Derivations on bounded pocrims and MV-algebras with product

Dana Šalounová

VŠB–Technical University of Ostrava Czech Republic

Joint work with Jan Kühr and Jiří Rachůnek

TACL 2019 Nice, June 17–21, 2019

D. Šalounová

Derivations on bounded pocrims

TACL 2019

Derivations on rings

A derivation on a ring $(R; +, \cdot)$ is a map $f: R \rightarrow R$ satisfying

$$f(x + y) = f(x) + f(y)$$
 and $f(xy) = f(x)y + xf(y)$,

for all $x, y \in R$.

Papers about derivations on algebras:

- Lattices Szász, G. (1975);
- *MV*-algebras Alshehri (2010), Yazarli (2013), Ghorbani et al. (2013);
- BCI-algebras Jun et al. (2004);
- Basic algebras Krňávek and Kühr (2015);
- GMV-algebras Rachůnek and Šalounová (2018).

Derivations on rings

A derivation on a ring $(R; +, \cdot)$ is a map $f: R \rightarrow R$ satisfying

$$f(x + y) = f(x) + f(y)$$
 and $f(xy) = f(x)y + xf(y)$,

for all $x, y \in R$.

Papers about derivations on algebras:

- Lattices Szász, G. (1975);
- *MV*-algebras Alshehri (2010), Yazarli (2013), Ghorbani et al. (2013);
- BCI-algebras Jun et al. (2004);
- Basic algebras Krňávek and Kühr (2015);
- GMV-algebras Rachůnek and Šalounová (2018).

Bounded pocrims

A partially ordered commutative residuated integral monoid (pocrim) is a structure (M; \leq , \odot , \rightarrow , 1) where:

• $(M; \leq, 1)$ is a poset with the greatest element;

•
$$(M; \odot, 1)$$
 is a commutative monoid;

•
$$x \odot y \le z$$
 iff $x \le y \to z$ for all $x, y, z \in M$.

Since $x \le y$ iff $x \to y = 1$, pocrims may be defined as algebras $(M; \odot, \rightarrow, 1)$, and bounded pocrim as algebras $(M; \odot, \rightarrow, 0, 1)$.

Negation and addition are defined as follows:

$$x' = x
ightarrow 0$$
 and $x \oplus y = (x' \odot y')'$.

In what follows, $\mathbf{M} = (M; \odot, \rightarrow, 1)$ is a bounded pocrim.

Nuclei and conuclei.

A nucleus on $\mathbf{M} = (M; \odot, \rightarrow, 1)$ is a closure operator f such that, for all $x, y \in M$,

 $f(x) \odot f(y) \leq f(x \odot y).$

The f-image
$$\mathbf{M}_f = (M_f; \odot_f, \rightarrow, f(0), 1)$$
, where
 $x \odot_f y = f(x \odot y)$,

is a bounded pocrim.

A conucleus on is an interior operator satisfying $f(x) \odot f(y) \le f(x \odot y)$ and $f(1) \odot f(x) = f(x)$, for all $x, y \in M$.

The *f*-image $\mathbf{M}_f = (M_f; \odot, \rightarrow_f, 0, f(1))$, where $x \rightarrow_f y = f(x \rightarrow y)$,

is a bounded pocrim.

D. Šalounová

TACL 2019

Nuclei and conuclei.

A nucleus on $\mathbf{M} = (M; \odot, \rightarrow, 1)$ is a closure operator f such that, for all $x, y \in M$,

 $f(x) \odot f(y) \leq f(x \odot y).$

The *f*-image $\mathbf{M}_f = (M_f; \odot_f, \rightarrow, f(0), 1)$, where $x \odot_f y = f(x \odot y)$,

is a bounded pocrim.

A conucleus on is an interior operator satisfying $f(x) \odot f(y) \le f(x \odot y)$ and $f(1) \odot f(x) = f(x)$, for all $x, y \in M$.

The *f*-image $\mathbf{M}_f = (M_f; \odot, \rightarrow_f, 0, f(1))$, where $x \rightarrow_f y = f(x \rightarrow y)$,

is a bounded pocrim.

D. Šalounová

A derivation on a bounded pocrim **M** is $f : M \rightarrow M$ satisfying

 $f(x \oplus y) = f(x) \oplus f(y)$ and $f(x \odot y) = (f(x) \odot y) \oplus (x \odot f(y))$

for all $x, y \in M$.

The set of derivations on M is denoted by $\mathcal{D}(M)$.

Simple examples:

- The zero map $o: x \mapsto 0$ is a trivial derivation.
- The identity map *id* : x → x is a derivation iff M is (term-equvalent to) a Boolean algebra:
 - **M** satisfies the equation $x \oplus x = x$;
 - M satisfies the equations $x \odot x = x$ and x'' = x;

• $x \odot y = x \land y, \ x \oplus y = x \lor y$ and $x \to x' \lor y$.

• Let $\mathbf{M} = \mathbf{K} \times \mathbf{L}$ where \mathbf{K} is a Boolean algebra. The map $f : (x, y) \mapsto (x, 0)$ is a derivation on \mathbf{M} .

A derivation on a bounded pocrim **M** is $f : M \rightarrow M$ satisfying

 $f(x \oplus y) = f(x) \oplus f(y)$ and $f(x \odot y) = (f(x) \odot y) \oplus (x \odot f(y))$

for all $x, y \in M$.

The set of derivations on M is denoted by $\mathcal{D}(M)$.

Simple examples:

- The zero map $o: x \mapsto 0$ is a trivial derivation.
- The identity map *id* : x → x is a derivation iff M is (term-equvalent to) a Boolean algebra:
 - **M** satisfies the equation $x \oplus x = x$;
 - **M** satisfies the equations $x \odot x = x$ and x'' = x;

•
$$x \odot y = x \land y, \ x \oplus y = x \lor y$$
 and $x \to x' \lor y$.

• Let $\mathbf{M} = \mathbf{K} \times \mathbf{L}$ where \mathbf{K} is a Boolean algebra. The map $f : (x, y) \mapsto (x, 0)$ is a derivation on \mathbf{M} .

The double negation $\delta : x \mapsto x''$ is nucleus on **M**. The δ -image $\mathbf{M}_{\delta} = (M_{\delta}; \odot_{\delta}, \rightarrow, 0, 1)$ is an involutive pocrim, i.e., it satisfies the equation

$$x'' = x$$
.

In general, δ is not homomorphism of **M** onto **M**_{δ}, and **M**_{δ} is not a subalgebra of **M**.

Further examples:

- δ is a derivation on **M** iff **M**_{δ} is a Boolean algebra.
- Let $\mathbf{M} = \mathbf{K} \times \mathbf{L}$ where \mathbf{K}_{δ} is a Boolean algebra. The map $f : (x, y) \mapsto (x'', 0)$ is a derivation on \mathbf{M} .

The double negation $\delta : x \mapsto x''$ is nucleus on **M**. The δ -image $\mathbf{M}_{\delta} = (M_{\delta}; \odot_{\delta}, \rightarrow, 0, 1)$ is an involutive pocrim, i.e., it satisfies the equation

$$x'' = x$$
.

In general, δ is not homomorphism of **M** onto **M**_{δ}, and **M**_{δ} is not a subalgebra of **M**.

Further examples:

- δ is a derivation on **M** iff **M**_{δ} is a Boolean algebra.
- Let $\mathbf{M} = \mathbf{K} \times \mathbf{L}$ where \mathbf{K}_{δ} is a Boolean algebra. The map $f : (x, y) \mapsto (x'', 0)$ is a derivation on \mathbf{M} .

For every
$$f \in \mathcal{D}(\mathbf{M})$$
:
• $f(0) = 0$;
• $f(x) = f(x)'' = f(x'')$, so $f(x) \in M_{\delta}$, for all $x \in M$;
• $f(x) \le x''$ and $f(x) \le f(1)$ for all $x \in M$.

There is a bijection between $\mathcal{D}(\mathbf{M})$ and $\mathcal{D}(\mathbf{M}_{\delta})$:

- for every $f \in \mathcal{D}(\mathsf{M}), f \upharpoonright_{M_{\delta}} \in \mathcal{D}(\mathsf{M}_{\delta});$
- for every f ∈ D(M_δ), the map f̂: M → M defined by f̂(x) = f(x") is a derivation on M such that f̂|_{M_δ} = f.

For every
$$f \in \mathcal{D}(\mathbf{M})$$
:
• $f(0) = 0$;
• $f(x) = f(x)'' = f(x'')$, so $f(x) \in M_{\delta}$, for all $x \in M$;
• $f(x) \le x''$ and $f(x) \le f(1)$ for all $x \in M$.

There is a bijection between $\mathcal{D}(\mathbf{M})$ and $\mathcal{D}(\mathbf{M}_{\delta})$:

- for every $f \in \mathcal{D}(\mathsf{M}), f \upharpoonright_{\mathsf{M}_{\delta}} \in \mathcal{D}(\mathsf{M}_{\delta});$
- for every $f \in \mathcal{D}(\mathbf{M}_{\delta})$, the map $\hat{f} : M \to M$ defined by $\hat{f}(x) = f(x'')$ is a derivation on \mathbf{M} such that $\hat{f}|_{M_{\delta}} = f$.

Let **M** be an involutive pocrim and $f \in \mathcal{D}(\mathbf{M})$. Then

$$f(x) = x \odot f(1)$$

for every $x \in M$. Moreover, f is a conucleus, the f-image \mathbf{M}_f is a Boolean algebra, and f is a homomorphism of \mathbf{M} onto \mathbf{M}_f .

Boolean elements

An element $a \in M$ is Boolean if $a \lor a'$ exists and $a \lor a' = 1$. The set of Boolean elements of **M** is denoted by $\mathcal{B}(\mathbf{M})$.

Boolean elements \longleftrightarrow direct product decompositions:

- If $a \in \mathcal{B}(M)$, then
 - ▶ $[\mathbf{0}, \mathbf{a}] = ([0, a]; \odot, \rightarrow_a, 0, a)$, where $x \rightarrow_a y = a \odot (x \rightarrow y)$, is a bounded pocrim,
 - ▶ $[a,1] = ([a,1]; \odot, \rightarrow, a, 1)$ is a bounded pocrim,
 - $\mathbf{M} \cong [\mathbf{0}, \mathbf{a}] \times [\mathbf{a}, \mathbf{1}]$ under $\eta : x \mapsto (\mathbf{a} \odot x, \mathbf{a}' \to x) = (\mathbf{a} \land x, \mathbf{a} \lor x).$
- If $\mathbf{M} \cong \mathbf{K} \times \mathbf{L}$ under $\theta : x \mapsto (x_{\mathbf{K}}, x_{\mathbf{L}})$, then $a = \theta^{-1}(1_{\mathbf{K}}, 0_{\mathbf{L}}) \in \mathcal{B}(\mathbf{M}), \ [\mathbf{0}, \mathbf{a}] \cong \mathbf{K}$ and $[\mathbf{a}, \mathbf{1}] \cong \mathbf{L}$.

A (1) < A (2) < A (2) </p>

Let \mathbf{M} be an involutive pocrim and $f \in \mathcal{D}(\mathbf{M})$. Then

$$f(x) = x \odot f(1)$$

for every $x \in M$. Moreover, f is a conucleus, the f-image M_f is a Boolean algebra, and f is homomorphism of M onto M_f .

In any involutive pocrim **M**, there is a bijection between:

- the derivations $f \in \mathcal{D}(M)$ such that $f(1) \in \mathcal{B}(M)$;
- The Boolean elements a ∈ B(M) such that [0, a] is a Boolean algebra (M_f = [0, a] if a = f(1) ∈ B(M));
- the direct product decompositions $\mathbf{M} \cong \mathbf{K} \times \mathbf{L}$ where \mathbf{K} is a Boolean algebra ($\mathbf{M} \cong [\mathbf{0}, \mathbf{a}] \times [\mathbf{a}, \mathbf{1}]$ if $a = f(1) \in \mathcal{B}(\mathbf{M})$).

Note: This applies to MV-algebras.

Let **M** be an involutive pocrim and $f \in \mathcal{D}(M)$. If $f(1) \in \mathcal{B}(M)$, then

$$f(x) = x \odot f(1) = x \land f(1)$$

for every $x \in M$. Moreover, f is a conucleus, the f-image M_f is a Boolean algebra, and f is homomorphism of M onto M_f .

In any involutive pocrim **M**, there is a bijection between:

- the derivations $f \in \mathcal{D}(M)$ such that $f(1) \in \mathcal{B}(M)$;
- The Boolean elements a ∈ B(M) such that [0, a] is a Boolean algebra (M_f = [0, a] if a = f(1) ∈ B(M));
- the direct product decompositions $\mathbf{M} \cong \mathbf{K} \times \mathbf{L}$ where \mathbf{K} is a Boolean algebra ($\mathbf{M} \cong [\mathbf{0}, \mathbf{a}] \times [\mathbf{a}, \mathbf{1}]$ if $a = f(1) \in \mathcal{B}(\mathbf{M})$).

Note: This applies to MV-algebras.

Let **M** be an involutive pocrim and $f \in \mathcal{D}(M)$. If $f(1) \in \mathcal{B}(M)$, then

$$f(x) = x \odot f(1) = x \land f(1)$$

for every $x \in M$. Moreover, f is a conucleus, the f-image M_f is a Boolean algebra, and f is homomorphism of M onto M_f .

In any involutive pocrim **M**, there is a bijection between:

- the derivations $f \in \mathcal{D}(\mathsf{M})$ such that $f(1) \in \mathcal{B}(\mathsf{M})$;
- The Boolean elements $a \in \mathcal{B}(M)$ such that $[\mathbf{0}, \mathbf{a}]$ is a Boolean algebra $(\mathsf{M}_f = [\mathbf{0}, \mathbf{a}] \text{ if } \mathbf{a} = f(1) \in \mathcal{B}(M));$
- the direct product decompositions $\mathbf{M} \cong \mathbf{K} \times \mathbf{L}$ where \mathbf{K} is a Boolean algebra ($\mathbf{M} \cong [\mathbf{0}, \mathbf{a}] \times [\mathbf{a}, \mathbf{1}]$ if $\mathbf{a} = f(\mathbf{1}) \in \mathcal{B}(\mathbf{M})$).

Note: This applies to MV-algebras.

Let **M** be a bounded pocrim and
$$f \in \mathcal{D}(\mathbf{M})$$
. Then
 $f(x) = (x \odot f(a))''$
for every $x \in M$. Moreover, $\mathbf{M}_f = (M_f; \odot_{\delta}, \rightarrow, 0, f(1))$ is
a Boolean algebra.

Since $f \upharpoonright_{M_{\delta}} \in \mathcal{D}(\mathbf{M}_{\delta})$, we have

$$f(x) = f(x'') = x'' \odot_{\delta} f(1) = (x \odot f(1)))''$$

for $x \in M$.

Note: f is not a conucleus on \mathbf{M} , so \mathbf{M}_f is the f-image of \mathbf{M}_{δ} .

A (bounded) pocrim is divisible if it satisfies the equation $x \odot (x \rightarrow y) = y \odot (y \rightarrow x).$

Let **M** be a divisible pocrim and $f \in \mathcal{D}(\mathbf{M})$. Then

$$f(x) = (x \odot f(1))'' = x'' \odot f(1) = x'' \land f(1)$$

for every $x \in M$.

Let **M** be a bounded pocrim and $f \in \mathcal{D}(\mathbf{M})$. If $f(1) \in \mathcal{B}(\mathbf{M})$, then $f(x) = (x \odot f(1))'' = x'' \odot f(1) = x'' \land f(1)$

for every $x \in M$.

A (bounded) pocrim is prelinear if it satisfies the equation $((x \to y) \to z) \odot ((y \to x) \to z) \le z.$

If **M** is prelinear, then $f(1) \in \mathcal{B}(\mathbf{M})$ for every $f \in \mathcal{D}(\mathbf{M})$.

Let **M** be a bounded pocrim and $f \in \mathcal{D}(\mathbf{M})$. If $f(1) \in \mathcal{B}(\mathbf{M})$, then $f(x) = (x \odot f(1))'' = x'' \odot f(1) = x'' \land f(1)$ for every $x \in M$.

A (bounded) pocrim is prelinear if it satisfies the equation $((x \to y) \to z) \odot ((y \to x) \to z) \le z.$

If **M** is prelinear, then $f(1) \in \mathcal{B}(\mathbf{M})$ for every $f \in \mathcal{D}(\mathbf{M})$.

Let $f \in \mathcal{D}(\mathbf{M})$. If $a = f(1) \in \mathcal{B}(\mathbf{M})$, then $\mathbf{M} \cong [\mathbf{0}, \mathbf{a}] \times [\mathbf{a}, \mathbf{1}]$, $f(x) = x'' \odot a = x'' \land a$ for all $x \in M$, and $\mathbf{M}_f = [\mathbf{0}, \mathbf{a}]_{\delta}$ is a Boolean algebra.

In any bounded pocrim \mathbf{M} , there is a bijection between:

- the derivations $f \in \mathcal{D}(M)$ such that $f(1) \in \mathcal{B}(M)$;
- the Boolean elements $a \in \mathcal{B}(M)$ such that $[\mathbf{0}, \mathbf{a}]_{\delta}$ is a Boolean algebra;
- the direct product decompositions $\mathbf{M} \cong \mathbf{K} \times \mathbf{L}$ where \mathbf{K}_{δ} is a Boolean algebra.

Note: This applies to prelinear bounded pocrims and, in particular, to BL-algebras.

Derivations and coderivations

Let **M** be involutive and $f \in \mathcal{D}(\mathbf{M})$. Since $f(x) = x \odot f(1)$, f is a residuated map, i.e., there exists a unique f^* such that

$$f(x) \leq y$$
 iff $x \leq f^*(y)$

for all $x, y \in M$, because

$$x \odot f(1) \le y$$
 iff $x \le f(1) \to y$,

by the residuation law.

Hence f^* , the residual of f, is given by

$$f^*(x) = f(1) o x = (x' \odot f(1))' = f(x')'.$$

Characterization of the residuals f^* of derivations f?

Derivations and coderivations

A bounded pocrim \mathbf{M} is normal if it satisfies the equation

$$(x \odot y)'' = x'' \odot y'',$$

or equivalently, if \mathbf{M}_{δ} is a subalgebra of \mathbf{M} .

Let **M** be normal. A coderivation on **M** is $f : M \rightarrow M$ satisfying

$$f(x \odot y) = f(x) \odot f(y)$$
 and $f(x \oplus y) = (f(x) \oplus y) \odot (x \oplus f(y))$

for all $x, y \in M$.

The set of coderivations is denoted by C(M).

Derivations and coderivations

For any map
$$f: M o M$$
 we define $f^{\sharp}: M o M$ by $f^{\sharp}(x) = f(x')'.$

Let M be normal. Equip $\mathcal{D}(M)$ and $\mathcal{C}(M)$ with pointwise order.

- The map α : f → f[‡] formally (α, α) is an antitone Galois connection between D(M) and C(M).
- All derivations $f \in \mathcal{D}(\mathbf{M})$ are closed, whereas a coderivation $f \in \mathcal{C}(\mathbf{M})$ is closed iff f(x) = f(x'') for all $x \in M$.
- If **M** is involutive, then α is bijection.

PMV-algebras – MV-algebras with product

MV-algebras are term-equivalent with bounded pocrims satisfying the equation

$$(x \to y) \to y = (y \to x) \to x.$$

In the "standard" MV-algebra $[\mathbf{0},\mathbf{1}]_{MV}=([0,1];\ \odot,
ightarrow,0,1)$:

$$x \odot y = \max(x + y - 1, 0), \quad x \to y = \min(1 - x + y, 1),$$

 $x' = 1 - x, \quad x \oplus y = \min(x + y, 1).$

PMV-algebras – MV-algebras with product

A PMV-algebra is an algebra $\mathbf{M} = (M; \odot, \rightarrow, \cdot, 0, 1)$ where

- (*M*; \odot , \rightarrow , 0, 1) is (term-equivalent to) an MV-algebra,
- M; $\cdot, 1$) is a commutative monoid, and
- $(x \odot y') \cdot z = (x \cdot z) \odot (y \cdot z)'$ for all $x, y, z \in M$.

In the "standard" PMV-algebra $[\mathbf{0},\mathbf{1}]_{PMV}=([0,1];\ \odot,
ightarrow,\cdot,0,1)$:

$$x \odot y' = \max(x - y, 0).$$

The variety generated by $[0, 1]_{MV}$ is the variety of MV-algebras, but the variety generated by $[0, 1]_{PMV}$ is smaller than the variety of PMV-algebras.

Derivations on PMV-algebras

A derivation on a PMV-algebra \mathbf{M} is $f : M \to M$ satisfying

$$f(x \oplus y)$$
 and $f(x \cdot y) = (f(x) \cdot y) \oplus (x \cdot f(y))$

for all $x, y \in M$.

Let **M** be a PMV-algebra. Then *f* is a derivation on **M** iff *f* is a derivation on the MV-algebra reduct of **M**. For every derivation *f*, $f(x) = x \cdot f(1)$ for all $x \in M$.

Some difficulties:

- $x \odot y \le x \cdot y \le x \wedge y$ for all $x, y \in M$;
- $x' \odot x = 0$ for all $x \in M$, but $x' \cdot x = 0$ iff $x \in \mathcal{B}(M)$.

Derivations on PMV-algebras

A derivation on a PMV-algebra **M** is $f : M \rightarrow M$ satisfying

$$f(x \oplus y)$$
 and $f(x \cdot y) = (f(x) \cdot y) \oplus (x \cdot f(y))$

for all $x, y \in M$.

Let **M** be a PMV-algebra. Then f is a derivation on **M** iff f is a derivation on the MV-algebra reduct of **M**. For every derivation f, $f(x) = x \cdot f(1)$ for all $x \in M$.

Some difficulties:

•
$$x \odot y \le x \cdot y \le x \wedge y$$
 for all $x, y \in M$;

• $x' \odot x = 0$ for all $x \in M$, but $x' \cdot x = 0$ iff $x \in \mathcal{B}(M)$.