^{+} \mathbf{D 4}$

Adding the standard-product-topology-like modal operator

Definition

$$
\begin{aligned}
\mathbf{L S 4} & =\mathbf{S 4} \otimes \mathbf{S 4} \otimes \mathbf{S 4}+\square p \rightarrow \square_{1} p \wedge \square_{2} p \\
\mathbf{L D 4} & =\mathbf{D} 4 \otimes \mathbf{D 4} \otimes \mathbf{D} 4+\square p \rightarrow \square_{1} p \wedge \square_{2} p \\
\mathbf{L D} & =\mathbf{D} \otimes \mathbf{D} \otimes \mathbf{D}+\square p \rightarrow \square_{1} p \wedge \square_{2} p \\
\mathbf{L T} & =\mathbf{T} \otimes \mathbf{T} \otimes \mathbf{T}+\square p \rightarrow \square_{1} p \wedge \square_{2} p
\end{aligned}
$$

Theorem (Kudinov A., 2013)
$\log _{d}\left(\mathbb{Q} \times{ }^{+} \mathbb{Q}\right)=\boldsymbol{L D} \mathbf{4}=\boldsymbol{D} \mathbf{4} \times{ }_{n}^{+} \mathbf{D} \mathbf{4}$
Theorem
$\boldsymbol{L D}=\boldsymbol{D} \times{ }_{n}^{+} \boldsymbol{D}$
$\boldsymbol{L T}=\boldsymbol{T} \times{ }_{n}^{+} \boldsymbol{T}$

Aghamov, Kudinov
Product of neighborhood frames with additional modality

Back to epistemic logic

This additional modality is similar to common knowledge (or belief) operator. It contains all the agents' knowledges, and it is transitive (in case of S4 and D4).
In case of logics \mathbf{T} and \mathbf{D} we should consider the following logics:

$$
\begin{aligned}
\mathbf{L 4 D} & =\mathbf{D} \otimes \mathbf{D} \otimes \mathbf{D 4}+\square p \rightarrow \square_{1} p \wedge \square_{2} p \\
\mathbf{L 4 T} & =\mathbf{T} \otimes \mathbf{T} \otimes \mathbf{S 4}+\square p \rightarrow \square_{1} p \wedge \square_{2} p
\end{aligned}
$$

The corresponding completeness theorems can be proved using similar methods.

3 and more agents

Another way to generalize the results of [van Benthem et al., 2006] is to consider 3 and more agents:
If we have 3 agents (\square_{1}, \square_{2} and \square_{3}) then there can be 4 additional modalities: $\square_{1,2}, \square_{2,3}, \square_{1,3}, \square_{1,2,3}$.

We also can consider more then 3 agents.

The corresponding completeness theorems also can be proved by same methods.

3 and more agents

Another way to generalize the results of [van Benthem et al., 2006] is to consider 3 and more agents:
If we have 3 agents (\square_{1}, \square_{2} and \square_{3}) then there can be 4 additional modalities: $\square_{1,2}, \square_{2,3}, \square 1,3, \square_{1,2,3}$.

We also can consider more then 3 agents.
The corresponding completeness theorems also can be proved by same methods.

3 and more agents

Another way to generalize the results of [van Benthem et al., 2006] is to consider 3 and more agents:
If we have 3 agents (\square_{1}, \square_{2} and \square_{3}) then there can be 4 additional modalities:
$\square_{1,2}, \square_{2,3}, \square 1,3, \square_{1,2,3}$.
We also can consider more then 3 agents.
The corresponding completeness theorems also can be proved by same methods.

Conclusion

We can try and extend the technique to non-serial logics such as $K, K 4$ and so on.

THANK YOU!

Aghamov, Kudinov
Product of neighborhood frames with additional modality

$T_{2,2}, T_{2,2,6}$ (Benthem, J., G. Bezhanishvili, B. Cate and D. Sarenac, 2006). $T_{\omega, \omega, \omega}$

Lemma

$L D$ is complete with respect to $T_{\omega, \omega, \omega}$.

Aghamov, Kudinov
Product of neighborhood frames with additional modality

Bounded morphism

Definition

Let $\mathcal{X}=\left(X, \tau_{1}, \ldots\right)$ and $\mathcal{Y}=\left(Y, \sigma_{1}, \ldots\right)$ be n -frames. Then function $f: X \rightarrow Y$ is a bounded morphism if

1. f is surjective;

Lemma
If $f: \mathcal{X} \rightarrow \mathcal{Y}$ then $L(\mathcal{X}) \subseteq L(\mathcal{Y})$, where f is a bound morphism.

Bounded morphism

Definition

Let $\mathcal{X}=\left(X, \tau_{1}, \ldots\right)$ and $\mathcal{Y}=\left(Y, \sigma_{1}, \ldots\right)$ be n -frames. Then function $f: X \rightarrow Y$ is a bounded morphism if

1. f is surjective;
2. For any $x \in X$ and $U \in \tau_{i}(x)$ we have $f(U) \in \sigma_{i}(f(x))$;
3. For any $x \in X$ and $V \in \sigma_{i}(f(x))$ there exists $U \in \tau_{i}(x)$, such that

In notation $f: \mathcal{X} \rightarrow \mathcal{Y}$

Lemma
If $f: \mathcal{X} \rightarrow \mathcal{Y}$ then $L(\mathcal{X}) \subseteq L(\mathcal{Y})$, where f is a bound morphism.

Bounded morphism

Definition

Let $\mathcal{X}=\left(X, \tau_{1}, \ldots\right)$ and $\mathcal{Y}=\left(Y, \sigma_{1}, \ldots\right)$ be n -frames. Then function $f: X \rightarrow Y$ is a bounded morphism if

1. f is surjective;
2. For any $x \in X$ and $U \in \tau_{i}(x)$ we have $f(U) \in \sigma_{i}(f(x))$;
3. For any $x \in X$ and $V \in \sigma_{i}(f(x))$ there exists $U \in \tau_{i}(x)$, such that $f(U) \subseteq V$.
\ln notation $f: \mathcal{X} \rightarrow \mathcal{Y}$.

Lemma

If $f: \mathcal{X} \rightarrow \mathcal{Y}$ then $L(\mathcal{X}) \subseteq L(\mathcal{X})$, where f is a bound morphism

Bounded morphism

Definition

Let $\mathcal{X}=\left(X, \tau_{1}, \ldots\right)$ and $\mathcal{Y}=\left(Y, \sigma_{1}, \ldots\right)$ be n -frames. Then function $f: X \rightarrow Y$ is a bounded morphism if

1. f is surjective;
2. For any $x \in X$ and $U \in \tau_{i}(x)$ we have $f(U) \in \sigma_{i}(f(x))$;
3. For any $x \in X$ and $V \in \sigma_{i}(f(x))$ there exists $U \in \tau_{i}(x)$, such that $f(U) \subseteq V$.
\ln notation $f: \mathcal{X} \rightarrow \mathcal{Y}$.

Lemma

If $f: \mathcal{X} \rightarrow \mathcal{Y}$ then $L(\mathcal{X}) \subseteq L(\mathcal{Y})$, where f is a bound morphism.

Pseudo-infinite paths

Definition

For a nonempty set A, such that $0 \notin A$ we define $f_{F}: X_{A} \rightarrow A^{\star}$ which "forgets" all zeros, where A^{\star} is the set of all finite sequences of elements from A, including the empty sequence Λ and

$$
X_{A}=\left\{a_{1}, a_{2} \ldots \mid a_{i} \in A \cup\{0\} \& \exists N \forall k \geq N\left(a_{k}=0\right)\right\}
$$

Pseudo-infinite paths

For $\alpha \in X_{A}$ such that $\alpha=a_{1} a_{2} \ldots$ we define

$$
\begin{gathered}
\operatorname{st}(\alpha)=\min \left\{N \mid \forall k>N\left(a_{k}=0\right)\right\} ; \\
\alpha \mid k=a_{1} \ldots a_{k} ; \\
U_{k}(\alpha)=\left\{\beta|\alpha|_{m}=\left.\beta\right|_{m} \& f_{F}(\alpha) R f_{F}(\beta), m=\max (k, s t(\alpha))\right\},
\end{gathered}
$$

where $\bar{a} R \bar{b} \Leftrightarrow \exists c \in A(\bar{b}=\bar{a} \cdot c)$.

Results

Theorem

There is a function f, such that $f: \mathcal{N}_{\omega}(D) \times{ }^{+} \mathcal{N}_{\omega}(D) \rightarrow T_{\omega, \omega, \omega}$.

Corollary

$D x_{n}^{+} D=1 D$.

Results

Theorem

There is a function f ，such that $f: \mathcal{N}_{\omega}(D) \times{ }^{+} \mathcal{N}_{\omega}(D) \rightarrow T_{\omega, \omega, \omega}$ ．

Corollary

$$
D \times_{n}^{+} D=L D .
$$

