| Intro | N-frames | Epistemic logic | Common modality | 3+ agents | Conclusion |
|-------|----------|-----------------|-----------------|-----------|------------|
| 000   | 00000    |                 | 00000           |           | 00000000   |

# Product of neighborhood frames with additional modality

# Rajab Aghamov<sup>1</sup> Andrey Kudinov<sup>1 2 3</sup>

<sup>1</sup>Higher School of Economics

 $^2$ Institute for Information Transmission Problems

<sup>3</sup>Moscow Institute of Physics and Technology

June 17, 2019

<ロト < 団ト < 団ト < 団ト -

3

| Intro | N-frames | Epistemic logic | Common modality | 3+ agents | Conclusion |
|-------|----------|-----------------|-----------------|-----------|------------|
| 000   |          |                 |                 |           |            |
|       |          |                 |                 |           |            |

イロト イ理ト イヨト イヨト

3

# Introduction and history: semantics

#### Semantics for modal logic

Topological semantics

- A. Tarski (1938)
- J. C. C. McKinsey and A. Tarski (1944)

Kripke semantics

S. Kripke (1963)

Neighborhood semantics

- D. Scott (1970)
- R. Montague (1970)

| Intro | N-frames | Epistemic logic | Common modality | 3+ agents | Conclusion |
|-------|----------|-----------------|-----------------|-----------|------------|
| 000   |          |                 |                 |           |            |
|       |          |                 |                 |           |            |

# Introduction and history: products

#### **Product of Kripke frames**

- V.Shehtman (1978) [in russian]
- D. Gabbay and V. Shehtman (1998)

#### Product of topological spaces.

J. van Benthem et al. (2006)

## Product of neighborhood frames.

K. Sano (2011)

## For logics $L_1$ and $L_2$ we define

- $L_1 \times L_2$  is the logic of products of  $L_1$  and  $L_2$  Kripke frames.
- $L_1 \times_t L_2$  is the logic of products of  $L_1$  and  $L_2$  topological spaces.
- $L_1 \times_n L_2$  is the logic of products of  $L_1$  and  $L_2$  neighbourhood frames.

| Intro | N-frames | Epistemic logic | Common modality | 3+ agents | Conclusion |
|-------|----------|-----------------|-----------------|-----------|------------|
| 000   |          |                 |                 |           |            |
|       |          |                 |                 |           |            |

# Introduction and history: products

#### **Product of Kripke frames**

- V.Shehtman (1978) [in russian]
- D. Gabbay and V. Shehtman (1998)

#### Product of topological spaces.

J. van Benthem et al. (2006)

#### Product of neighborhood frames.

- K. Sano (2011)
- For logics  $L_1$  and  $L_2$  we define
  - $L_1 imes L_2$  is the logic of products of  $L_1$  and  $L_2$  Kripke frames.
  - $L_1 \times_t L_2$  is the logic of products of  $L_1$  and  $L_2$  topological spaces.
  - $L_1 \times_n L_2$  is the logic of products of  $L_1$  and  $L_2$  neighbourhood frames.

| Intro | N-frames | Epistemic logic | Common modality | 3+ agents | Conclusion |
|-------|----------|-----------------|-----------------|-----------|------------|
| 000   |          |                 |                 |           |            |
|       |          |                 |                 |           |            |

# Introduction and history: products

#### **Product of Kripke frames**

- V.Shehtman (1978) [in russian]
- D. Gabbay and V. Shehtman (1998)

#### Product of topological spaces.

J. van Benthem et al. (2006)

#### Product of neighborhood frames.

K. Sano (2011)

For logics  $L_1$  and  $L_2$  we define

- $L_1 imes L_2$  is the logic of products of  $L_1$  and  $L_2$  Kripke frames.
- $L_1 \times_t L_2$  is the logic of products of  $L_1$  and  $L_2$  topological spaces.
- $L_1 \times_n L_2$  is the logic of products of  $L_1$  and  $L_2$  neighbourhood frames.

| Intro | N-frames | Epistemic logic | Common modality | 3+ agents | Conclusion |
|-------|----------|-----------------|-----------------|-----------|------------|
| 000   |          |                 |                 |           |            |
|       |          |                 |                 |           |            |

# The product of topological spaces

(van Benthem et al, 2006) For two topological space  $\mathfrak{X}_1=(X_1,T_1)$  and  $\mathfrak{X}_2=(X_2,T_2)$ 

$$\begin{split} \mathfrak{X}_1 \times \mathfrak{X}_2 &= (X_1 \times X_2, T_1^*, T_2^*), \text{ where } T_1^* \text{ has base } \{U_1 \times \{x_2\} \mid U_1 \in T_1 \ \& \ x_2 \in X_2\} \\ & T_2^* \text{ has base } \{\{x_1\} \times U_2 \mid x_1 \in X_1 \ \& \ U_2 \in T_2\} \end{split}$$

| Intro | N-frames | Epistemic logic | Common modality | 3+ agents | Conclusion |
|-------|----------|-----------------|-----------------|-----------|------------|
| 000   |          |                 |                 |           |            |
|       |          |                 |                 |           |            |

# The product of topological spaces

(van Benthem et al, 2006) For two topological space  $\mathfrak{X}_1 = (X_1, T_1)$  and  $\mathfrak{X}_2 = (X_2, T_2)$  $\mathfrak{X}_1 \times \mathfrak{X}_2 = (X_1 \times X_2, T_1^*, T_2^*)$ , where  $T_1^*$  has base  $\{U_1 \times \{x_2\} \mid U_1 \in T_1 \& x_2 \in X_2\}$  $T_2^*$  has base  $\{\{x_1\} \times U_2 \mid x_1 \in X_1 \& U_2 \in T_2\}$ 



Product of neighborhood frames with additional modality

| Intro | N-frames | Epistemic logic | Common modality | 3+ agents | Conclusion |
|-------|----------|-----------------|-----------------|-----------|------------|
|       | 00000    |                 |                 |           |            |
|       |          |                 |                 |           |            |

# Neighborhood frames

A (normal) neighborhood frame (or an n-frame) is a pair  $\mathfrak{X}=(X, au)$ , where

- $X \neq \emptyset$ ;
- $\bullet \ \tau : X \to 2^{2^X}$

au — neighborhood function of  $\mathfrak{X}$ , au(x) — a family of neighborhoods of x.

Filter on X: nonempty F ⊆ 2<sup>X</sup> such that
1) U ∈ F & U ⊆ V ⇒ V ∈ F
2) U, V ∈ F ⇒ U ∩ V ∈ F (filter base)

The neighborhood model (n-model) is a pair  $(\mathfrak{X}, V)$ , where  $\mathfrak{X} = (X, \tau)$  is a n-frame and  $V : PV \to 2^X$  is a valuation. Similar: neighborhood k-frame (n-k-frame) is  $(X, \tau_1, \ldots \tau_k)$  such that  $\tau_i$  is a neighborhood function on X for each *i*.

| Intro | N-frames | Epistemic logic | Common modality | 3+ agents | Conclusion |
|-------|----------|-----------------|-----------------|-----------|------------|
|       | 00000    |                 |                 |           |            |
|       |          |                 |                 |           |            |

# Neighborhood frames

A (normal) neighborhood frame (or an n-frame) is a pair  $\mathfrak{X}=(X, au)$ , where

- $X \neq \varnothing;$
- $\tau: X \to 2^{2^X}$ , such that  $\tau(x)$  is a filter on X;

au — neighborhood function of  $\mathfrak{X}$ , au(x) — a family of neighborhoods of x.

Filter on X: nonempty  $\mathcal{F} \subseteq 2^X$  such that 1)  $U \in \mathcal{F} \& U \subseteq V \Rightarrow V \in \mathcal{F}$ 2)  $U, V \in \mathcal{F} \Rightarrow U \cap V \in \mathcal{F}$  (filter base)

The neighborhood model (n-model) is a pair  $(\mathfrak{X}, V)$ , where  $\mathfrak{X} = (X, \tau)$  is a n-frame and  $V : PV \to 2^X$  is a valuation. Similar: neighborhood k-frame (n-k-frame) is  $(X, \tau_1, \ldots, \tau_k)$  such that  $\tau_i$  is a neighborhood function on X for each *i*.

| Intro | N-frames | Epistemic logic | Common modality | 3+ agents | Conclusion |
|-------|----------|-----------------|-----------------|-----------|------------|
|       | 00000    |                 |                 |           |            |
|       |          |                 |                 |           |            |

# Neighborhood frames

A (normal) neighborhood frame (or an n-frame) is a pair  $\mathfrak{X}=(X, au)$ , where

- $X \neq \varnothing;$
- $\tau: X \to 2^{2^X}$ , such that  $\tau(x)$  is a filter on X;

au — neighborhood function of  $\mathfrak{X}$ , au(x) — a family of neighborhoods of x.

Filter on X: nonempty  $\mathcal{F} \subseteq 2^X$  such that 1)  $U \in \mathcal{F} \& U \subseteq V \Rightarrow V \in \mathcal{F}$ 2)  $U, V \in \mathcal{F} \Rightarrow U \cap V \in \mathcal{F}$  (filter base)

The neighborhood model (n-model) is a pair  $(\mathfrak{X}, V)$ , where  $\mathfrak{X} = (X, \tau)$  is a n-frame and  $V : PV \to 2^X$  is a valuation. Similar: neighborhood k-frame (n-k-frame) is  $(X, \tau_1, \ldots, \tau_k)$  such that  $\tau_i$  is a neighborhood function on X for each i.

| Intro | N-frames | Epistemic logic | Common modality | 3+ agents | Conclusion |
|-------|----------|-----------------|-----------------|-----------|------------|
|       | 00000    |                 |                 |           |            |
|       |          |                 |                 |           |            |

# Product of neighborhood frames

## Definition

Let  $X_1 = (X_1, \tau_1)$  and  $X_2 = (X_2, \tau_2)$  be two n-frames. Then the product of these n-frames is an n-frame defined as follows

$$\mathcal{X}_1 \times \mathcal{X}_2 = (X_1 \times X_2, \tau'_1, \tau'_2), \tau'_1(x_1, x_2) = \{ U \subseteq X_1 \times X_2 | \exists V (V \in \tau_1(x_1) \& V \times \{x_2\} \subseteq U) \} \tau'_2(x_1, x_2) = \{ U \subseteq X_1 \times X_2 | \exists V (V \in \tau_2(x_2) \& \{x_1\} \times V \subseteq U) \},$$

| Intro | N-frames | Epistemic logic | Common modality | 3+ agents | Conclusion |
|-------|----------|-----------------|-----------------|-----------|------------|
|       | 00000    |                 |                 |           |            |
|       |          |                 |                 |           |            |

# **Fusion of logics**

#### Definition

Let  $L_1$  and  $L_2$  be two modal logics with one modality  $\square$  then the fusion of these logics is

$$L_1 \otimes L_2 = K_2 + L_{1(\Box \to \Box_1)} + L_{2(\Box \to \Box_2)};$$

▲ロト ▲御ト ▲ヨト ▲ヨト 三国 - のへの

where  $L_{i(\Box \to \Box_i)}$  is the set of all formulas from  $L_i$  where all  $\Box$  replaced by  $\Box_i$ .

| Intro | N-frames | Epistemic logic | <b>Common modality</b> | 3+ agents | <b>Conclusion</b> |
|-------|----------|-----------------|------------------------|-----------|-------------------|
| 000   | 000●0    | O               | 00000                  | ○         | 00000000          |
|       |          |                 |                        |           |                   |

# Logics

K is the minimal logic. We will use the following logics:  $\mathbf{T} = \mathbf{K} + \Box p \rightarrow p,$  $\mathbf{D} = \mathbf{K} + \Box p \rightarrow \Diamond p,$  $\mathbf{D4} = \mathbf{D} + \Box p \rightarrow \Box \Box p,$  $\mathbf{S4} = \mathbf{T} + \Box p \rightarrow \Box \Box p.$ 

| Intro | N-frames | Epistemic logic | Common modality | 3+ agents | Conclusion |
|-------|----------|-----------------|-----------------|-----------|------------|
|       | 00000    |                 |                 |           |            |
|       |          |                 |                 |           |            |

# Known products of logics

Theorem (Shehtman and Gabbay, 1998)

If  $L_1, L_2$  are Horn logics then

 $L_1 \times L_2 = L_1 \otimes L_2 + \Box_1 \Box_2 p \leftrightarrow \Box_2 \Box_1 p + \Diamond_1 \Box_2 p \rightarrow \Box_2 \Diamond_1 p.$ 

#### Theorem (van Benthem, 2006)

 $S4 \times_t S4 = S4 \otimes S4.$ 

#### Theorem (Kudinov, 2012)

Let  $L_1, L_2 \in \{ D4, D, T, S4 \}$ , then

$$L_1 \times_n L_2 = L_1 \otimes L_2.$$

Aghamov, Kudinov Product of neighborhood frames with additional modality

| Intro | N-frames | Epistemic logic | Common modality | 3+ agents | Conclusion |
|-------|----------|-----------------|-----------------|-----------|------------|
|       |          | •               |                 |           |            |
|       |          |                 |                 |           |            |

# **Epistemic logic**

 $\Box_i \phi$  is reading as "agent i knows  $\phi$ ".

The logic for one agent is usually S5, but can be others: S4, D4, K, T, .... If the logic for each agent is S4 then the logic of two agents is the fusion  $S4 \otimes S4$ .

And  $S4 \times_t S4 = S4 \otimes S4$ .

An open neighborhood of a possible world x is all the worlds that indistinguishable from x with certain information.

With two agents we have two sets of information for each agent.

| Intro | N-frames | Epistemic logic | Common modality | 3+ agents | Conclusion |
|-------|----------|-----------------|-----------------|-----------|------------|
|       |          | •               |                 |           |            |
|       |          |                 |                 |           |            |

# **Epistemic logic**

 $\Box_i \phi$  is reading as "agent i knows  $\phi$ ".

The logic for one agent is usually S5, but can be others: S4, D4, K, T, .... If the logic for each agent is S4 then the logic of two agents is the fusion S4  $\otimes$  S4.

And  $S4 \times_t S4 = S4 \otimes S4$ .

An open neighborhood of a possible world x is all the worlds that indistinguishable from x with certain information.

With two agents we have two sets of information for each agent.

| Intro | N-frames | Epistemic logic | Common modality | 3+ agents | Conclusion |
|-------|----------|-----------------|-----------------|-----------|------------|
|       |          |                 | 00000           |           |            |
|       |          |                 |                 |           |            |

# Adding the standard product topology

In topology there is a different product of topologies.

## Definition

Let  $\mathfrak{X}_1 = (X_1, T_1)$  and  $\mathfrak{X}_2 = (X_2, T_2)$  we define the plus-product:

$$\mathfrak{X}_1 \times^+ \mathfrak{X}_2 = (X_1 \times X_2, T_1', T_2', T),$$

where  $\{U_1 \times U_2 | U_1 \in T_1, U_2 \in T_2\}$  is the base for T. For two unimodal logics  $L_1$  and  $L_2$  we define t-plus-product of them as

$$L_1 \times_t^+ L_2 = L(\mathfrak{X}_1 \times^+ \mathfrak{X}_2 \mid \mathfrak{X}_1 \models L_1 \& \mathfrak{X}_2 \models L_2).$$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Aghamov, Kudinov Product of neighborhood frames with additional modality

| Intro | N-frames | Epistemic logic | Common modality | 3+ agents | Conclusion |
|-------|----------|-----------------|-----------------|-----------|------------|
|       |          |                 | 00000           |           |            |
|       |          |                 |                 |           |            |

# Products with additional modality

## Definition

Let  $X_1 = (X_1, \tau_1)$  and  $X_2 = (X_2, \tau_2)$  be two n-frames. Then the product of these n-frames with additional modality is an n-3-frame defined as follows

$$\mathcal{X}_{1} \times^{+} \mathcal{X}_{2} = (X_{1} \times X_{2}, \tau'_{1}, \tau'_{2}, \tau),$$
  

$$\tau'_{1}(x_{1}, x_{2}) = \{U \subseteq X_{1} \times X_{2} | \exists V(V \in \tau_{1}(x_{1}) \& V \times \{x_{2}\} \subseteq U)\},$$
  

$$\tau'_{2}(x_{1}, x_{2}) = \{U \subseteq X_{1} \times X_{2} | \exists V(V \in \tau_{2}(x_{2}) \& \{x_{1}\} \times V \subseteq U)\},$$
  

$$\tau(x_{1}, x_{2}) = \{U | \exists V_{1} \in \tau_{1}(x) \& \exists V_{2} \in \tau_{2}(y)(V_{1} \times V_{2} \subseteq U)\}.$$

For two unimodal logics  $L_1$  and  $L_2$  we define n-plus-product of them as

$$L_1 \times_n^+ L_2 = L(\mathfrak{X}_1 \times^+ \mathfrak{X}_2 \mid \mathfrak{X}_1 \models L_1 \& \mathfrak{X}_2 \models L_2).$$

Aghamov, Kudinov Product of neighborhood frames with additional modality

| Intro | N-frames | Epistemic logic | Common modality | 3+ agents | Conclusion |
|-------|----------|-----------------|-----------------|-----------|------------|
|       |          |                 | 00000           |           |            |

# Adding the standard-product-topology-like modal operator

## Definition

$$LS4 = S4 \otimes S4 \otimes S4 + \Box p \to \Box_1 p \land \Box_2 p; \\ LD4 = D4 \otimes D4 \otimes D4 + \Box p \to \Box_1 p \land \Box_2 p; \\ LD = D \otimes D \otimes D + \Box p \to \Box_1 p \land \Box_2 p; \\ LT = T \otimes T \otimes T + \Box p \to \Box_1 p \land \Box_2 p.$$

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

Theorem (Benthem, J., G. Bezhanishvili, B. Cate and D. Sarenac, 2006)

 $Log(\mathbb{Q} \times^+ \mathbb{Q}) = LS4 = S4 \times_t^+ S4$ 

Theorem (Kudinov A., 2013)

 $Log_d(\mathbb{Q}\times^+\mathbb{Q}) = LD4 = D4 \times^+_n D4$ 

| Intro | N-frames | Epistemic logic | Common modality | 3+ agents | Conclusion |
|-------|----------|-----------------|-----------------|-----------|------------|
|       |          |                 | 00000           |           |            |

# Adding the standard-product-topology-like modal operator

## Definition

$$LS4 = S4 \otimes S4 \otimes S4 + \Box p \to \Box_1 p \land \Box_2 p; \\ LD4 = D4 \otimes D4 \otimes D4 + \Box p \to \Box_1 p \land \Box_2 p; \\ LD = D \otimes D \otimes D + \Box p \to \Box_1 p \land \Box_2 p; \\ LT = T \otimes T \otimes T + \Box p \to \Box_1 p \land \Box_2 p.$$

Theorem (Benthem, J., G. Bezhanishvili, B. Cate and D. Sarenac, 2006)

 $Log(\mathbb{Q} \times^+ \mathbb{Q}) = LS4 = S4 \times^+_t S4$ 

Theorem (Kudinov A., 2013)

 $Log_d(\mathbb{Q} \times^+ \mathbb{Q}) = LD4 = D4 \times^+_n D4$ 

- ▲ ロ ▶ → 昼 ▶ → 臣 ▶ → 臣 → りへで

#### Aghamov, Kudinov Product of neighborhood frames with additional modality

| Intro | N-frames | Epistemic logic | Common modality | 3+ agents | Conclusion |
|-------|----------|-----------------|-----------------|-----------|------------|
|       |          |                 | 00000           |           |            |

# Adding the standard-product-topology-like modal operator

# Definition

$$\begin{split} \mathsf{LS4} &= \mathsf{S4} \otimes \mathsf{S4} \otimes \mathsf{S4} + \Box p \to \Box_1 p \land \Box_2 p; \\ \mathsf{LD4} &= \mathsf{D4} \otimes \mathsf{D4} \otimes \mathsf{D4} + \Box p \to \Box_1 p \land \Box_2 p; \\ \mathsf{LD} &= \mathsf{D} \otimes \mathsf{D} \otimes \mathsf{D} + \Box p \to \Box_1 p \land \Box_2 p; \\ \mathsf{LT} &= \mathsf{T} \otimes \mathsf{T} \otimes \mathsf{T} + \Box p \to \Box_1 p \land \Box_2 p. \end{split}$$

Theorem (Kudinov A., 2013)

 $Log_d(\mathbb{Q}\times^+\mathbb{Q}) = LD4 = D4 \times_n^+ D4$ 

#### Theorem

 $LD = D \times_n^+ D$  $LT = T \times_n^+ T$ 

#### Aghamov, Kudinov Product of neighborhood frames with additional modality

| Intro | N-frames | Epistemic logic | Common modality | 3+ agents | Conclusion |
|-------|----------|-----------------|-----------------|-----------|------------|
|       |          |                 | 00000           |           |            |
|       |          |                 |                 |           |            |

# Back to epistemic logic

This additional modality is similar to common knowledge (or belief) operator. It contains all the agents' knowledges, and it is transitive (in case of **S4** and **D4**).

In case of logics **T** and **D** we should consider the following logics:

The corresponding completeness theorems can be proved using similar methods.

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

| Intro | N-frames | Epistemic logic | Common modality | 3+ agents | Conclusion |
|-------|----------|-----------------|-----------------|-----------|------------|
|       |          |                 |                 | •         |            |
|       |          |                 |                 |           |            |

# 3 and more agents

Another way to generalize the results of [van Benthem et al., 2006] is to consider 3 and more agents: If we have 3 agents  $(\Box_1, \Box_2 \text{ and } \Box_3)$  then there can be 4 additional modalities:  $\Box_{1,2}, \Box_{2,3}, \Box_{1,3}, \Box_{1,2,3}$ .

We also can consider more then 3 agents.

The corresponding completeness theorems also can be proved by same methods.

| Intro | N-frames | Epistemic logic | Common modality | 3+ agents | Conclusion |
|-------|----------|-----------------|-----------------|-----------|------------|
|       |          |                 |                 | •         |            |
|       |          |                 |                 |           |            |

# 3 and more agents

Another way to generalize the results of [van Benthem et al., 2006] is to consider 3 and more agents: If we have 3 agents  $(\Box_1, \Box_2 \text{ and } \Box_3)$  then there can be 4 additional modalities:  $\Box_{1,2}, \Box_{2,3}, \Box_{1,3}, \Box_{1,2,3}$ .

We also can consider more then 3 agents.

The corresponding completeness theorems also can be proved by same methods.

| Intro | N-frames | Epistemic logic | Common modality | 3+ agents | Conclusion |
|-------|----------|-----------------|-----------------|-----------|------------|
|       |          |                 |                 | •         |            |
|       |          |                 |                 |           |            |

# 3 and more agents

Another way to generalize the results of [van Benthem et al., 2006] is to consider 3 and more agents: If we have 3 agents  $(\Box_1, \Box_2 \text{ and } \Box_3)$  then there can be 4 additional modalities:  $\Box_{1,2}, \Box_{2,3}, \Box_{1,3}, \Box_{1,2,3}$ .

We also can consider more then 3 agents.

The corresponding completeness theorems also can be proved by same methods.

| Intro | N-frames | Epistemic logic | <b>Common modality</b> | 3∔ agents | Conclusion |
|-------|----------|-----------------|------------------------|-----------|------------|
| 000   | 00000    | ⊙               | 00000                  | ⊖         | ●0000000   |
|       |          |                 |                        |           |            |

# Conclusion

# We can try and extend the technique to non-serial logics such as ${\cal K}, {\cal K}4$ and so on.

| Intro | N-frames | Epistemic logic | Common modality | 3+ agents | Conclusion |
|-------|----------|-----------------|-----------------|-----------|------------|
|       |          |                 |                 |           | 0000000    |
|       |          |                 |                 |           |            |

# THANK YOU!

Aghamov, Kudinov Product of neighborhood frames with additional modality



| Intro<br>000 | N-frames<br>00000 | Epistemic logic<br>O | <b>Common modality</b><br>00000 | 3+ agents<br>⊙ | Conclusion<br>00●00000 |
|--------------|-------------------|----------------------|---------------------------------|----------------|------------------------|
|              |                   |                      |                                 |                |                        |
|              |                   |                      |                                 |                |                        |
| $T_{\alpha}$ |                   |                      |                                 |                |                        |

# $T_{2,2}, T_{2,2,6}$ (Benthem, J., G. Bezhanishvili, B. Cate and D. Sarenac, 2006). $T_{\omega,\omega,\omega}$

| Intro<br>000 | N-frames<br>00000 | Epistemic logic<br>O | Common modality<br>00000 | 3+ agents<br>⊙ | Conclusion<br>000●0000 |
|--------------|-------------------|----------------------|--------------------------|----------------|------------------------|
|              |                   |                      |                          |                |                        |
|              |                   |                      |                          |                |                        |
| <b>T</b>     |                   |                      |                          |                |                        |

 $T_{\omega,\omega,\omega}$ 

#### Lemma

**LD** is complete with respect to  $T_{\omega,\omega,\omega}$ .

| Intro | N-frames | Epistemic logic | Common modality | 3+ agents | Conclusion |
|-------|----------|-----------------|-----------------|-----------|------------|
|       |          |                 |                 |           | 00000000   |
|       |          |                 |                 |           |            |

## Definition

Let  $\mathcal{X} = (X, \tau_1, ...)$  and  $\mathcal{Y} = (Y, \sigma_1, ...)$  be n-frames. Then function  $f: X \to Y$  is a bounded morphism if 1. f is surjective; 2. For any  $x \in X$  and  $U \in \tau_i(x)$  we have  $f(U) \in \sigma_i(f(x))$ ; 3. For any  $x \in X$  and  $V \in \sigma_i(f(x))$  there exists  $U \in \tau_i(x)$ , such that  $f(U) \subseteq V$ . In notation  $f: \mathcal{X} \to \mathcal{Y}$ .

#### \_emma

If  $f : \mathcal{X} \twoheadrightarrow \mathcal{Y}$  then  $L(\mathcal{X}) \subseteq L(\mathcal{Y})$ , where f is a bound morphism.

#### ▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○ ○

| Intro | N-frames | Epistemic logic | Common modality | 3+ agents | Conclusion |
|-------|----------|-----------------|-----------------|-----------|------------|
|       |          |                 |                 |           | 00000000   |
|       |          |                 |                 |           |            |

## Definition

Let  $\mathcal{X} = (X, \tau_1, ...)$  and  $\mathcal{Y} = (Y, \sigma_1, ...)$  be n-frames. Then function  $f: X \to Y$  is a bounded morphism if 1. f is surjective; 2. For any  $x \in X$  and  $U \in \tau_i(x)$  we have  $f(U) \in \sigma_i(f(x))$ ; 3. For any  $x \in X$  and  $V \in \sigma_i(f(x))$  there exists  $U \in \tau_i(x)$ , such that  $f(U) \subseteq V$ . In notation  $f: \mathcal{X} \to \mathcal{Y}$ .

#### \_emma

If  $f : \mathcal{X} \twoheadrightarrow \mathcal{Y}$  then  $L(\mathcal{X}) \subseteq L(\mathcal{Y})$ , where f is a bound morphism.

#### ▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○ ○

| Intro | N-frames | Epistemic logic | Common modality | 3+ agents | Conclusion |
|-------|----------|-----------------|-----------------|-----------|------------|
|       |          |                 |                 |           | 00000000   |
|       |          |                 |                 |           |            |

#### Definition

Let  $\mathcal{X} = (X, \tau_1, \ldots)$  and  $\mathcal{Y} = (Y, \sigma_1, \ldots)$  be n-frames. Then function  $f: X \to Y$  is a bounded morphism if 1. f is surjective; 2. For any  $x \in X$  and  $U \in \tau_i(x)$  we have  $f(U) \in \sigma_i(f(x))$ ; 3. For any  $x \in X$  and  $V \in \sigma_i(f(x))$  there exists  $U \in \tau_i(x)$ , such that  $f(U) \subseteq V$ . In notation  $f: \mathcal{X} \twoheadrightarrow \mathcal{Y}$ .

#### \_emma

If  $f : \mathcal{X} \twoheadrightarrow \mathcal{Y}$  then  $L(\mathcal{X}) \subseteq L(\mathcal{Y})$ , where f is a bound morphism.

#### - ▲ ロ ト • 酉 ト • 匡 ト • 匡 - りへぐ

| Intro | N-frames | Epistemic logic | Common modality | 3+ agents | Conclusion |
|-------|----------|-----------------|-----------------|-----------|------------|
|       |          |                 |                 |           | 00000000   |
|       |          |                 |                 |           |            |

#### Definition

Let  $\mathcal{X} = (X, \tau_1, \ldots)$  and  $\mathcal{Y} = (Y, \sigma_1, \ldots)$  be n-frames. Then function  $f: X \to Y$  is a bounded morphism if 1. f is surjective; 2. For any  $x \in X$  and  $U \in \tau_i(x)$  we have  $f(U) \in \sigma_i(f(x))$ ; 3. For any  $x \in X$  and  $V \in \sigma_i(f(x))$  there exists  $U \in \tau_i(x)$ , such that  $f(U) \subseteq V$ . In notation  $f: \mathcal{X} \twoheadrightarrow \mathcal{Y}$ .

#### Lemma

If  $f : \mathcal{X} \twoheadrightarrow \mathcal{Y}$  then  $L(\mathcal{X}) \subseteq L(\mathcal{Y})$ , where f is a bound morphism.

#### ▲□▶▲□▶▲□▶▲□▶ = つへぐ

| Intro | N-frames | Epistemic logic | Common modality | 3+ agents | Conclusion |
|-------|----------|-----------------|-----------------|-----------|------------|
|       |          |                 |                 |           | 000000000  |
|       |          |                 |                 |           |            |

# **Pseudo-infinite paths**

## Definition

For a nonempty set A, such that  $0 \notin A$  we define  $f_F : X_A \to A^*$  which "forgets" all zeros, where  $A^*$  is the set of all finite sequences of elements from A, including the empty sequence  $\Lambda$  and

$$X_A = \{a_1, a_2 \dots \mid a_i \in A \cup \{0\} \& \exists N \forall k \ge N(a_k = 0)\}.$$

| Intro | N-frames | Epistemic logic | Common modality | 3+ agents | Conclusion |
|-------|----------|-----------------|-----------------|-----------|------------|
|       |          |                 |                 |           | 00000000   |
|       |          |                 |                 |           |            |

# **Pseudo-infinite paths**

For  $lpha\in X_A$  such that  $lpha=a_1a_2\dots$  we define

$$\begin{split} st(\alpha) &= \min\{N \mid \forall k > N(a_k = 0)\};\\ \alpha | k = a_1 \dots a_k;\\ U_k(\alpha) &= \{\beta \mid \alpha|_m = \beta|_m \ \& \ f_F(\alpha) R f_F(\beta), \ m = max(k, st(\alpha))\},\\ \end{split}$$
 where  $\overline{a}R\overline{b} \Leftrightarrow \exists c \in A \ (\overline{b} = \overline{a} \cdot c). \end{split}$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

| Intro | N-frames | Epistemic logic | Common modality | 3+ agents | Conclusion |
|-------|----------|-----------------|-----------------|-----------|------------|
|       |          |                 |                 |           | 0000000    |
|       |          |                 |                 |           |            |

# Results

#### Theorem

There is a function f, such that  $f : \mathcal{N}_{\omega}(D) \times^{+} \mathcal{N}_{\omega}(D) \twoheadrightarrow T_{\omega,\omega,\omega}$ .

Corollary

 $D \times_n^+ D = LD.$ 

| Intro | N-frames | Epistemic logic | Common modality | 3+ agents | Conclusion |
|-------|----------|-----------------|-----------------|-----------|------------|
|       |          |                 |                 |           | 0000000    |
|       |          |                 |                 |           |            |

# Results

#### Theorem

There is a function f, such that  $f : \mathcal{N}_{\omega}(D) \times^{+} \mathcal{N}_{\omega}(D) \twoheadrightarrow T_{\omega,\omega,\omega}$ .

# Corollary

 $D \times_n^+ D = LD.$