Amalgamating poset extensions

Rob Egrot Faculty of ICT, Mahidol University

Polarities

- A **polarity** is a triple (X, Y, R) where X and Y are sets and $R \subseteq X \times Y$.
- Define an antitone Galois connection $\wp(X) \leftrightarrow \wp(Y)$ using *R*.
- Let \mathcal{G} be the complete lattice of stable subsets of X.
 - E.g. for canonical extension use X = F, Y = I, and define R to be 'non-empty intersection'. Then there's a natural embedding of P into G (Dunn et al. 2005 [2]).
- Given a poset P, there is a 1-1 correspondence between Δ₁-completions of P and a particular class of polarities defined from P (Gehrke et al. 2013 [5]).

The intermediate structure

- For polarities producing Δ₁-completions, X and Y are essentially meet- and join-extensions of P.
- An 'intermediate structure' emerges.

• Order restricted to $X \times Y$ is R.

Shifting perspective

- An extension polarity is a triple (e_X, e_Y, R) such that:
 1. e_X : P → X and e_Y : P → Y are order extensions.
 2. R ⊆ X × Y.
- Question: Can we always get something like the 'intermediate structure' using X, Y, R?

Answer: No. A little thought reveals that given e_X and e_Y there are constraints on the choice of R.

• E.g. if $x_1 \le x_2$ and x_2Ry then we should have x_1Ry .

Coherence conditions

- Define (e_X, e_Y, R) to be Galois if e_X is a meet-extension, e_Y is a join-extension, and we can order X ∪ Y so that:
 - 1. ι_X and ι_Y are order embeddings.
 - 2. ι_X preserves meets of subsets of $e_X[P]$, and ι_Y preserves joins of subsets of $e_Y[P]$.
 - 3. The order on $X \times Y$ is R.
- ► For Galois polarities the order on X ∪ Y meeting the conditions above is unique.
- See [4] for more information.

Morphisms

- We can define a concept of a morphism between Galois polarities (e_X, e_Y, R) → (e_{X'}, e_{Y'}, R').
- This turns the class of Galois polarities into a category.
- There is an adjunction between the category of Galois polarities and the category of Δ₁-completions with complete lattice homomorphisms.
- The complete Galois polarities are the fixed points of this adjunction (up to isomorphism).

The universality of R_l

- Given meet-extension e_X and join-extension e_Y, the smallest R making (e_X, e_Y, R) Galois is R_I (non-empty intersection).
- (X ⊎ Y, ι_X, ι_Y) induced by (e_X, e_Y, R_I) has a universal property.

As an initial object

 (\u03c0_X, \u03c0_Y) is initial in the category whose objects are pairs of monotone maps (f,g) and whose maps are commuting triangles.

$$(X,Y) \xrightarrow{(f_1,g_1)} Q_1$$

Defining canonical amalgamations

 $e_X : P \to X$ is a meet-extension, $e_Y : P \to Y$ is a join-extension. The **canonical amalgamation of** e_X and e_Y is a triple $(\mathcal{A}_{(e_X, e_Y)}, \pi_X, \pi_Y)$:

 π_X completely meet-preserving, π_Y completely join-preserving, both order embeddings.

Basic properties of canonical amalgamations

- Canonical Amalgamations always exist.
- They are unique up to isomorphism:

 γ preserves meets iff e_X does, and joins iff e_Y does.

Lifting maps to canonical amalgamations

Every meet-completion $e_X : P \to X$ is defined by a universal property (J. Schmidt 1974 [7]).

• If (e_X, e_Y, f) are ' (α, β) -nice':

h has some preservation properties parametrized by α and β.
See [3] for more information.

The free lattice generated by P preserving selected meets and joins

▶ F(U, D) is a lattice.

• μ is a $(\mathcal{U}, \mathcal{D})$ -embedding.

▶ If f is a (U, D)-morphism then:

$$\begin{array}{c} P \xrightarrow{\mu} F(\mathcal{U}, \mathcal{D}) \\ f \\ L \\ L \end{array}$$

f* is a lattice homomorphism (see Dean 1964 [1], Lakser 2012 [6]).

Constructing the free lattice - preserving ${\mathcal U}$ and ${\mathcal D}$

Choose e_{X_0} and e_{Y_0} carefully to preserve meets from \mathcal{D} and joins from \mathcal{U} respectively, and so that X_0 and Y_0 are 'finitely generated' by P.

Constructing the free lattice - filling out the lattice

Choose e_{X_1} and e_{Y_1} carefully to preserve all finite meets and, respectively, joins of subsets of $\gamma_0[P]$, and so that X_1 and Y_1 are 'finitely generated'.

Constructing the free lattice - etc.

Choose e_{X_2} and e_{Y_2} carefully to preserve all meets and, respectively, joins of finite subsets of $\gamma_1[A_1]$, and so that X_2 and Y_2 are 'finitely generated', and so on.

Constructing the free lattice - a universal property

Let f be a $(\mathcal{U}, \mathcal{D})$ -morphism. Then (e_{X_0}, e_{Y_0}, f) is (ω, ω) -nice, so we get unique f_1 .

Constructing the free lattice - extending universality

 (e_{X_1}, e_{Y_1}, f_1) is (ω, ω) -nice so we get unique f_2 ...

Constructing the free lattice - universality step by step

...and so on...

Constructing the free lattice - using the colimit

Directed colimits exist in Pos.

Properties of \mathcal{A} .

 f* is the unique lattice homomorphism making the outer triangle commute.

▶ I.e.
$$\mathcal{A} = F(\mathcal{U}, \mathcal{D}).$$

.A

Some observations

- Each \mathcal{A}_n is a kind of approximation of $F(\mathcal{U}, \mathcal{D})$.
- ▶ If *P* is finite each A_n will be finite, though F(U, D) will usually be infinite.
- ► Finite joins and meets defined from \(\gamma_n[\mathcal{A}_n]\) in \(\mathcal{A}_{n+1}\) are preserved in \(\mathcal{A}\).
- The order on \mathcal{A}_n is unchanged in \mathcal{A} .
- ► The chain P → A₁ → A₂ → ... builds F(U, D), and guarantees the 'correctness' of the order structure, and most of the existing lattice structure, at each stage.

[1] R. A. Dean.

Free lattices generated by partially ordered sets and preserving bounds. *Canad. J. Math.*, 16:136–148, 1964.

- [2] J. Dunn, M. Gehrke, and A. Palmigiano. Canonical extensions and relational completeness of some substructural logics. J. Symb. Logic, 70:713–740, 2005.
- [3] Egrot. Something like "amalgamating poset extensions". In preparation.
- [4] R. Egrot. Order polarities. preprint.
- [5] M. Gehrke, R. Jansana, and A. Palmigiano. Δ_1 -completions of a poset. *Order*, 30(1):39–64, 2013.
- [6] H. Lakser. Lattices freely generated by an order and preserving certain bounds. *Algebra Universalis*, 67(2):113–120, 2012.
- [7] J. Schmidt.

Each join-completion of a partially ordered set is the solution of a universal problem. *J. Austral. Math. Soc.*, 17:406–413, 1974.