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Any topological space X yields a topological semantics for
intermediate and modal logics.

Any metrisable space without isolated points provides a complete
semantics for IPC and S4.
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From Topological to Polyhedral Semantics

Any topological space X yields a topological semantics for
intermediate and modal logics.

Theorem (Tarski-McKinsey-Rasiowa-Sikorski Theorem)

Any metrisable space without isolated points provides a complete
semantics for IPC and S4.

® This means: topological semantics can't capture much of the
geometric content of a space.

® Motivating idea: to express geometric properties like
dimension, restrict to subsets which are ‘polyhedral’.

® This leads to polyhedral semantics.
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A Summary of the Talk

Polyhedral semantics is sound and complete for IPC and
S4.Grz.

We investigate polyhedral completeness (poly-completeness):
logics sound and complete for a class of polyhedra.

The Nerve Criterion provides a purely combinatorial
equivalent of poly-completeness.

Using this, we show that there are continuum-many
poly-incomplete logics with the fmp, and demarcate an infinite
class of poly-complete logics of each finite height.

We give an axiomatisation for the logic of convex polyhedra of
each dimension.



® In this talk, will focus on the intuitionistic side of polyhedral
semantics.

® But everything transfers freely to the modal case (we are
above S4.Grz).
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® A polyhedron can have arbitrary dimension, and
convex nor connected.

need not be
® Qur polyhedra are always compact.
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Intuition: triangulations break polyhedra up into simple shapes.
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® Simplices are the most basic polyhedra of each dimension.

® Points, line segments, triangles, tetrahedra, pentachora, etc.

A D
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Triangulations ||

Simplices are the most basic polyhedra of each dimension.

Points, line segments, triangles, tetrahedra, pentachora, etc.

A triangulation is a splitting up of a polyhedron into simplices.

Represented as a poset (¥, <) of simplices, where 0 < 7
means that o is a face of 7.

Its underlying polyhedron is |X| := |J X.

Every polyhedron admits a triangulation.
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The set of subpolyhedra of a polyhedron forms a co-Heyting
algebra.
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Since we're interested in logic, let's switch to the dual.
Let P be a polyhedron. An open subpolyhedron of P is the
subpolyhedra.

complement in P of a subpolyhedron. Sub,P is the set all of open
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Since we're interested in logic, let's switch to the dual.
Let P be a polyhedron. An open subpolyhedron of P is the
subpolyhedra.

complement in P of a subpolyhedron. Sub,P is the set all of open

Sub, P is a Heyting algebra.

So we arrive at a polyhedral semantics for intuitionistic logic
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The logic of a polyhedron is the logic of its triangulations.
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The logic of a polyhedron is the logic of its triangulations

Every poly-complete logic has the finite model property.
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The logic of a polyhedron is the logic of its triangulations.

Every poly-complete logic has the finite model property.

IPC is complete with respect to the class of all polyhedra.
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The nerve, N(F), of finite poset F is the set of all non-empty
chains in F, ordered by inclusion.
{a, b, c}
e | N
b {a,b} {b,c} {a,c} {ad}
a

et

|
{c}  {d}
There is always a p-morphism N(F) — F.
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Barycentric Subdivision
Given a triangulation X, construct its barycentric subdivision ¥’ by

putting a new point in the middle of each simplex, and forming a
new triangulation around it.

TARY- N\

Y 2 N(X) as posets.



A logic L is poly-complete if and only if it is the logic of a class C
of finite frames closed under N .
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Barycentric Subdivision and the Nerve Criterion

Theorem (Nerve Criterion)

A logic L is poly-complete if and only if it is the logic of a class C
of finite frames closed under N\ .

® This is about barycentric subdivision.
e Let Y(" be the nth iterated barycentric subdivision of ¥.

e Intuition: (X("),cn captures everything (logical) about
P =1%|.
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The Proof of the Theorem

Proof Sketch.

® The algebraic version of the theorem: For any triangulations
> and A of a polyhedron P, there is n € N such that the
subalgebra generated by A is isomorphically contained in
subalgebra generated by ¥ (7).
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The Proof of the Theorem

Proof Sketch.

® The algebraic version of the theorem: For any triangulations
> and A of a polyhedron P, there is n € N such that the
subalgebra generated by A is isomorphically contained in
subalgebra generated by ¥ (7).

® Show that P, X and A can be assumed to be rational (i.e.
that their vertices lie in Q").

® Then use the De Concini-Procesi Lemma from rational
polyhedral geometry to find our n € N.
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Stable Logics

Definition

A logic is stable if its rooted frames is closed under monotone
images.

Theorem (G. Bezhanishvili & Bezhanishvili, 2017)

The logics KC, LC,, BW,, BTW, and BC,, are all stable.
Moreover, there are continuum-many stable logics.

Theorem (G. Bezhanishvili & Bezhanishvili, 2017)

Every stable logic has the finite model property.



If L is poly-complete, stable and of height at least 2 then £ = IPC.
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If L is poly-complete, stable and of height at least 2 then £ = IPC.

® Purely combinatorial: exploits Nerve Criterion.

® Repeatedly applying A produces wider and wider frames,

which eventually monotone-map to every finite rooted
frame. O
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For every finite rooted frame Q, there is a formula x(Q), the

Jankov-Fine formula of Q, such that for any frame F, we have
F ¥ x(Q) if and only if F up-reduces to Q.
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A tree T is starlike if it has a single branching node at the root.

N
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A tree T is starlike if it has a single branching node at the root.

N

A logic L is starlike if it is of the form IPC + x(T1) + x(T2) + - -,
where {T1, Ta,...} is a (possibly infinite) set of starlike trees other
than **.
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A starlike logic L is poly-complete if and only if it has the finite
model property.
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model property.

A starlike logic L is poly-complete if and only if it has the finite

BD, + x(T1) +x(T2) + -

is poly-complete. Hence there are
infinitely many poly-complete logics of each finite height.

SL=IPC+ ((—p—p)— (pV—p)) — (—-—pV —p) (Scott’s
logic) is poly-complete.
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Proof of Starlike Poly-Completeness

Proof Idea.

® Exploits the Nerve Criterion.

® A method which, given a finite frame F of L, produces a
finite frame F’ and a p-morphism F’ — F such that
N (F') E L for every n € N.

O QP



A polyhedron P is convex if whenever x,y € P, the straight line
from x to y is also in P.

7/
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A polyhedron P is convex if whenever x,y € P, the straight line
from x to y is also in P.

VS 9:s

The logic of convex polyhedra of dimension n is axiomatised by

BD, + x(3,») + x("1).
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The Proof of the Axiomatisation

Proof Sketch.

® For soundness, we have geometrical arguments exploiting
classical dimension theory.

e E.g. for x(“}") we show that a convex polyhedron can't be
partitioned into non-empty sets A, B, C, X such that A, B, C
are open subpolyhedra and X C AN BN C.
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The Proof of the Axiomatisation

Proof Sketch.

® For soundness, we have geometrical arguments exploiting
classical dimension theory.

e E.g. for x(“}") we show that a convex polyhedron can't be
partitioned into non-empty sets A, B, C, X such that A, B, C
are open subpolyhedra and X C AN BN C.

® For completeness, we show that every finite frame F of the
axiomatisation is realised in a convex polyhedron.

® As an intermediary step we transform F into a more
geometrically-amenable form, called a saw-topped tree.

® Saw-topped trees are planar, which enables the realisation. [
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What's Next? Future Directions

Ultimate goal: a full classification of poly-completeness.

What is the logic of all convex polyhedra? If

IPC + X(b) + x(*3") has the fmp, then it is an
axiomatisation.

What is the natural notion of bisimulation for polyhedra?

® Can we use these techniques to prove standard polyhedral
geometry results using logic?
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