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From Topological to Polyhedral Semantics

Any topological space X yields a topological semantics for
intermediate and modal logics.

Theorem (Tarski-McKinsey-Rasiowa-Sikorski Theorem)

Any metrisable space without isolated points provides a complete
semantics for IPC and S4.

• This means: topological semantics can’t capture much of the
geometric content of a space.

• Motivating idea: to express geometric properties like
dimension, restrict to subsets which are ‘polyhedral’.

• This leads to polyhedral semantics.
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A Summary of the Talk

• Polyhedral semantics is sound and complete for IPC and
S4.Grz.

• We investigate polyhedral completeness (poly-completeness):
logics sound and complete for a class of polyhedra.

• The Nerve Criterion provides a purely combinatorial
equivalent of poly-completeness.

• Using this, we show that there are continuum-many
poly-incomplete logics with the fmp, and demarcate an infinite
class of poly-complete logics of each finite height.

• We give an axiomatisation for the logic of convex polyhedra of
each dimension.
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Intuitionistic Logic

• In this talk, will focus on the intuitionistic side of polyhedral
semantics.

• But everything transfers freely to the modal case (we are
above S4.Grz).
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Polyhedra

• A polyhedron can have arbitrary dimension, and need not be
convex nor connected.

• Our polyhedra are always compact.
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Triangulations I

Intuition: triangulations break polyhedra up into simple shapes.
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Triangulations II

• Simplices are the most basic polyhedra of each dimension.

• Points, line segments, triangles, tetrahedra, pentachora, etc.

• A triangulation is a splitting up of a polyhedron into simplices.

• Represented as a poset (Σ,4) of simplices, where σ 4 τ
means that σ is a face of τ .

• Its underlying polyhedron is |Σ| :=
⋃

Σ.

• Every polyhedron admits a triangulation.
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The co-Heyting algebra of Subpolyhedra

Theorem (N. Bezhanishvili, Marra, Mcneill, & Pedrini, 2018)

The set of subpolyhedra of a polyhedron forms a co-Heyting
algebra.
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The Heyting algebra SuboP

Since we’re interested in logic, let’s switch to the dual.

Definition

Let P be a polyhedron. An open subpolyhedron of P is the
complement in P of a subpolyhedron. SuboP is the set all of open
subpolyhedra.

Corollary

SuboP is a Heyting algebra.

So we arrive at a polyhedral semantics for intuitionistic logic.
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Some Properties of Polyhedral Semantics

Theorem (N. Bezhanishvili et al., 2018)

The logic of a polyhedron is the logic of its triangulations.

Corollary

Every poly-complete logic has the finite model property.

Theorem (N. Bezhanishvili et al., 2018)

IPC is complete with respect to the class of all polyhedra.
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The Nerve

Definition (Alexandrov’s nerve)

The nerve, N (F ), of finite poset F is the set of all non-empty
chains in F , ordered by inclusion.

a

b

c

d

{a}{b} {c} {d}

{a, b} {b, c} {a, c} {a, d}

{a, b, c}

There is always a p-morphism N (F )→ F .
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Barycentric Subdivision

Given a triangulation Σ, construct its barycentric subdivision Σ′ by
putting a new point in the middle of each simplex, and forming a
new triangulation around it.

Σ′ ∼= N (Σ) as posets.
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Barycentric Subdivision and the Nerve Criterion

Theorem (Nerve Criterion)

A logic L is poly-complete if and only if it is the logic of a class C
of finite frames closed under N .

• This is about barycentric subdivision.

• Let Σ(n) be the nth iterated barycentric subdivision of Σ.

• Intuition: (Σ(n))n∈N captures everything (logical) about
P = |Σ|.
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The Proof of the Theorem

Proof Sketch.

• The algebraic version of the theorem: For any triangulations
Σ and ∆ of a polyhedron P, there is n ∈ N such that the
subalgebra generated by ∆ is isomorphically contained in
subalgebra generated by Σ(n).

• Show that P, Σ and ∆ can be assumed to be rational (i.e.
that their vertices lie in Qn).

• Then use the De Concini-Procesi Lemma from rational
polyhedral geometry to find our n ∈ N.
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Stable Logics

Definition

A logic is stable if its rooted frames is closed under monotone
images.

Theorem (G. Bezhanishvili & Bezhanishvili, 2017)

The logics KC, LCn, BWn, BTWn and BCn are all stable.
Moreover, there are continuum-many stable logics.

Theorem (G. Bezhanishvili & Bezhanishvili, 2017)

Every stable logic has the finite model property.
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Stable Logics are Poly-Incomplete

Theorem

If L is poly-complete, stable and of height at least 2 then L = IPC.

Proof Idea.

• Purely combinatorial: exploits Nerve Criterion.

• Repeatedly applying N produces wider and wider frames,
which eventually monotone-map to every finite rooted
frame.
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Jankov-Fine Formulas for Forbidden Configurations

Theorem

For every finite rooted frame Q, there is a formula χ(Q), the
Jankov-Fine formula of Q, such that for any frame F , we have
F 2 χ(Q) if and only if F up-reduces to Q.

F

U
Q
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Starlike Logics

Definition (starlike tree)

A tree T is starlike if it has a single branching node at the root.

Definition

A logic L is starlike if it is of the form IPC + χ(T1) + χ(T2) + · · · ,
where {T1,T2, . . .} is a (possibly infinite) set of starlike trees other
than .
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Starlike Poly-completeness

Theorem

A starlike logic L is poly-complete if and only if it has the finite
model property.

Corollary

BDn + χ(T1) + χ(T2) + · · · is poly-complete. Hence there are
infinitely many poly-complete logics of each finite height.

Corollary

SL = IPC + ((¬¬p → p)→ (p ∨ ¬p))→ (¬¬p ∨ ¬p) (Scott’s
logic) is poly-complete.
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Proof of Starlike Poly-Completeness

Proof Idea.

• Exploits the Nerve Criterion.

• A method which, given a finite frame F of L, produces a
finite frame F ′ and a p-morphism F ′ → F such that
N k(F ′) � L for every n ∈ N.
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The Logic PLn

Definition

A polyhedron P is convex if whenever x , y ∈ P, the straight line
from x to y is also in P.

Theorem (An Axiomatisation)

The logic of convex polyhedra of dimension n is axiomatised by
BDn + χ( ) + χ( ).
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The Proof of the Axiomatisation

Proof Sketch.

• For soundness, we have geometrical arguments exploiting
classical dimension theory.

• E.g. for χ( ) we show that a convex polyhedron can’t be
partitioned into non-empty sets A,B,C ,X such that A,B,C
are open subpolyhedra and X ⊆ A ∩ B ∩ C .

• For completeness, we show that every finite frame F of the
axiomatisation is realised in a convex polyhedron.

• As an intermediary step we transform F into a more
geometrically-amenable form, called a saw-topped tree.

• Saw-topped trees are planar, which enables the realisation.
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What’s Next? Future Directions

• Ultimate goal: a full classification of poly-completeness.

• What is the logic of all convex polyhedra? If
IPC + χ( ) + χ( ) has the fmp, then it is an
axiomatisation.

• What is the natural notion of bisimulation for polyhedra?

• Can we use these techniques to prove standard polyhedral
geometry results using logic?
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