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Derivations on rings

A derivation on a ring (R; +, ·) is a map f : R → R satisfying

f (x + y) = f (x) + f (y) and f (xy) = f (x)y + xf (y),

for all x , y ∈ R.

Papers about derivations on algebras:

Lattices – Szász, G. (1975);

MV -algebras – Alshehri (2010), Yazarli (2013), Ghorbani et al.
(2013);

BCI -algebras – Jun et al. (2004);

Basic algebras – Krňávek and Kühr (2015);

GMV -algebras – Rachůnek and Šalounová (2018).
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Bounded pocrims

A partially ordered commutative residuated integral monoid (pocrim) is
a structure (M; ≤,�,→, 1) where:

(M; ≤, 1) is a poset with the greatest element;

(M; �, 1) is a commutative monoid;

x � y ≤ z iff x ≤ y → z for all x , y , z ∈ M.

Since x ≤ y iff x → y = 1, pocrims may be defined as algebras
(M; �,→, 1), and bounded pocrim as algebras (M; �,→, 0, 1).

Negation and addition are defined as follows:

x ′ = x → 0 and x ⊕ y = (x ′ � y ′)′.

In what follows, M = (M; �,→, 1) is a bounded pocrim.
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Nuclei and conuclei.

A nucleus on M = (M; �,→, 1) is a closure operator f such that,
for all x , y ∈ M,

f (x)� f (y) ≤ f (x � y).

The f -image Mf = (Mf ; �f ,→, f (0), 1), where

x �f y = f (x � y),

is a bounded pocrim.

A conucleus on is an interior operator satisfying

f (x)� f (y) ≤ f (x � y) and f (1)� f (x) = f (x),

for all x , y ∈ M.

The f -image Mf = (Mf ; �,→f , 0, f (1)), where

x →f y = f (x → y),

is a bounded pocrim.
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Derivations on bounded pocrims

A derivation on a bounded pocrim M is f : M → M satisfying

f (x ⊕ y) = f (x)⊕ f (y) and f (x � y) = (f (x)� y)⊕ (x � f (y))

for all x , y ∈ M.

The set of derivations on M is denoted by D(M).

Simple examples:

The zero map o : x 7→ 0 is a trivial derivation.

The identity map id : x 7→ x is a derivation iff M is (term-equvalent
to) a Boolean algebra:

I M satisfies the equation x ⊕ x = x ;
I M satisfies the equations x � x = x and x

′′
= x ;

I x � y = x ∧ y , x ⊕ y = x ∨ y and x → x ′ ∨ y .

Let M = K× L where K is a Boolean algebra. The map
f : (x , y) 7→ (x , 0) is a derivation on M.
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Derivations on bounded pocrims

The double negation δ : x 7→ x
′′

is nucleus on M. The δ-image
Mδ = (Mδ; �δ,→, 0, 1) is an involutive pocrim, i.e., it satisfies the
equation

x
′′

= x .

In general, δ is not homomorphism of M onto Mδ, and Mδ is not
a subalgebra of M.

Further examples:

δ is a derivation on M iff Mδ is a Boolean algebra.

Let M = K× L where Kδ is a Boolean algebra. The map
f : (x , y) 7→ (x

′′
, 0) is a derivation on M.
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Derivations on bounded pocrims

For every f ∈ D(M):

f (0) = 0;

f (x) = f (x)
′′

= f (x
′′

), so f (x) ∈ Mδ, for all x ∈ M;

f (x) ≤ x
′′

and f (x) ≤ f (1) for all x ∈ M.

There is a bijection between D(M) and D(Mδ):

for every f ∈ D(M), f �Mδ
∈ D(Mδ);

for every f ∈ D(Mδ), the map f̂ : M → M defined by f̂ (x) = f (x ′′)
is a derivation on M such that f̂ �Mδ

= f .
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Derivations on involutive pocrims

Let M be an involutive pocrim and f ∈ D(M). Then

f (x) = x � f (1)

for every x ∈ M. Moreover, f is a conucleus, the f -image Mf is
a Boolean algebra, and f is a homomorphism of M onto Mf .
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Boolean elements

An element a ∈ M is Boolean if a ∨ a′ exists and a ∨ a′ = 1.
The set of Boolean elements of M is denoted by B(M).

Boolean elements ←→ direct product decompositions:

If a ∈ B(M), then
I [0, a] = ([0, a]; �,→a, 0, a), where x →a y = a� (x → y),

is a bounded pocrim,

I [a, 1] = ([a, 1]; �,→, a, 1) is a bounded pocrim,

I M ∼= [0, a]× [a, 1] under
η : x 7→ (a� x , a′ → x) = (a ∧ x , a ∨ x).

If M ∼= K× L under θ : x 7→ (xK, xL), then
a = θ−1(1K, 0L) ∈ B(M), [0, a] ∼= K and [a, 1] ∼= L.
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Derivations on involutive pocrims

Let M be an involutive pocrim and f ∈ D(M).

If f (1) ∈ B(M),
then

Then
f (x) = x � f (1)

= x ∧ f (1)

for every x ∈ M. Moreover, f is a conucleus, the f -image Mf is a Boolean
algebra, and f is homomorphism of M onto Mf .

In any involutive pocrim M, there is a bijection between:

the derivations f ∈ D(M) such that f (1) ∈ B(M);

The Boolean elements a ∈ B(M) such that [0, a] is a Boolean algebra
(Mf = [0, a] if a = f (1) ∈ B(M));

the direct product decompositions M ∼= K× L where K is
a Boolean algebra (M ∼= [0, a]× [a, 1] if a = f (1) ∈ B(M)) .

Note: This applies to MV-algebras.
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Derivations on bounded pocrims

Let M be a bounded pocrim and f ∈ D(M). Then

f (x) = (x � f (a))′′

for every x ∈ M. Moreover, Mf = (Mf ; �δ,→, 0, f (1)) is
a Boolean algebra.

Since f �Mδ
∈ D(Mδ), we have

f (x) = f (x ′′) = x ′′ �δ f (1) = (x � f (1)))′′

for x ∈ M.

Note: f is not a conucleus on M, so Mf is the f -image of Mδ.
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Derivations on bounded pocrims

A (bounded) pocrim is divisible if it satisfies the equation

x � (x → y) = y � (y → x).

Let M be a divisible pocrim and f ∈ D(M). Then

f (x) = (x � f (1))′′ = x ′′ � f (1) = x ′′ ∧ f (1)

for every x ∈ M.
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Derivations on bounded pocrims

Let M be a bounded pocrim and f ∈ D(M). If f (1) ∈ B(M), then

f (x) = (x � f (1))′′ = x ′′ � f (1) = x ′′ ∧ f (1)

for every x ∈ M.

A (bounded) pocrim is prelinear if it satisfies the equation

((x → y)→ z)� ((y → x)→ z) ≤ z .

If M is prelinear, then f (1) ∈ B(M) for every f ∈ D(M).
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Derivations on bounded pocrims

Let f ∈ D(M). If a = f (1) ∈ B(M), then M ∼= [0, a]× [a, 1],
f (x) = x ′′ � a = x ′′ ∧ a for all x ∈ M, and Mf = [0, a]δ is
a Boolean algebra.

In any bounded pocrim M, there is a bijection between:

the derivations f ∈ D(M) such that f (1) ∈ B(M);

the Boolean elements a ∈ B(M) such that [0, a]δ is
a Boolean algebra;

the direct product decompositions M ∼= K× L where Kδ is
a Boolean algebra.

Note: This applies to prelinear bounded pocrims and, in particular, to
BL-algebras.
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Derivations and coderivations

Let M be involutive and f ∈ D(M). Since f (x) = x � f (1),
f is a residuated map, i.e., there exists a unique f ∗ such that

f (x) ≤ y iff x ≤ f ∗(y)

for all x , y ∈ M, because

x � f (1) ≤ y iff x ≤ f (1)→ y ,

by the residuation law.

Hence f ∗, the residual of f , is given by

f ∗(x) = f (1)→ x = (x ′ � f (1))′ = f (x ′)′.

Characterization of the residuals f ∗ of derivations f ?
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Derivations and coderivations

A bounded pocrim M is normal if it satisfies the equation

(x � y)′′ = x ′′ � y ′′,

or equivalently, if Mδ is a subalgebra of M.

Let M be normal. A coderivation on M is f : M → M satisfying

f (x � y) = f (x)� f (y) and f (x ⊕ y) = (f (x)⊕ y)� (x ⊕ f (y))

for all x , y ∈ M.

The set of coderivations is denoted by C(M).
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Derivations and coderivations

For any map f : M → M we define f ] : M → M by

f ](x) = f (x ′)′.

Let M be normal. Equip D(M) and C(M) with pointwise order.

The map α : f 7→ f ] – formally (α, α) – is an antitone Galois
connection between D(M) and C(M).

All derivations f ∈ D(M) are closed, whereas a coderivation
f ∈ C(M) is closed iff f (x) = f (x ′′) for all x ∈ M.

If M is involutive, then α is bijection.
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PMV-algebras – MV-algebras with product

MV-algebras are term-equivalent with bounded pocrims satisfying
the equation

(x → y)→ y = (y → x)→ x .

In the “standard” MV-algebra [0, 1]MV = ([0, 1]; �,→, 0, 1):

x � y = max(x + y − 1, 0), x → y = min(1− x + y , 1),
x ′ = 1− x , x ⊕ y = min(x + y , 1).
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PMV-algebras – MV-algebras with product

A PMV-algebra is an algebra M = (M; �,→, ·, 0, 1) where

(M; �,→, 0, 1) is (term-equivalent to) an MV-algebra,

M; ·, 1) is a commutative monoid, and

(x � y ′) · z = (x · z)� (y · z)′ for all x , y , z ∈ M.

In the “standard” PMV-algebra [0, 1]PMV = ([0, 1]; �,→, ·, 0, 1):

x � y ′ = max(x − y , 0).

The variety generated by [0, 1]MV is the variety of MV-algebras, but
the variety generated by [0, 1]PMV is smaller than the variety
of PMV-algebras.

D. Šalounová Derivations on bounded pocrims TACL 2019



Derivations on PMV-algebras

A derivation on a PMV-algebra M is f : M → M satisfying

f (x ⊕ y) and f (x · y) = (f (x) · y)⊕ (x · f (y))

for all x , y ∈ M.

Let M be a PMV-algebra. Then f is a derivation on M iff f is a derivation
on the MV-algebra reduct of M. For every derivation f , f (x) = x · f (1) for
all x ∈ M.

Some difficulties:

x � y ≤ x · y ≤ x ∧ y for all x , y ∈ M;

x ′ � x = 0 for all x ∈ M, but x ′ · x = 0 iff x ∈ B(M).
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