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What is this talk about?

Many-valued complete distributivity, equationally

What does many-valued mean?

This talk: quantale-enriched
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Origins: Stone duality
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dualization

monad

Set ⊥
[−,2]

//
Setop

[−,2]
oo

CABA

I The algebras for the double dualization monad: complete atomic
Boolean algebras (CABA)

I [−, 2] : Setop → Set monadic
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Ordered Stone duality

double

dualization

monad

Ord ⊥
[−,2]

//
[[−,2],2]

--

Ordop

[−,2]
oo

yy

CD

OO

��

a

I The algebras for the double dualization monad: completely
distributive lattices (CD)

I [−,2] : Ordop → Ord not monadic

I CD monadic over Ord (ordered variety)

I CD also monadic over Set (variety)

Each completely distributive lattice A is a complete lattice satisfying∧
k∈K

∨
{a | a ∈ Sk} =

∨
f∈F

∧
{a | a ∈ f (A)}

for every family of subsets (Sk)k∈K of A, with F the set of choice functions
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From order (two-valued) to quantale-enriched
(multi-valued)

Let Q = (Q,⊗, e, [−,−]) be a commutative quantale

I a sup-lattice (Q,∨)
I a commutative monoid (Q,⊗, e)

such that x ⊗− preserves all suprema, hence it has a right adjoint [x ,−]

x ⊗ y ≤ z ⇐⇒ y ≤ [x , z ]

Examples

I Q = (2,∧, 1)

I Q = ([0,∞]op,+, 0)

I There are three possible quantale structures on 3 = {0 < 1/2 < 1}
I There are also non-distributive quantales:

e.g. M3 idempotent tensor

>

>⊗ a = a e b = >⊗ b

⊥ = a⊗ b
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Quantales and quantale-enriched categories

I Q-category A = (A,A : A× A→ Q)

e ≤ A (a, a) and A (a, b)⊗A (b, c) ≤ A (a, c)

I Q-functor f : A → A ′

A (a, b) ≤ A ′(fa, fb)

Examples

I ordered sets

a ≤ a, (a ≤ b) ∧ (b ≤ c)⇒ (a ≤ c)

I quasi-metric spaces

0 ≥ A (a, a), A (a, b)+A (b, c) ≥ A (a, c)

I In particular, each Q-category A carries an order

a ≤ b ⇐⇒ e ≤ A (a, b)
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Completely distributive quantale-enriched-categories

Q-cat ⊥
[−,Q]

//
[[−,Q],Q] �� Q-catop

[−,Q]
oo

Q-CCD

I Q-CCD: the category of algebras

These are (complete and) cocomplete Q-categories, such that taking
Q-suprema is a continuous Q-functor. Analogous to the ordered case,
we call them completely distributive Q-categories (Q-ccd)

Homomorphisms: continuous and cocontinuous Q-functors.

Stubbe. Towards ”dynamic domains”: Totally continuous cocomplete Q-categories
(2007)

Stubbe. The double power monad is the composite power monad(2017)

Băbuş&Kurz. On the Logic of Generalised Metric Spaces (2016)

6 / 18



Completely distributive quantale-enriched-categories

Q-cat ⊥
[−,Q]

//
[[−,Q],Q] �� Q-catop

[−,Q]
oo

Q-CCD

OO

��

a

I Q-CCD: the category of algebras

These are (complete and) cocomplete Q-categories, such that taking
Q-suprema is a continuous Q-functor. Analogous to the ordered case,
we call them completely distributive Q-categories (Q-ccd)

Homomorphisms: continuous and cocontinuous Q-functors.

Stubbe. Towards ”dynamic domains”: Totally continuous cocomplete Q-categories
(2007)

Stubbe. The double power monad is the composite power monad(2017)
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Completely distributive quantale-enriched-categories

Examples

I Q, seen as a Q-category with [−,−], is Q-completely distributive

I For any Q-category X , [X op,Q] is Q-completely distributive

In particular, for any set X , the Q-powerset [X ,Q] is Q-ccd.

I For a cocomplete Q-category A , the following are equivalent:

I A is projective as a cocomplete Q-category

I A is Q-completely distributive

I A is the Q-category of regular presheaves on a regular Q-semicategory

Stubbe. Towards ”dynamic domains”: Totally continuous cocomplete Q-categories
(2007)
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Completely distributive Q-categories

Remarks

I Q-complete distributivity does not necessarily entail complete
distributivity!

For example, Q itself is Q-ccd but not necessarily distributive as a lattice

I However, every Q-completely distributive Q-category A is completely
distributive as a lattice ⇐⇒ Q is a completely distributive lattice

Lai&Zhang. Many-Valued Complete Distributivity. (2006)
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Completely distributive Q-categories

I Q-CCD is monadic over Set – in particular, the free Q-ccd over a set
X is [[X ,Q]op,Q]

Pu&Zhang. Categories enriched over a quantaloid: algebras. (2015)

I Therefore Q-CCD must have an equational axiomatisation

Recall that a Q-completely distributive Q-category is an algebra, i.e. a complete

and cocomplete Q-category, such that such that taking Q-suprema is a continuous

Q-functor. Completeness and cocompleteness can be expressed by operations and

equations:

A = (A,
⊔

,
l

, (v ∗ −)v∈Q, (v B−)v∈Q)

such that

I (A,
⊔
,
d

) is a complete lattice

I v ∗ − and v B− are adjoint unary operators satisfying

e ∗ a = a v ∗ (w ∗ a) = (v ⊗ w) ∗ a

(∨
i

vi

)
∗ a =

⊔
i

(vi ∗ a)

e B a = a v B (w B a) = (v ⊗ w) B a

(∨
i

vi

)
B a =

l

i

(vi B a)
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Completely distributive Q-categories

I What about Q-complete distributivity?

I Let sup : [A op,Q]→ A be the Q-functor taking Q-suprema

Recall that being Q-ccd means that sup preserves weighted limits:

sup (limwG ) = limw (sup ◦ G )

for every Q-functors w : K op → Q and G : K → [A op,Q]

I Expressing sup by tensors and joins, and likely the weighted limits
above by cotensors and meets in A , the above rewrites as⊔

a

(∧
k

[w(k),G (k)(a)]

)
∗ a =

l

k

w(k) B (
⊔
a

G (k)(a) ∗ a)

for every Q-functors w : K op → Q and G : K → [A op,Q]

I One can always without loss of generality replace K by a discrete
Q-category (a set)

Hence w : K op → A will just be a function K → A
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Equational presentation of Q-ccd

I Also, replace the Q-functor G : K → [A op,Q] by a function
G : K → [A,Q]

But there is a price to pay: the passage from a family of Q-downsets G to a family

of Q-subsets forces the appearance of the Q-down-closure of each ”Q-subset”

G(k) ∈ [A,Q]⊔
a

(∧
k

[w(k), ↓G (k)(a)]

)
∗ a =

l

k

w(k) B

(⊔
a

G (k)(a) ∗ a

)

I Expressing ↓G (k) by tensors and joins in A produces⊔
a

(∧
k

[w(k),
∨
b

G (k)(b)⊗A (a, b)]

)
∗a =

l

k

w(k)B

(⊔
a

G (k)(a) ∗ a

)
I Unfortunately, the Q-category structure of A

A (a, b) =
∨
{v ∈ Q | v ∗ a ≤ b},

depends on the condition v ∗ a ≤ b
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Equational presentation of Q-ccd

What can it be done about the Q-complete distributivity relation?

⊔
a

(∧
k

[w(k),
∨
b

G (k)(b)⊗A (a, b)]

)
∗ a =

l

k

w(k)B

(⊔
a

G (k)(a) ∗ a

)

I Look for a formulation of the distributive law above which translates
[w(k),

∨
b G (k)(b)⊗A (a, b)] to a more traditional formulation using

choice functions (as in the case Q = 2)

I This may require additional conditions on the quantale Q (but ones
which are satisfied in the case Q = 2 and thus do generalise it)
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Equational presentation of Q-ccd

Let Q be a commutative unital quantale. Assume that

I Q is completely distributive as a lattice, and

I all powers [v ,−] : Q → Q, for v ∈ Q, preserve non-empty joins

Let A = (A,
⊔
,
d
, (v ∗ −)v∈Q, (v B−)v∈Q) be a cocomplete (and

complete) Q-category.

Then A is Q-ccd iff for every functions w : K → A, G : K → [A,Q], the
following holds

l

k∈K
w(k) B

(⊔
a∈A

G (k)(a) ∗ a

)
=
⊔
f ∈F

l

k∈K
w(k) B (G (k)(fk) ∗ fk)

where F is the set of functions K → A
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Equational presentation of Q-ccd

Remarks

I Finite commutative MTL-algebras are quantales satisfying previous
conditions

I We already know that the assumption Q completely distributive
entails that each Q-ccd is also completely distributive

I Hence, we may recover complete distributivity by choosing trivial
weights w(k) = e and discrete Q-subsets G (k) corresponding to a
family of ordinary subsets (Ak)k∈K of A

l

k∈K

⊔
a∈Ak

a =
⊔

{f :K→A | fk∈Ak}

l

k∈K
fk

14 / 18



Equational presentation of Q-ccd

Remarks

I The particular case K = {0}, w(0) = v , G (k)(−) = e gives

v B
⊔
a∈A

a =
⊔
a∈A

v B a

hence v B− distributes over (non-empty) joins2, for each v ∈ Q

I In fact, each Q-ccd is a quotient of a subalgebra of a product of
copies of Q
Lai&Zhang. Many-Valued Complete Distributivity. (2006)

I That is, Q generates the variety of Q-ccd.

Hence an equation holds in a Q-completely distributive Q-category A
iff it holds in Q

2Observe that the empty Q-category cannot be Q-ccd
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Equational presentation of Q-ccd

Remarks

I Looking at the constructive/non-constructive Q-ccd equations

l

k∈K
w(k) B

(⊔
a∈A

G (k)(a) ∗ a

)
=

⊔
a∈A

(∧
k∈K

[w(k), ↓G (k)(a)]

)
∗ a

l

k∈K
w(k) B

(⊔
a∈A

G (k)(a) ∗ a

)
=

⊔
f ∈F

l

k∈K
w(k) B (G (k)(fk) ∗ fk)

we see that the lhs coincide

I The inequality⊔
a∈A

(∧
k∈K

[w(k), ↓G (k)(a)]

)
∗ a ≥

⊔
f ∈F

l

k∈K
w(k) B (G (k)(fk) ∗ fk)

always holds for Q-ccd, but it can be strict (e.g for non-distributive
quantale Q)
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Conclusions and open questions

I The distributive law arising from enriching over a commutative
quantale Q can be expressed in terms of operations and
equations, similar to the familiar distributive law of lattices, under
suitable hypotheses – completely distributive quantale Q with the
property that powers preserve non-empty joins (in particular, for
finite MTL-algebras)

l

k∈K
w(k) B

(⊔
a∈A

G (k)(a) ∗ a

)
=
⊔
f ∈F

l

k∈K
w(k) B (G (k)(fk) ∗ fk)

I What about other distributivity-like laws, e.g. v B (w ∗ a) = [v ,w ] ∗ a?

I More important: to obtain an equational axiomatisation of Q-ccd
even for non-distributive quantales

I What about a finitary version of Q-ccd (see my talk at TACL2017)?
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Thank you for your attention!
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