Derivations on bounded pocrims and MV-algebras with product

Dana Šalounová
VŠB-Technical University of Ostrava
Czech Republic

Joint work with Jan Kühr and Jiří Rachůnek

TACL 2019
Nice, June 17-21, 2019

Derivations on rings

A derivation on a ring $(R ;+, \cdot)$ is a map $f: R \rightarrow R$ satisfying

$$
f(x+y)=f(x)+f(y) \text { and } f(x y)=f(x) y+x f(y)
$$

for all $x, y \in R$.

Papers about derivations on algebras:

- Lattices - Szász, G. (1975);
- MV-algebras - Alshehri (2010), Yazarli (2013), Ghorbani et al. (2013);
- BCI-algebras - Jun et al. (2004);
- Basic algebras - Krňávek and Kühr (2015);
- GMV-algebras - Rachůnek and Šalounová (2018).

Derivations on rings

A derivation on a ring $(R ;+, \cdot)$ is a map $f: R \rightarrow R$ satisfying

$$
f(x+y)=f(x)+f(y) \text { and } f(x y)=f(x) y+x f(y)
$$

for all $x, y \in R$.

Papers about derivations on algebras:

- Lattices - Szász, G. (1975);
- MV-algebras - Alshehri (2010), Yazarli (2013), Ghorbani et al. (2013);
- BCI-algebras - Jun et al. (2004);
- Basic algebras - Krňávek and Kühr (2015);
- GMV-algebras - Rachůnek and Šalounová (2018).

Bounded pocrims

A partially ordered commutative residuated integral monoid (pocrim) is a structure $(M ; \leq, \odot, \rightarrow, 1)$ where:

- $(M ; \leq, 1)$ is a poset with the greatest element;
- $(M ; \odot, 1)$ is a commutative monoid;
- $x \odot y \leq z$ iff $x \leq y \rightarrow z$ for all $x, y, z \in M$.

Since $x \leq y$ iff $x \rightarrow y=1$, pocrims may be defined as algebras $(M ; \odot, \rightarrow, 1)$, and bounded pocrim as algebras $(M ; \odot, \rightarrow, 0,1)$.

Negation and addition are defined as follows:

$$
x^{\prime}=x \rightarrow 0 \quad \text { and } \quad x \oplus y=\left(x^{\prime} \odot y^{\prime}\right)^{\prime}
$$

In what follows, $\mathbf{M}=(M ; \odot, \rightarrow, 1)$ is a bounded pocrim.

Nuclei and conuclei.

A nucleus on $\mathbf{M}=(M ; \odot, \rightarrow, 1)$ is a closure operator f such that, for all $x, y \in M$,

$$
f(x) \odot f(y) \leq f(x \odot y)
$$

The f-image $\mathbf{M}_{f}=\left(M_{f} ; \odot_{f}, \rightarrow, f(0), 1\right)$, where

$$
x \odot_{f} y=f(x \odot y)
$$

is a bounded pocrim.

A conucleus on is an interior operator satisfying
for all $x, y \in M$
The f-image $\mathbf{M}_{f}=\left(M_{f} ; \odot, \rightarrow_{f}, 0, f(1)\right)$, where
\square

Nuclei and conuclei.

A nucleus on $\mathbf{M}=(M ; \odot, \rightarrow, 1)$ is a closure operator f such that, for all $x, y \in M$,

$$
f(x) \odot f(y) \leq f(x \odot y)
$$

The f-image $\mathbf{M}_{f}=\left(M_{f} ; \odot_{f}, \rightarrow, f(0), 1\right)$, where

$$
x \odot_{f} y=f(x \odot y)
$$

is a bounded pocrim.

A conucleus on is an interior operator satisfying

$$
f(x) \odot f(y) \leq f(x \odot y) \text { and } f(1) \odot f(x)=f(x)
$$

for all $x, y \in M$.
The f-image $\mathbf{M}_{f}=\left(M_{f} ; \odot, \rightarrow_{f}, 0, f(1)\right)$, where

$$
x \rightarrow_{f} y=f(x \rightarrow y)
$$

is a bounded pocrim.

Derivations on bounded pocrims

A derivation on a bounded pocrim \mathbf{M} is $f: M \rightarrow M$ satisfying

$$
f(x \oplus y)=f(x) \oplus f(y) \quad \text { and } \quad f(x \odot y)=(f(x) \odot y) \oplus(x \odot f(y))
$$

for all $x, y \in M$.
The set of derivations on \mathbf{M} is denoted by $\mathcal{D}(\mathbf{M})$.
 - \mathbf{M} satisfies the equation $x \oplus x=x$; - \mathbf{M} satisfies the equations $x \odot x=x$ and $x^{\prime \prime}=x$;

- Let $\mathbf{M}=\mathrm{K} \times \mathbf{L}$ where K is a Boolean algebra. The map $(x, y) \mapsto(x, 0)$ is a derivation on \mathbf{M}.

Derivations on bounded pocrims

A derivation on a bounded pocrim \mathbf{M} is $f: M \rightarrow M$ satisfying

$$
f(x \oplus y)=f(x) \oplus f(y) \quad \text { and } \quad f(x \odot y)=(f(x) \odot y) \oplus(x \odot f(y))
$$

for all $x, y \in M$.
The set of derivations on \mathbf{M} is denoted by $\mathcal{D}(\mathbf{M})$.
Simple examples:

- The zero map $o: x \mapsto 0$ is a trivial derivation.
- The identity map id : $x \mapsto x$ is a derivation iff \mathbf{M} is (term-equvalent to) a Boolean algebra:
- \mathbf{M} satisfies the equation $x \oplus x=x$;
- \mathbf{M} satisfies the equations $x \odot x=x$ and $x^{\prime \prime}=x$;
- $x \odot y=x \wedge y, x \oplus y=x \vee y$ and $x \rightarrow x^{\prime} \vee y$.
- Let $\mathbf{M}=\mathbf{K} \times \mathbf{L}$ where \mathbf{K} is a Boolean algebra. The map $f:(x, y) \mapsto(x, 0)$ is a derivation on \mathbf{M}.

Derivations on bounded pocrims

The double negation $\delta: x \mapsto x^{\prime \prime}$ is nucleus on \mathbf{M}. The δ-image $\mathbf{M}_{\delta}=\left(M_{\delta} ; \odot_{\delta}, \rightarrow, 0,1\right)$ is an involutive pocrim, i.e., it satisfies the equation

$$
x^{\prime \prime}=x
$$

In general, δ is not homomorphism of \mathbf{M} onto \mathbf{M}_{δ}, and \mathbf{M}_{δ} is not a subalgebra of \mathbf{M}.

Further examples:

- δ is a derivation on \mathbf{M} iff \mathbf{M}_{δ} is a Boolean algebra.
- Let $\mathbf{M}=\mathbf{K} \times \mathbf{L}$ where \mathbf{K}_{δ} is a Boolean algebra. The map $f:(x, y) \mapsto\left(x^{\prime \prime}, 0\right)$ is a derivation on \mathbf{M}.

Derivations on bounded pocrims

The double negation $\delta: x \mapsto x^{\prime \prime}$ is nucleus on \mathbf{M}. The δ-image $\mathbf{M}_{\delta}=\left(M_{\delta} ; \odot_{\delta}, \rightarrow, 0,1\right)$ is an involutive pocrim, i.e., it satisfies the equation

$$
x^{\prime \prime}=x
$$

In general, δ is not homomorphism of \mathbf{M} onto \mathbf{M}_{δ}, and \mathbf{M}_{δ} is not a subalgebra of \mathbf{M}.

Further examples:

- δ is a derivation on \mathbf{M} iff \mathbf{M}_{δ} is a Boolean algebra.
- Let $\mathbf{M}=\mathbf{K} \times \mathbf{L}$ where \mathbf{K}_{δ} is a Boolean algebra. The map $f:(x, y) \mapsto\left(x^{\prime \prime}, 0\right)$ is a derivation on \mathbf{M}.

Derivations on bounded pocrims

For every $f \in \mathcal{D}(\mathbf{M})$:

- $f(0)=0$;
- $f(x)=f(x)^{\prime \prime}=f\left(x^{\prime \prime}\right)$, so $f(x) \in M_{\delta}$, for all $x \in M$;
- $f(x) \leq x^{\prime \prime}$ and $f(x) \leq f(1)$ for all $x \in M$.

Derivations on bounded pocrims

For every $f \in \mathcal{D}(\mathbf{M})$:

- $f(0)=0$;
- $f(x)=f(x)^{\prime \prime}=f\left(x^{\prime \prime}\right)$, so $f(x) \in M_{\delta}$, for all $x \in M$;
- $f(x) \leq x^{\prime \prime}$ and $f(x) \leq f(1)$ for all $x \in M$.

There is a bijection between $\mathcal{D}(\mathbf{M})$ and $\mathcal{D}\left(\mathbf{M}_{\delta}\right)$:

- for every $f \in \mathcal{D}(\mathbf{M}),\left.\quad f\right|_{M_{\delta}} \in \mathcal{D}\left(\mathbf{M}_{\delta}\right)$;
- for every $f \in \mathcal{D}\left(\mathbf{M}_{\delta}\right)$, the map $\hat{f}: M \rightarrow M$ defined by $\hat{f}(x)=f\left(x^{\prime \prime}\right)$ is a derivation on \mathbf{M} such that $\hat{f} \prod_{M_{\delta}}=f$.

Derivations on involutive pocrims

Let \mathbf{M} be an involutive pocrim and $f \in \mathcal{D}(\mathbf{M})$. Then

$$
f(x)=x \odot f(1)
$$

for every $x \in M$. Moreover, f is a conucleus, the f-image \mathbf{M}_{f} is a Boolean algebra, and f is a homomorphism of \mathbf{M} onto \mathbf{M}_{f}.

Boolean elements

An element $a \in M$ is Boolean if $a \vee a^{\prime}$ exists and $a \vee a^{\prime}=1$.
The set of Boolean elements of \mathbf{M} is denoted by $\mathcal{B}(\mathbf{M})$.
Boolean elements \longleftrightarrow direct product decompositions:

- If $a \in \mathcal{B}(\mathbf{M})$, then
- $[\mathbf{0}, \mathbf{a}]=\left([0, a] ; \odot, \rightarrow_{a}, 0, a\right)$, where $x \rightarrow_{a} y=a \odot(x \rightarrow y)$, is a bounded pocrim,
- $[\mathbf{a}, \mathbf{1}]=([a, 1] ; \odot, \rightarrow, a, 1)$ is a bounded pocrim,
- $\mathbf{M} \cong[\mathbf{0}, \mathbf{a}] \times[\mathbf{a}, \mathbf{1}]$ under $\eta: x \mapsto\left(a \odot x, a^{\prime} \rightarrow x\right)=(a \wedge x, a \vee x)$.
- If $\mathbf{M} \cong \mathbf{K} \times \mathbf{L}$ under $\theta: x \mapsto\left(x_{\mathbf{K}}, x_{\mathbf{L}}\right)$, then

$$
a=\theta^{-1}\left(1_{\mathbf{K}}, 0_{\mathbf{L}}\right) \in \mathcal{B}(\mathbf{M}),[\mathbf{0}, \mathbf{a}] \cong \mathbf{K} \text { and }[\mathbf{a}, \mathbf{1}] \cong \mathbf{L}
$$

Derivations on involutive pocrims

Let \mathbf{M} be an involutive pocrim and $f \in \mathcal{D}(\mathbf{M})$.
Then

$$
f(x)=x \odot f(1)
$$

for every $x \in M$. Moreover, f is a conucleus, the f-image \mathbf{M}_{f} is a Boolean algebra, and f is homomorphism of \mathbf{M} onto \mathbf{M}_{f}.

Note: This applies to MV-algebras.

Derivations on involutive pocrims

Let \mathbf{M} be an involutive pocrim and $f \in \mathcal{D}(\mathbf{M})$. If $f(1) \in \mathcal{B}(\mathbf{M})$, then

$$
f(x)=x \odot f(1)=x \wedge f(1)
$$

for every $x \in M$. Moreover, f is a conucleus, the f-image \mathbf{M}_{f} is a Boolean algebra, and f is homomorphism of \mathbf{M} onto \mathbf{M}_{f}.
This applies to MV-algebras

Derivations on involutive pocrims

Let \mathbf{M} be an involutive pocrim and $f \in \mathcal{D}(\mathbf{M})$. If $f(1) \in \mathcal{B}(\mathbf{M})$, then

$$
f(x)=x \odot f(1)=x \wedge f(1)
$$

for every $x \in M$. Moreover, f is a conucleus, the f-image \mathbf{M}_{f} is a Boolean algebra, and f is homomorphism of \mathbf{M} onto \mathbf{M}_{f}.

In any involutive pocrim \mathbf{M}, there is a bijection between:

- the derivations $f \in \mathcal{D}(\mathbf{M})$ such that $f(1) \in \mathcal{B}(\mathbf{M})$;
- The Boolean elements $a \in \mathcal{B}(\mathbf{M})$ such that $[\mathbf{0}, \mathbf{a}]$ is a Boolean algebra $\left(\mathbf{M}_{f}=[\mathbf{0}, \mathbf{a}]\right.$ if $a=f(1) \in \mathcal{B}(\mathbf{M})$);
- the direct product decompositions $\mathbf{M} \cong \mathbf{K} \times \mathbf{L}$ where \mathbf{K} is a Boolean algebra $(\mathbf{M} \cong[\mathbf{0}, \mathbf{a}] \times[\mathbf{a}, \mathbf{1}]$ if $a=f(1) \in \mathcal{B}(\mathbf{M})$).

Note: This applies to MV-algebras.

Derivations on bounded pocrims

Let \mathbf{M} be a bounded pocrim and $f \in \mathcal{D}(\mathbf{M})$. Then

$$
f(x)=(x \odot f(a))^{\prime \prime}
$$

for every $x \in M$. Moreover, $\mathbf{M}_{f}=\left(M_{f} ; \odot_{\delta}, \rightarrow, 0, f(1)\right)$ is a Boolean algebra.

Since $f \upharpoonright_{M_{\delta}} \in \mathcal{D}\left(\mathbf{M}_{\delta}\right)$, we have

$$
\left.f(x)=f\left(x^{\prime \prime}\right)=x^{\prime \prime} \odot_{\delta} f(1)=(x \odot f(1))\right)^{\prime \prime}
$$

for $x \in M$.
Note: f is not a conucleus on \mathbf{M}, so \mathbf{M}_{f} is the f-image of \mathbf{M}_{δ}.

Derivations on bounded pocrims

A (bounded) pocrim is divisible if it satisfies the equation

$$
x \odot(x \rightarrow y)=y \odot(y \rightarrow x)
$$

Let \mathbf{M} be a divisible pocrim and $f \in \mathcal{D}(\mathbf{M})$. Then

$$
f(x)=(x \odot f(1))^{\prime \prime}=x^{\prime \prime} \odot f(1)=x^{\prime \prime} \wedge f(1)
$$

for every $x \in M$.

Derivations on bounded pocrims

Let \mathbf{M} be a bounded pocrim and $f \in \mathcal{D}(\mathbf{M})$. If $f(1) \in \mathcal{B}(\mathbf{M})$, then

$$
f(x)=(x \odot f(1))^{\prime \prime}=x^{\prime \prime} \odot f(1)=x^{\prime \prime} \wedge f(1)
$$

for every $x \in M$.

A (bounded) pocrim is prelinear if it satisfies the equation

If \mathbf{M} is prelinear, then $f(1) \in \mathcal{B}(\mathbf{M})$ for every $f \in \mathcal{D}(\mathbf{M})$

Derivations on bounded pocrims

Let \mathbf{M} be a bounded pocrim and $f \in \mathcal{D}(\mathbf{M})$. If $f(1) \in \mathcal{B}(\mathbf{M})$, then

$$
f(x)=(x \odot f(1))^{\prime \prime}=x^{\prime \prime} \odot f(1)=x^{\prime \prime} \wedge f(1)
$$

for every $x \in M$.

A (bounded) pocrim is prelinear if it satisfies the equation

$$
((x \rightarrow y) \rightarrow z) \odot((y \rightarrow x) \rightarrow z) \leq z
$$

If \mathbf{M} is prelinear, then $f(1) \in \mathcal{B}(\mathbf{M})$ for every $f \in \mathcal{D}(\mathbf{M})$.

Derivations on bounded pocrims

Let $f \in \mathcal{D}(\mathbf{M})$. If $a=f(1) \in \mathcal{B}(\mathbf{M})$, then $\mathbf{M} \cong[\mathbf{0}, \mathbf{a}] \times[\mathbf{a}, \mathbf{1}]$, $f(x)=x^{\prime \prime} \odot a=x^{\prime \prime} \wedge a$ for all $x \in M$, and $\mathbf{M}_{f}=[\mathbf{0}, \mathbf{a}]_{\delta}$ is a Boolean algebra.

In any bounded pocrim \mathbf{M}, there is a bijection between:

- the derivations $f \in \mathcal{D}(\mathbf{M})$ such that $f(1) \in \mathcal{B}(\mathbf{M})$;
- the Boolean elements $a \in \mathcal{B}(\mathbf{M})$ such that $[\mathbf{0}, \mathbf{a}]_{\delta}$ is
a Boolean algebra;
- the direct product decompositions $\mathbf{M} \cong \mathbf{K} \times \mathbf{L}$ where \mathbf{K}_{δ} is a Boolean algebra.

Note: This applies to prelinear bounded pocrims and, in particular, to BL-algebras.

Derivations and coderivations

Let \mathbf{M} be involutive and $f \in \mathcal{D}(\mathbf{M})$. Since $f(x)=x \odot f(1)$, f is a residuated map, i.e., there exists a unique f^{*} such that

$$
f(x) \leq y \quad \text { iff } \quad x \leq f^{*}(y)
$$

for all $x, y \in M$, because

$$
x \odot f(1) \leq y \quad \text { iff } \quad x \leq f(1) \rightarrow y
$$

by the residuation law.
Hence f^{*}, the residual of f, is given by

$$
f^{*}(x)=f(1) \rightarrow x=\left(x^{\prime} \odot f(1)\right)^{\prime}=f\left(x^{\prime}\right)^{\prime}
$$

Characterization of the residuals f^{*} of derivations f ?

Derivations and coderivations

A bounded pocrim \mathbf{M} is normal if it satisfies the equation

$$
(x \odot y)^{\prime \prime}=x^{\prime \prime} \odot y^{\prime \prime}
$$

or equivalently, if \mathbf{M}_{δ} is a subalgebra of \mathbf{M}.

Let \mathbf{M} be normal. A coderivation on \mathbf{M} is $f: M \rightarrow M$ satisfying

$$
f(x \odot y)=f(x) \odot f(y) \quad \text { and } \quad f(x \oplus y)=(f(x) \oplus y) \odot(x \oplus f(y))
$$

for all $x, y \in M$.
The set of coderivations is denoted by $\mathcal{C}(\mathbf{M})$.

Derivations and coderivations

For any map $f: M \rightarrow M$ we define $f^{\sharp}: M \rightarrow M$ by

$$
f^{\sharp}(x)=f\left(x^{\prime}\right)^{\prime} .
$$

Let \mathbf{M} be normal. Equip $\mathcal{D}(\mathbf{M})$ and $\mathcal{C}(\mathbf{M})$ with pointwise order.

- The map $\alpha: f \mapsto f^{\sharp}$ - formally (α, α) - is an antitone Galois connection between $\mathcal{D}(\mathbf{M})$ and $\mathcal{C}(\mathbf{M})$.
- All derivations $f \in \mathcal{D}(\mathbf{M})$ are closed, whereas a coderivation $f \in \mathcal{C}(\mathbf{M})$ is closed iff $f(x)=f\left(x^{\prime \prime}\right)$ for all $x \in M$.
- If \mathbf{M} is involutive, then α is bijection.

PMV-algebras - MV-algebras with product

MV-algebras are term-equivalent with bounded pocrims satisfying the equation

$$
(x \rightarrow y) \rightarrow y=(y \rightarrow x) \rightarrow x
$$

In the "standard" MV-algebra $[\mathbf{0}, \mathbf{1}]_{M V}=([0,1] ; \odot, \rightarrow, 0,1)$:

$$
\begin{array}{cl}
x \odot y=\max (x+y-1,0), & x \rightarrow y=\min (1-x+y, 1) \\
x^{\prime}=1-x, & x \oplus y=\min (x+y, 1)
\end{array}
$$

PMV-algebras - MV-algebras with product

A PMV-algebra is an algebra $\mathbf{M}=(M ; \odot, \rightarrow, \cdot, 0,1)$ where

- ($M ; \odot, \rightarrow, 0,1$) is (term-equivalent to) an MV-algebra,
- $M ; \cdot 1$) is a commutative monoid, and
- $\left(x \odot y^{\prime}\right) \cdot z=(x \cdot z) \odot(y \cdot z)^{\prime}$ for all $x, y, z \in M$.

In the "standard" PMV-algebra $[\mathbf{0}, \mathbf{1}]_{P M V}=([0,1] ; \odot, \rightarrow, \cdot, 0,1)$:

$$
x \odot y^{\prime}=\max (x-y, 0)
$$

The variety generated by $[\mathbf{0}, \mathbf{1}]_{M V}$ is the variety of MV-algebras, but the variety generated by $[\mathbf{0}, \mathbf{1}]_{P M V}$ is smaller than the variety of PMV-algebras.

Derivations on PMV-algebras

A derivation on a PMV-algebra \mathbf{M} is $f: M \rightarrow M$ satisfying

$$
f(x \oplus y) \quad \text { and } \quad f(x \cdot y)=(f(x) \cdot y) \oplus(x \cdot f(y))
$$

for all $x, y \in M$.

Some difficulties:

- $x \odot y \leq x \cdot y \leq x \wedge y$ for all $x, y \in M$;
- $x^{\prime} \odot x=0$ for all $x \in M$, but $x^{\prime} \cdot x=0$ iff $x \in \mathcal{B}(M)$

Derivations on PMV-algebras

A derivation on a PMV-algebra \mathbf{M} is $f: M \rightarrow M$ satisfying

$$
f(x \oplus y) \quad \text { and } \quad f(x \cdot y)=(f(x) \cdot y) \oplus(x \cdot f(y))
$$

for all $x, y \in M$.

Let \mathbf{M} be a PMV-algebra. Then f is a derivation on \mathbf{M} iff f is a derivation on the MV-algebra reduct of \mathbf{M}. For every derivation $f, f(x)=x \cdot f(1)$ for all $x \in M$.

Some difficulties:

- $x \odot y \leq x \cdot y \leq x \wedge y$ for all $x, y \in M$;
- $x^{\prime} \odot x=0$ for all $x \in M$, but $x^{\prime} \cdot x=0$ iff $x \in \mathcal{B}(\mathbf{M})$.

