Completion of pseudo-orthomodular posets

Jan Paseka

Department of Mathematics and Statistics Masaryk University Brno, Czech Republic paseka@math.muni.cz Coauthors: Ivan Chajda, Helmut Länger

Supported by the project Group Techniques and Quantum Information, Nr. MUNI/G/1211/2017 by Masaryk University Grant Agency (GAMU).

TACL 2019 Nice, June 17, 2019, France

Outline

- Introduction pseudo-orthomodular posets
- 2 Basic notions, definitions and results
 - LU-identities
 - Posets with with antitone involution and complementation
 - Orthomodular lattices
 - Dedekind-MacNeille completion
 - Orthogonal sets and orthocomplete posets
 - Orthomodular posets and their Dedekind-MacNeille completion
 - Pseudo-orthomodular posets and their Dedekind-MacNeille completion
- 3 Orthomodular Dedekind-MacNeille completion of complemented posets
 - Orthomodular Dedekind-MacNeille completion implies pseudo-orthomodularity
 - Orthocomplete atomic orthomodular posets and their Dedekind-MacNeille completion
 - Dedekind-MacNeille completion of finite pseudo-orthomodular posets

Introduction - pseudo-orthomodular posets

Basic notions, definitions and results Orthomodular Dedekind-MacNeille completion of complemented posets

Outline

Introduction - pseudo-orthomodular posets

- 2 Basic notions, definitions and results
 - LU-identities
 - Posets with with antitone involution and complementation
 - Orthomodular lattices
 - Dedekind-MacNeille completion
 - Orthogonal sets and orthocomplete posets
 - Orthomodular posets and their Dedekind-MacNeille completion
 - Pseudo-orthomodular posets and their Dedekind-MacNeille completion
- 3 Orthomodular Dedekind-MacNeille completion of complemented posets
 - Orthomodular Dedekind-MacNeille completion implies pseudo-orthomodularity
 - Orthocomplete atomic orthomodular posets and their Dedekind-MacNeille completion
 - Dedekind-MacNeille completion of finite pseudo-orthomodular posets

Introduction - pseudo-orthomodular posets

In this lecture we introduce the notion of a pseudo-orthomodular poset P.

Our goal is to to determine when its Dedekind-MacNeille completion $\mathbf{DM}(\mathbf{P})$ is an orthomodular lattice.

We get some classes of pseudo-orthomodular posets for which their Dedekind-MacNeille completion is an orthomodular lattice.

Introduction - pseudo-orthomodular posets

In this lecture we introduce the notion of a pseudo-orthomodular poset P.

Our goal is to to determine when its Dedekind-MacNeille completion $\ensuremath{DM}(P)$ is an orthomodular lattice.

We get some classes of pseudo-orthomodular posets for which their Dedekind-MacNeille completion is an orthomodular lattice.

Introduction - pseudo-orthomodular posets

In this lecture we introduce the notion of a pseudo-orthomodular poset P.

Our goal is to to determine when its Dedekind-MacNeille completion $\ensuremath{DM}(P)$ is an orthomodular lattice.

We get some classes of pseudo-orthomodular posets for which their Dedekind-MacNeille completion is an orthomodular lattice.

Introduction - pseudo-orthomodular posets

In this lecture we introduce the notion of a pseudo-orthomodular poset P.

Our goal is to to determine when its Dedekind-MacNeille completion $\ensuremath{DM}(\ensuremath{P})$ is an orthomodular lattice.

We get some classes of pseudo-orthomodular posets for which their Dedekind-MacNeille completion is an orthomodular lattice.

Orthomodular Dedekind-MacNeille completion of complemented posets

LU-identities
Posets with with antitone involution and complementation
Orthomodular lattices
Dedekind-MacNeille completion
Orthogonal sets and orthocomplete posets
Orthomodular posets and their Dedekind-MacNeille completion
Pseudo-orthomodular posets and their Dedekind-MacNeille completion

Outline

Introduction - pseudo-orthomodular posets

- Basic notions, definitions and results
 - LU-identities
 - Posets with with antitone involution and complementation
 - Orthomodular lattices
 - Dedekind-MacNeille completion
 - Orthogonal sets and orthocomplete posets
 - Orthomodular posets and their Dedekind-MacNeille completion
 - Pseudo-orthomodular posets and their Dedekind-MacNeille completion
- 3 Orthomodular Dedekind-MacNeille completion of complemented posets
 - Orthomodular Dedekind-MacNeille completion implies pseudo-orthomodularity
 - Orthocomplete atomic orthomodular posets and their Dedekind-MacNeille completion
 - Dedekind-MacNeille completion of finite pseudo-orthomodular posets

LU-identities Posets with with antitone involution and complementation Orthomodular lattices Basic notions, definitions and results Orthomodular Dedekind-MacNeille completion of complemented posets Orthomodular posets and their Dedekind-MacNeille completion Pseudo-orthomodular posets and their Dedekind-MacNeille completion

LU-identities

Consider a bounded poset $\mathbf{P} = (P, \leq, 0, 1)$. For $M \subseteq P$ denote by

 $U(M) := \{ x \in P \mid y \le x \text{ for all } y \in M \},\$

the so-called upper cone of M, and by

 $L(M) := \{ x \in P \mid x \le y \text{ for all } y \in M \},\$

the so-called *lower cone of M*. If $M = \{a, b\}$ or $M = \{a\}$, we will write simply U(a, b), L(a, b) or U(a), L(a), respectively.

LU-identities Posets with with antitone involution and complementation Orthomodular lattices Dedekind-MacNeille completion Orthogonal sets and orthocomplete posets Orthomodular posets and their Dedekind-MacNeille completion Pseudo-orthomodular posets and their Dedekind-MacNeille completion

Posets with with antitone involution and complementation

A poset with antitone involution is an ordered quintuple $\mathbf{P} = (P, \leq, ', 0, 1)$ such that $(P, \leq, 0, 1)$ is a bounded poset and ' is a unary operation on P satisfying the following conditions for all $x, y \in P$:

(i)
$$x \le y$$
 implies $y' \le x'$,

(ii)
$$(x')' \approx x$$
.

A poset with complementation is a poset with antitone involution $\mathbf{P} = (P, \leq, ', 0, 1)$ satisfying the following LU-identities:

LU-identities Posets with with antitone involution and complementation Orthomodular lattices Dedekind-MacNeille completion Orthogonal sets and orthocomplete posets Orthomodular posets and their Dedekind-MacNeille completion Pseudo-orthomodular posets and their Dedekind-MacNeille completion

Posets with with antitone involution and complementation

A poset with antitone involution is an ordered quintuple $\mathbf{P} = (P, \leq, ', 0, 1)$ such that $(P, \leq, 0, 1)$ is a bounded poset and ' is a unary operation on P satisfying the following conditions for all $x, y \in P$:

(i)
$$x \le y$$
 implies $y' \le x'$,

(ii)
$$(x')' \approx x$$
.

A *poset with complementation* is a poset with antitone involution $\mathbf{P} = (P, \leq, ', 0, 1)$ satisfying the following LU-identities:

(iii) $L(x,x') \approx \{0\}$ and $U(x,x') \approx \{1\}$.

|--|--|

Orthomodular lattices

Recall that a lattice with complementation $(L, \land, \lor, ', 0, 1)$ is *orthomodular* if and only if it satisfies the following identity:

 $x \lor y \approx ((x \lor y) \land y') \lor y.$

which in turn is equivalent to the following condition:

if $x, y \in L$, $x \leq y$ and $x' \wedge y = 0$ then x = y.

Introduction - pseudo-orthomodular posets Basic notions, definitions and results Orthomodular Dedekind-MacNeille completion of complemented posets	LU-loentities Posets with with antitone involution and complementation Orthomodular lattices Dedekind-MacNeille completion Orthogonal sets and orthocomplete posets Orthomodular posets and their Dedekind-MacNeille completion Pseudo-orthomodular posets and their Dedekind-MacNeille completion
	Pseudo-orthomodular posets and their Dedekind-Macivellie completion

Orthomodular posets

A *poset* with complementation $\mathbf{P} = (P, \leq, ', 0, 1)$ is called *orthomodular* if for all $x, y \in P$ with $x \leq y'$ there exists $x \lor y$ and then **P** satisfies the following identity:

 $((x \lor y) \land y') \lor y \approx x \lor y$

where $x \wedge y$ stands for $(x' \vee y')'$ (De Morgan laws).

 Concernities
 Concernities

 Posets with with antitone involution and complementation
 Posets with with antitone involution and complementation

 Introduction - pseudo-orthomodular posets
 Orthomodular lattices

 Basic notions, definitions and results
 Dedekind-MacNeille completion

 Orthomodular Dedekind-MacNeille completion of complemented posets
 Orthomodular posets and of heir Dedekind-MacNeille completion

 Pseudo-orthomodular posets and their Dedekind-MacNeille completion
 Pseudo-orthomodular posets and their Dedekind-MacNeille completion

Pseudo-orthomodular posets - Ivan Chajda and Helmut Länger 2018

The poset **P** with complementation is called a *pseudo-orthomodular poset* if it satisfies one of the following equivalent conditions:

 $L(U(L(x,y),y'),y) \approx L(x,y),$ $U(L(U(x,y),y'),y) \approx U(x,y).$ Orthomodular Dedekind-MacNeille completion of complemented posets

LU-identities Posets with with antitone involution and complementation Orthomodular lattices Dedekind-MacNeille completion Orthogonal sets and orthocomplete posets Orthomodular posets and their Dedekind-MacNeille completion Pseudo-orthomodular posets and their Dedekind-MacNeille completion

Dedekind-MacNeille completion

It is well-known that every poset (P, \leq) can be embedded into a complete lattice L. We frequently take the so-called Dedekind-MacNeille completion $\mathbf{DM}(P, \leq)$ for this L.

We put $DM(\mathbf{P}) := \{B \subseteq P \mid LU(B) = B\}$. (We simply write LU(B) instead of L(U(B)). Analogous simplifications are used in the sequel.) Then for $DM(\mathbf{P}) = \{L(B) \mid B \subseteq P\}$, $DM(\mathbf{P}) := (DM(\mathbf{P}), \subseteq)$ is a complete lattice and $x \mapsto L(x)$ is an embedding from \mathbf{P} to $DM(\mathbf{P})$ preserving all existing joins and meets, and an order isomorphism between posets \mathbf{P} and $(\{L(x) \mid x \in P\}, \subseteq)$. We usually identify P with $\{L(x) \mid x \in P\}$.

Orthomodular Dedekind-MacNeille completion of complemented posets

LU-identities Posets with with antitone involution and complementation Orthomodular lattices Dedekind-MacNeille completion Orthogonal sets and orthocomplete posets Orthomodular posets and their Dedekind-MacNeille completion Pseudo-orthomodular posets and their Dedekind-MacNeille completion

Dedekind-MacNeille completion

It is well-known that every poset (P, \leq) can be embedded into a complete lattice L. We frequently take the so-called Dedekind-MacNeille completion $\mathbf{DM}(P, \leq)$ for this L.

We put $DM(\mathbf{P}) := \{B \subseteq P \mid LU(B) = B\}$. (We simply write LU(B) instead of L(U(B)). Analogous simplifications are used in the sequel.) Then for $DM(\mathbf{P}) = \{L(B) \mid B \subseteq P\}$, $DM(\mathbf{P}) := (DM(\mathbf{P}), \subseteq)$ is a complete lattice and $x \mapsto L(x)$ is an embedding from \mathbf{P} to $DM(\mathbf{P})$ preserving all existing joins and meets, and an order isomorphism between posets \mathbf{P} and $(\{L(x) \mid x \in P\}, \subseteq)$. We usually identify P with $\{L(x) \mid x \in P\}$.

Introduction - pseudo-orthomodular posets Basic notions, definitions and results Orthomodular Dedekind-MacNeille completion of complemented posets	LU-identities Posets with with antitone involution and complementation Orthomodular lattices Dedekind-MacNiellie completion Orthogonal sets and orthocomplete posets Orthomodular posets and their Dedekind-MacNeille completion Pseudo-orthomodular posets and their Dedekind-MacNeille completion
--	---

Orthogonal sets and orthocomplete posets

A subset $S \subseteq P$ of a poset **P** with complementation such that $s \leq t'$ for any pair $s, t \in S, s \neq t$ is called *orthogonal*.

A poset **P** with complementation is called an *orthocomplete poset* if every orthogonal subset of **P** has a supremum.

A poset **P** is said to have a *finite rank* if every orthogonal subset of **P** is finite.

Introduction - pseudo-orthomodular posets Basic notions, definitions and results Orthomodular Dedekind-MacNeille completion of complemented posets	LU-identifies Posets with with antitone involution and complementation Orthomodular lattices Dedekind-MacNeille completion Orthogonal sets and orthocomplete posets Orthomodular posets and their Dedekind-MacNeille completion Pseudo-orthomodular posets and their Dedekind-MacNeille completion
--	--

Orthogonal sets and orthocomplete posets

A subset $S \subseteq P$ of a poset **P** with complementation such that $s \leq t'$ for any pair $s, t \in S, s \neq t$ is called *orthogonal*.

A poset **P** with complementation is called an *orthocomplete poset* if every orthogonal subset of **P** has a supremum.

A poset **P** is said to have a *finite rank* if every orthogonal subset of **P** is finite.

Introduction - pseudo-orthomodular posets Basic notions, definitions and results Orthomodular Dedekind-MacNeille completion of complemented posets	LU-identities Posets with with antitone involution and complementation Orthomodular lattices Dedekind-MacNeille completion Orthogonal sets and orthocomplete posets Orthomodular posets and their Dedekind-MacNeille completion Pseudo-orthomodular posets and their Dedekind-MacNeille completion
--	---

Orthogonal sets and orthocomplete posets

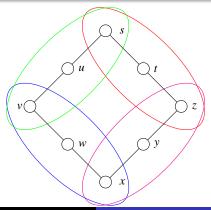
A subset $S \subseteq P$ of a poset **P** with complementation such that $s \leq t'$ for any pair $s, t \in S, s \neq t$ is called *orthogonal*.

A poset **P** with complementation is called an *orthocomplete poset* if every orthogonal subset of **P** has a supremum.

A poset P is said to have a *finite rank* if every orthogonal subset of P is finite.

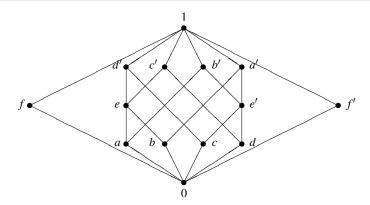
Orthomodular posets and their Dedekind-MacNeille completion

It is known that there is a finite orthomodular poset $\mathbf{P} = (P, \leq, ', 0, 1)$ which is not pseudo-orthomodular such that its Dedekind-MacNeille completion $\mathbf{DM}(\mathbf{P})$ need not be an orthomodular lattice.



Pseudo-orthomodular posets and their Dedekind-MacNeille completion

It is easy to find an example of a finite pseudo-orthomodular poset P such that DM(P) is a nonmodular orthomodular lattice.



Outline

- Introduction pseudo-orthomodular posets
- 2 Basic notions, definitions and results
 - LU-identities
 - Posets with with antitone involution and complementation
 - Orthomodular lattices
 - Dedekind-MacNeille completion
 - Orthogonal sets and orthocomplete posets
 - Orthomodular posets and their Dedekind-MacNeille completion
 - Pseudo-orthomodular posets and their Dedekind-MacNeille completion
- 3 Orthomodular Dedekind-MacNeille completion of complemented posets
 - Orthomodular Dedekind-MacNeille completion implies pseudo-orthomodularity
 - Orthocomplete atomic orthomodular posets and their Dedekind-MacNeille completion
 - Dedekind-MacNeille completion of finite pseudo-orthomodular posets

Orthomodular Dedekind-MacNeille completion implies pseudo-orthomodularity Orthocomplete atomic orthomodular posets and their Dedekind-MacNeille comp Dedekind-MacNeille completion of finite pseudo-orthomodular posets

Orthomodular Dedekind-MacNeille completion implies pseudo-orthomodularity

Theorem 1

Let $\mathbf{P} = (P, \leq, ', 0, 1)$ be a complemented poset such that $\mathbf{DM}(\mathbf{P})$ is an orthomodular lattice. Then \mathbf{P} is pseudo-orthomodular.

Proof.

Let **DM**(**P**) be an orthomodular lattice and let $x, y \in P$. We compute: $L(U(x,y)) = x \lor_{\mathbf{DM}(\mathbf{P})} y = ((x \lor_{\mathbf{DM}(\mathbf{P})} y) \land_{\mathbf{DM}(\mathbf{P})} y') \lor_{\mathbf{DM}(\mathbf{P})} y = LU(L(U(x,y),y'),y).$ Hence U(L(U(x,y),y'),y) = U(x,y).

Orthomodular Dedekind-MacNeille completion implies pseudo-orthomodularity Orthocomplete atomic orthomodular posets and their Dedekind-MacNeille comp Dedekind-MacNeille completion of finite pseudo-orthomodular posets

Orthomodular Dedekind-MacNeille completion implies pseudo-orthomodularity

Theorem 1

Let $\mathbf{P} = (P, \leq, ', 0, 1)$ be a complemented poset such that $\mathbf{DM}(\mathbf{P})$ is an orthomodular lattice. Then \mathbf{P} is pseudo-orthomodular.

Proof.

Let **DM**(**P**) be an orthomodular lattice and let $x, y \in P$. We compute:

$$\begin{split} L(U(x,y)) &= x \vee_{\mathbf{DM}(\mathbf{P})} y = ((x \vee_{\mathbf{DM}(\mathbf{P})} y) \wedge_{\mathbf{DM}(\mathbf{P})} y') \vee_{\mathbf{DM}(\mathbf{P})} y = LU(L(U(x,y),y'),y). \end{split}$$
 Hence $U(L(U(x,y),y'),y) = U(x,y).$

Orthocomplete atomic orthomodular posets and their Dedekind-MacNeille completion

Theorem 2

Let $\mathbf{P} = (P, \leq, ', 0, 1)$ be an orthocomplete atomic orthomodular poset. The following conditions are equivalent:

(i) P is pseudo-orthomodular.

(ii) **P** is a complete orthomodular lattice.

(iii) $\mathbf{DM}(\mathbf{P})$ is orthomodular.

Proof.

Orthocomplete atomic orthomodular posets and their Dedekind-MacNeille completion

Theorem 2

Let $\mathbf{P} = (P, \leq, ', 0, 1)$ be an orthocomplete atomic orthomodular poset. The following conditions are equivalent:

- (i) P is pseudo-orthomodular.
- (ii) **P** is a complete orthomodular lattice.

(iii) $\mathbf{DM}(\mathbf{P})$ is orthomodular.

Proof.

Orthocomplete atomic orthomodular posets and their Dedekind-MacNeille completion

Theorem 2

Let $\mathbf{P} = (P, \leq, ', 0, 1)$ be an orthocomplete atomic orthomodular poset. The following conditions are equivalent:

- (i) P is pseudo-orthomodular.
- (ii) P is a complete orthomodular lattice.

(iii) $\mathbf{DM}(\mathbf{P})$ is orthomodular.

Proof.

Orthocomplete atomic orthomodular posets and their Dedekind-MacNeille completion

Theorem 2

Let $\mathbf{P} = (P, \leq, ', 0, 1)$ be an orthocomplete atomic orthomodular poset. The following conditions are equivalent:

- (i) P is pseudo-orthomodular.
- (ii) **P** is a complete orthomodular lattice.
- (iii) DM(P) is orthomodular.

Proof.

Orthocomplete atomic orthomodular posets and their Dedekind-MacNeille completion

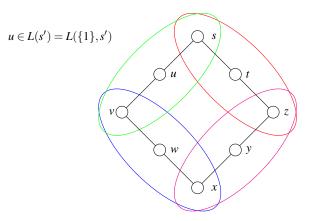
Theorem 2

Let $\mathbf{P} = (P, \leq, ', 0, 1)$ be an orthocomplete atomic orthomodular poset. The following conditions are equivalent:

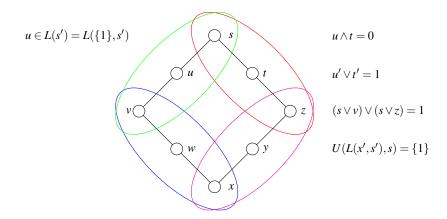
- (i) **P** is pseudo-orthomodular.
- (ii) **P** is a complete orthomodular lattice.
- (iii) DM(P) is orthomodular.

Proof.

Orthomodular Dedekind-MacNeille completion implies pseudo-orthomodularity Orthocomplete atomic orthomodular posets and their Dedekind-MacNeille comp Dedekind-MacNeille completion of finite pseudo-orthomodular posets



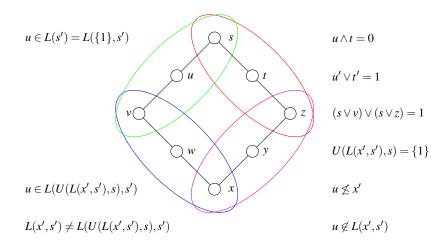
Orthomodular Dedekind-MacNeille completion implies pseudo-orthomodularity Orthocomplete atomic orthomodular posets and their Dedekind-MacNeille comp Dedekind-MacNeille completion of finite pseudo-orthomodular posets



Orthomodular Dedekind-MacNeille completion implies pseudo-orthomodularity Orthocomplete atomic orthomodular posets and their Dedekind-MacNeille comp Dedekind-MacNeille completion of finite pseudo-orthomodular posets



Orthomodular Dedekind-MacNeille completion implies pseudo-orthomodularity Orthocomplete atomic orthomodular posets and their Dedekind-MacNeille comp Dedekind-MacNeille completion of finite pseudo-orthomodular posets



Orthocomplete atomic orthomodular posets and their Dedekind-MacNeille completion

Corollary 3

Let $\mathbf{P} = (P, \leq, ', 0, 1)$ be a finite orthomodular poset which is not a lattice. Then its Dedekind-MacNeille completion $\mathbf{DM}(\mathbf{P})$ is not orthomodular.

Orthomodular Dedekind-MacNeille completion implies pseudo-orthomodularity Orthocomplete atomic orthomodular posets and their Dedekind-MacNeille comp Dedekind-MacNeille completion of finite pseudo-orthomodular posets

Dedekind-MacNeille completion of finite pseudo-orthomodular posets

Theorem 4

Let $\mathbf{P} = (P, \leq, ', 0, 1)$ be an atomic pseudo-orthomodular poset with finite rank. Then $\mathbf{DM}(\mathbf{P})$ is orthomodular.

Corollary 5

Let $\mathbf{P} = (P, \leq, ', 0, 1)$ be a finite pseudo-orthomodular poset. Then $\mathbf{DM}(\mathbf{P})$ is a complete orthomodular lattice.

Orthormodular Dedekind-MacNeille completion implies pseudo-orthormodularity Orthocomplete atomic orthormodular posets and their Dedekind-MacNeille comp Dedekind-MacNeille completion of finite pseudo-orthormodular posets

Dedekind-MacNeille completion of finite pseudo-orthomodular posets

Theorem 4

Let $\mathbf{P} = (P, \leq, ', 0, 1)$ be an atomic pseudo-orthomodular poset with finite rank. Then $\mathbf{DM}(\mathbf{P})$ is orthomodular.

Corollary 5

Let $\mathbf{P} = (P, \leq, ', 0, 1)$ be a finite pseudo-orthomodular poset. Then $\mathbf{DM}(\mathbf{P})$ is a complete orthomodular lattice.

Thank you for your attention.