

Enriched distributivity over finite commutative residuated lattices

 $\label{eq:Adriana} \mbox{Adriana Balan}^{*1} \mbox{joint work with Peter Jipsen}^{\ddagger} \mbox{ and Alexander Kurz}^{\ddagger}$

*University Politehnica of Bucharest, [‡]Chapman University

TACL 2019, Nice

¹Supported by a mobility grant of the Romanian Ministery of Research and Innovation, CNCS-UEFISCDI, project number PN-III-P1-1.1-MC-2019-1083, within PNCDI III

What is this talk about?

Many-valued complete distributivity, equationally

What is this talk about?

Many-valued complete distributivity, equationally

What does many-valued mean?

This talk: quantale-enriched

$$\mathsf{Set} \xrightarrow{ \begin{bmatrix} -,2 \end{bmatrix}} \mathsf{Set}^\mathsf{op}$$

$$\begin{array}{c} \text{double} \\ \text{dualization} \\ \text{monad} \end{array} [[-,2],2] \overset{\left[-,2\right]}{\longleftarrow} \mathsf{Set} \overset{\left[-,2\right]}{\longleftarrow} \mathsf{Set}^{\mathsf{op}}$$

► The algebras for the double dualization monad: complete atomic Boolean algebras (CABA)

- ► The algebras for the double dualization monad: complete atomic Boolean algebras (CABA)
- $\blacktriangleright \ [-,2]:\mathsf{Set}^\mathsf{op}\to\mathsf{Set}\ \mathsf{monadic}$

Ordered Stone duality

- ► The algebras for the double dualization monad: completely distributive lattices (CD)
- ▶ [-,2] : Ord^{op} \rightarrow Ord not monadic
- CD monadic over Ord (ordered variety)

Ordered Stone duality

- The algebras for the double dualization monad: completely distributive lattices (CD)
- ▶ [-,2] : Ord^{op} \rightarrow Ord not monadic
- CD monadic over Ord (ordered variety)
- CD also monadic over Set (variety)

Each completely distributive lattice A is a complete lattice satisfying

$$\bigwedge_{k \in K} \bigvee \{ a \mid a \in S_k \} = \bigvee_{f \in \mathcal{F}} \bigwedge \{ a \mid a \in f(A) \}$$

for every family of subsets $(S_k)_{k\in K}$ of A, with \mathcal{F} the set of choice functions

From order (two-valued) to quantale-enriched (multi-valued)

Let $Q = (Q, \otimes, e, [-, -])$ be a commutative quantale

- ▶ a sup-lattice (Q, \lor)
- ightharpoonup a commutative monoid (\mathcal{Q},\otimes,e)

such that $x\otimes -$ preserves all suprema, hence it has a right adjoint [x,-]

$$x \otimes y \leq z \iff y \leq [x, z]$$

Examples

- \triangleright $Q=(2,\wedge,1)$
- $\qquad \qquad \mathcal{Q} = ([0,\infty]^{op},+,0)$

From order (two-valued) to quantale-enriched (multi-valued)

Let $Q = (Q, \otimes, e, [-, -])$ be a commutative quantale

- ▶ a sup-lattice (Q, \lor)
- ▶ a commutative monoid (Q, \otimes, e)

such that $x\otimes -$ preserves all suprema, hence it has a right adjoint [x,-]

$$x \otimes y \leq z \iff y \leq [x, z]$$

Examples

- \triangleright $Q=(2,\wedge,1)$
- $Q = ([0, \infty]^{op}, +, 0)$
- ▶ There are three possible quantale structures on $3 = \{0 < 1/2 < 1\}$

From order (two-valued) to quantale-enriched (multi-valued)

Let $Q = (Q, \otimes, e, [-, -])$ be a commutative quantale

- ▶ a sup-lattice (Q, ∨)
- ightharpoonup a commutative monoid (\mathcal{Q},\otimes,e)

such that $x \otimes -$ preserves all suprema, hence it has a right adjoint [x,-]

$$x \otimes y \leq z \iff y \leq [x, z]$$

Examples

- $Q = (2, \wedge, 1)$
- $\qquad \qquad \mathcal{Q} = ([0,\infty]^{op},+,0)$
- \blacktriangleright There are three possible quantale structures on $\Im=\{0<1/2<1\}$
- ► There are also non-distributive quantales:

e.g. M_3 idempotent tensor

Quantales and quantale-enriched categories

 $ightharpoonup \mathcal{Q}$ -category $\mathscr{A} = (A, \mathscr{A} : A \times A \rightarrow \mathcal{Q})$

$$e \leq \mathscr{A}(a,a)$$
 and $\mathscr{A}(a,b) \otimes \mathscr{A}(b,c) \leq \mathscr{A}(a,c)$

▶ Q-functor $f: \mathcal{A} \to \mathcal{A}'$

$$\mathscr{A}(a,b) \leq \mathscr{A}'(fa,fb)$$

ordered sets

Examples

$$a \leq a$$
, $(a \leq b) \land (b \leq c) \Rightarrow (a \leq c)$

quasi-metric spaces

$$0 \geq \mathscr{A}(a,a), \quad \mathscr{A}(a,b) + \mathscr{A}(b,c) \geq \mathscr{A}(a,c)$$

▶ In particular, each *Q*-category *A* carries an order

$$a \le b \iff e \le \mathscr{A}(a,b)$$

$$[[-,Q],Q] \longrightarrow Q\text{-cat} \xrightarrow{[-,Q]} Q\text{-cat}^{op}$$

▶ *Q*-CCD: the category of algebras

These are (complete and) cocomplete \mathcal{Q} -categories, such that taking \mathcal{Q} -suprema is a continuous \mathcal{Q} -functor. Analogous to the ordered case, we call them **completely distributive** \mathcal{Q} -categories (\mathcal{Q} -ccd)

Homomorphisms: continuous and cocontinuous Q-functors.

Stubbe. Towards "dynamic domains": Totally continuous cocomplete Q-categories (2007)

Stubbe. The double power monad is the composite power monad (2017) Băbuş&Kurz. On the Logic of Generalised Metric Spaces (2016)

▶ *Q*-CCD: the category of algebras

These are (complete and) cocomplete \mathcal{Q} -categories, such that taking \mathcal{Q} -suprema is a continuous \mathcal{Q} -functor. Analogous to the ordered case, we call them **completely distributive** \mathcal{Q} -categories (\mathcal{Q} -ccd)

Homomorphisms: continuous and cocontinuous \mathcal{Q} -functors.

Stubbe. Towards "dynamic domains": Totally continuous cocomplete Q-categories (2007)

Stubbe. The double power monad is the composite power monad (2017) Băbuş&Kurz. On the Logic of Generalised Metric Spaces (2016)

Examples

- \triangleright Q, seen as a Q-category with [-,-], is Q-completely distributive
- ▶ For any \mathcal{Q} -category \mathcal{X} , $[\mathcal{X}^{op}, \mathcal{Q}]$ is \mathcal{Q} -completely distributive In particular, for any set X, the \mathcal{Q} -powerset $[X, \mathcal{Q}]$ is \mathcal{Q} -ccd.
- ▶ For a cocomplete Q-category \mathscr{A} , the following are equivalent:
 - ▶ A is projective as a cocomplete Q-category
 - A is Q-completely distributive
 - lacktriangleright ${\mathscr Q}$ is the ${\mathscr Q}$ -category of regular presheaves on a regular ${\mathscr Q}$ -semicategory

Stubbe. Towards "dynamic domains": Totally continuous cocomplete Q-categories (2007)

Remarks

- Q-complete distributivity does not necessarily entail complete distributivity!
 - For example, $\mathcal Q$ itself is $\mathcal Q$ -ccd but not necessarily distributive as a lattice
- ► However, every Q-completely distributive Q-category Ø is completely distributive as a lattice ⇔ Q is a completely distributive lattice Lai&Zhang. Many-Valued Complete Distributivity. (2006)

▶ Q-CCD is monadic over Set – in particular, the free Q-ccd over a set X is $[[X,Q]^{op},Q]$

Pu&Zhang. Categories enriched over a quantaloid: algebras. (2015)

► Therefore *Q*-CCD must have an **equational axiomatisation**

▶ Q-CCD is monadic over Set – in particular, the free Q-ccd over a set X is $[[X,Q]^{op},Q]$

Pu&Zhang. Categories enriched over a quantaloid: algebras. (2015)

► Therefore *Q*-CCD must have an **equational axiomatisation**

Recall that a \mathcal{Q} -completely distributive \mathcal{Q} -category is an algebra, i.e. a complete and cocomplete \mathcal{Q} -category, such that such that taking \mathcal{Q} -suprema is a continuous \mathcal{Q} -functor. Completeness and cocompleteness can be expressed by **operations and equations**:

$$\mathscr{A} = (A, \bigsqcup, \bigcap, (v * -)_{v \in \mathcal{Q}}, (v \rhd -)_{v \in \mathcal{Q}})$$

such that

- \triangleright (A, | |, |) is a complete lattice
- \triangleright v*- and $v \triangleright -$ are **adjoint** unary operators satisfying

$$e * a = a$$
 $v * (w * a) = (v \otimes w) * a$ $\left(\bigvee_{i} v_{i}\right) * a = \bigsqcup_{i} (v_{i} * a)$
 $e \rhd a = a$ $v \rhd (w \rhd a) = (v \otimes w) \rhd a$ $\left(\bigvee_{i} v_{i}\right) \rhd a = \prod_{i} (v_{i} \rhd a)$

- ► What about *Q*-complete distributivity?
- ▶ Let $\sup : [\mathscr{A}^{op}, \mathcal{Q}] \to \mathscr{A}$ be the \mathcal{Q} -functor taking \mathcal{Q} -suprema Recall that being \mathcal{Q} -ccd means that \sup preserves weighted limits:

$$\sup (\lim_w G) = \lim_w (\sup \circ G)$$

for every $\mathcal Q$ -functors $w:\mathscr K^{\mathrm{op}} \to \mathcal Q$ and $G:\mathscr K \to [\mathscr A^{\mathrm{op}},\mathcal Q]$

- ▶ What about *Q*-complete distributivity?
- ▶ Let $\sup : [\mathscr{A}^{op}, \mathcal{Q}] \to \mathscr{A}$ be the \mathcal{Q} -functor taking \mathcal{Q} -suprema Recall that being \mathcal{Q} -ccd means that \sup preserves weighted limits:

$$\sup (\lim_w G) = \lim_w (\sup \circ G)$$

for every \mathcal{Q} -functors $w: \mathscr{K}^{\mathsf{op}} \to \mathcal{Q}$ and $G: \mathscr{K} \to [\mathscr{A}^{\mathsf{op}}, \mathcal{Q}]$

► Expressing sup by tensors and joins, and likely the weighted limits above by cotensors and meets in 𝒰, the above rewrites as

$$\bigsqcup_{a} \left(\bigwedge_{k} [w(k), G(k)(a)] \right) * a = \prod_{k} w(k) \rhd \left(\bigsqcup_{a} G(k)(a) * a \right)$$

for every \mathcal{Q} -functors $w: \mathscr{K}^{\mathsf{op}} \to \mathcal{Q}$ and $G: \mathscr{K} \to [\mathscr{A}^{\mathsf{op}}, \mathcal{Q}]$

- ▶ What about *Q*-complete distributivity?
- ▶ Let $\sup : [\mathscr{A}^{op}, \mathcal{Q}] \to \mathscr{A}$ be the \mathcal{Q} -functor taking \mathcal{Q} -suprema Recall that being \mathcal{Q} -ccd means that \sup preserves weighted limits:

$$\sup (\lim_w G) = \lim_w (\sup \circ G)$$

for every \mathcal{Q} -functors $w: \mathscr{K}^{\mathsf{op}} \to \mathcal{Q}$ and $G: \mathscr{K} \to [\mathscr{A}^{\mathsf{op}}, \mathcal{Q}]$

ightharpoonup Expressing \sup by tensors and joins, and likely the weighted limits above by cotensors and meets in \mathscr{A} , the above rewrites as

$$\bigsqcup_{a} \left(\bigwedge_{k} [w(k), G(k)(a)] \right) * a = \prod_{k} w(k) \rhd \left(\bigsqcup_{a} G(k)(a) * a \right)$$

for every \mathcal{Q} -functors $w: \mathscr{K}^{\mathsf{op}} \to \mathcal{Q}$ and $G: \mathscr{K} \to [\mathscr{A}^{\mathsf{op}}, \mathcal{Q}]$

▶ One can always without loss of generality replace % by a discrete Q-category (a set)

Hence $w: \mathcal{K}^{op} \to \mathcal{A}$ will just be a function $K \to A$

▶ Also, replace the \mathcal{Q} -functor $G : \mathcal{K} \to [\mathscr{A}^{op}, \mathcal{Q}]$ by a function $G : \mathcal{K} \to [A, \mathcal{Q}]$

But there is a price to pay: the passage from a family of $\mathcal Q$ -downsets $\mathcal G$ to a family of $\mathcal Q$ -subsets forces the appearance of the $\mathcal Q$ -down-closure of each " $\mathcal Q$ -subset" $\mathcal G(k) \in [\mathcal A, \mathcal Q]$

$$\bigsqcup_{a} \left(\bigwedge_{k} [w(k), \downarrow G(k)(a)] \right) * a = \prod_{k} w(k) \rhd \left(\bigsqcup_{a} G(k)(a) * a \right)$$

▶ Also, replace the \mathcal{Q} -functor $G : \mathcal{K} \to [\mathscr{A}^{op}, \mathcal{Q}]$ by a function $G : \mathcal{K} \to [A, \mathcal{Q}]$

But there is a price to pay: the passage from a family of $\mathcal Q$ -downsets $\mathcal G$ to a family of $\mathcal Q$ -subsets forces the appearance of the $\mathcal Q$ -down-closure of each " $\mathcal Q$ -subset" $\mathcal G(k)\in [A,\mathcal Q]$

$$\bigsqcup_{a} \left(\bigwedge_{k} [w(k), \downarrow G(k)(a)] \right) * a = \prod_{k} w(k) \rhd \left(\bigsqcup_{a} G(k)(a) * a \right)$$

▶ Expressing $\downarrow G(k)$ by tensors and joins in $\mathscr A$ produces

$$\bigsqcup_{a} \left(\bigwedge_{k} [w(k), \bigvee_{b} G(k)(b) \otimes \mathscr{A}(a, b)] \right) *a = \prod_{k} w(k) \triangleright \left(\bigsqcup_{a} G(k)(a) *a \right)$$

▶ Also, replace the \mathcal{Q} -functor $G: \mathcal{K} \to [\mathscr{A}^{op}, \mathcal{Q}]$ by a function $G: \mathcal{K} \to [A, \mathcal{Q}]$

But there is a price to pay: the passage from a family of $\mathcal Q$ -downsets G to a family of $\mathcal Q$ -subsets forces the appearance of the $\mathcal Q$ -down-closure of each " $\mathcal Q$ -subset" $G(k) \in [A,\mathcal Q]$

$$\bigsqcup_{a} \left(\bigwedge_{k} [w(k), \downarrow G(k)(a)] \right) * a = \prod_{k} w(k) \rhd \left(\bigsqcup_{a} G(k)(a) * a \right)$$

 \blacktriangleright Expressing $\downarrow G(k)$ by tensors and joins in $\mathscr A$ produces

$$\bigsqcup_{a} \left(\bigwedge_{k} [w(k), \bigvee_{b} G(k)(b) \otimes \mathscr{A}(a, b)] \right) * a = \prod_{k} w(k) \triangleright \left(\bigsqcup_{a} G(k)(a) * a \right)$$

▶ Unfortunately, the *Q*-category structure of *A*

$$\mathscr{A}(a,b) = \bigvee \{v \in \mathcal{Q} \mid v * a \leq b\},\$$

depends on the condition $v * a \le b$

What can it be done about the Q-complete distributivity relation?

$$\bigsqcup_{a} \left(\bigwedge_{k} [w(k), \bigvee_{b} G(k)(b) \otimes \mathscr{A}(a, b)] \right) * a = \prod_{k} w(k) \rhd \left(\bigsqcup_{a} G(k)(a) * a \right)$$

- ▶ Look for a formulation of the distributive law above which translates $[w(k), \bigvee_b G(k)(b) \otimes \mathscr{A}(a,b)]$ to a more traditional formulation using choice functions (as in the case Q=2)
- ▶ This may require additional conditions on the quantale Q (but ones which are satisfied in the case Q = 2 and thus do generalise it)

Let $\mathcal Q$ be a commutative unital quantale. Assume that

- Q is completely distributive as a lattice, and
- ▶ all powers $[v, -]: \mathcal{Q} \to \mathcal{Q}$, for $v \in \mathcal{Q}$, preserve non-empty joins

Let $\mathscr{A}=(A,\bigsqcup,\bigcap,(v*-)_{v\in\mathcal{Q}},(v\rhd-)_{v\in\mathcal{Q}})$ be a cocomplete (and complete) \mathscr{Q} -category.

Then \mathscr{A} is \mathcal{Q} -ccd **iff** for every functions $w: K \to A$, $G: K \to [A, \mathcal{Q}]$, the following holds

$$\prod_{k \in K} w(k) \rhd \left(\bigsqcup_{a \in A} G(k)(a) * a \right) = \bigsqcup_{f \in \mathcal{F}} \prod_{k \in K} w(k) \rhd \left(G(k)(fk) * fk \right)$$

where \mathcal{F} is the set of functions $K \to A$

Remarks

- Finite commutative MTL-algebras are quantales satisfying previous conditions
- ▶ We already know that the assumption *Q* completely distributive entails that each *Q*-ccd is also completely distributive
- ▶ Hence, we may recover complete distributivity by choosing trivial weights w(k) = e and discrete \mathcal{Q} -subsets G(k) corresponding to a family of ordinary subsets $(A_k)_{k \in \mathcal{K}}$ of A

$$\prod_{k \in K} \bigsqcup_{a \in A_k} a = \bigsqcup_{\{f: K \to A \mid fk \in A_k\}} \prod_{k \in K} fk$$

Remarks

▶ The particular case $K = \{0\}$, w(0) = v, G(k)(-) = e gives

$$v \rhd \bigsqcup_{a \in A} a = \bigsqcup_{a \in A} v \rhd a$$

hence $v \rhd -$ distributes over (non-empty) joins², for each $v \in \mathcal{Q}$

▶ In fact, each Q-ccd is a quotient of a subalgebra of a product of copies of Q

Lai&Zhang. Many-Valued Complete Distributivity. (2006)

▶ That is, Q generates the variety of Q-ccd.

Hence an equation holds in a \mathcal{Q} -completely distributive \mathcal{Q} -category \mathscr{A} iff it holds in \mathcal{Q} .

²Observe that the empty \mathcal{Q} -category cannot be \mathcal{Q} -ccd

Remarks

► Looking at the constructive/non-constructive Q-ccd equations

$$\prod_{k \in K} w(k) \rhd \left(\bigsqcup_{a \in A} G(k)(a) * a \right) = \bigsqcup_{a \in A} \left(\bigwedge_{k \in K} [w(k), \downarrow G(k)(a)] \right) * a$$

$$\prod_{k \in K} w(k) \rhd \left(\bigsqcup_{a \in A} G(k)(a) * a \right) = \bigsqcup_{f \in \mathcal{F}} \prod_{k \in K} w(k) \rhd (G(k)(fk) * fk)$$
we see that the lhs coincide

The inequality

$$\bigsqcup_{a\in A} \left(\bigwedge_{k\in K} [w(k), \downarrow G(k)(a)] \right) * a \ge \bigsqcup_{f\in \mathcal{F}} \prod_{k\in K} w(k) \rhd (G(k)(fk) * fk)$$

always holds for $\mathcal{Q}\text{-}\operatorname{ccd}$, but it can be strict (e.g for non-distributive quantale \mathcal{Q})

► The distributive law arising from enriching over a commutative quantale Q can be expressed in terms of operations and equations, similar to the familiar distributive law of lattices, under suitable hypotheses – completely distributive quantale Q with the property that powers preserve non-empty joins (in particular, for finite MTL-algebras)

$$\prod_{k \in K} w(k) \rhd \left(\bigsqcup_{a \in A} G(k)(a) * a \right) = \bigsqcup_{f \in \mathcal{F}} \prod_{k \in K} w(k) \rhd \left(G(k)(fk) * fk \right)$$

► The distributive law arising from enriching over a commutative quantale Q can be expressed in terms of operations and equations, similar to the familiar distributive law of lattices, under suitable hypotheses – completely distributive quantale Q with the property that powers preserve non-empty joins (in particular, for finite MTL-algebras)

$$\prod_{k \in K} w(k) \rhd \left(\bigsqcup_{a \in A} G(k)(a) * a \right) = \bigsqcup_{f \in \mathcal{F}} \prod_{k \in K} w(k) \rhd \left(G(k)(fk) * fk \right)$$

▶ What about other distributivity-like laws, e.g. $v \triangleright (w * a) = [v, w] * a$?

► The distributive law arising from enriching over a commutative quantale Q can be expressed in terms of operations and equations, similar to the familiar distributive law of lattices, under suitable hypotheses – completely distributive quantale Q with the property that powers preserve non-empty joins (in particular, for finite MTL-algebras)

$$\prod_{k\in K} w(k) \rhd \left(\bigsqcup_{a\in A} G(k)(a) * a\right) = \bigsqcup_{f\in \mathcal{F}} \prod_{k\in K} w(k) \rhd \left(G(k)(fk) * fk\right)$$

- ▶ What about other distributivity-like laws, e.g. $v \triangleright (w * a) = [v, w] * a$?
- ► More important: to obtain an equational axiomatisation of *Q*-ccd even for non-distributive quantales

► The distributive law arising from enriching over a commutative quantale Q can be expressed in terms of operations and equations, similar to the familiar distributive law of lattices, under suitable hypotheses – completely distributive quantale Q with the property that powers preserve non-empty joins (in particular, for finite MTL-algebras)

$$\prod_{k \in K} w(k) \rhd \left(\bigsqcup_{a \in A} G(k)(a) * a \right) = \bigsqcup_{f \in \mathcal{F}} \prod_{k \in K} w(k) \rhd \left(G(k)(fk) * fk \right)$$

- ▶ What about other distributivity-like laws, e.g. $v \triangleright (w * a) = [v, w] * a$?
- ► More important: to obtain an equational axiomatisation of *Q*-ccd even for non-distributive quantales
- ▶ What about a finitary version of *Q*-ccd (see my talk at TACL2017)?

Thank you for your attention!