Polyhedral Completeness in Intermediate and Modal Logics

Sam Adam-Day, Nick Bezhanishvili, David Gabelaia, Vincenzo Marra

19th June 2019

From Topological to Polyhedral Semantics

Any topological space X yields a topological semantics for intermediate and modal logics.

Theorem (Tarski-McKinsey-Rasiowa-Sikorski Theorem)

Any metrisable space without isolated points provides a complete semantics for IPC and S4.

From Topological to Polyhedral Semantics

Any topological space X yields a topological semantics for intermediate and modal logics.

Theorem (Tarski-McKinsey-Rasiowa-Sikorski Theorem)

Any metrisable space without isolated points provides a complete semantics for IPC and S4.

- This means: topological semantics can't capture much of the geometric content of a space.
- Motivating idea: to express geometric properties like dimension, restrict to subsets which are 'polyhedral'.
- This leads to polyhedral semantics.

A Summary of the Talk

- Polyhedral semantics is sound and complete for IPC and S4.Grz.
- We investigate polyhedral completeness (poly-completeness): logics sound and complete for a class of polyhedra.
- The Nerve Criterion provides a purely combinatorial equivalent of poly-completeness.
- Using this, we show that there are continuum-many poly-incomplete logics with the fmp, and demarcate an infinite class of poly-complete logics of each finite height.
- We give an axiomatisation for the logic of convex polyhedra of each dimension.

Intuitionistic Logic

- In this talk, will focus on the intuitionistic side of polyhedral semantics.
- But everything transfers freely to the modal case (we are above S4.Grz).

Polyhedra

- A polyhedron can have arbitrary dimension, and need not be convex nor connected.
- Our polyhedra are always compact.

Triangulations I

Intuition: triangulations break polyhedra up into simple shapes.

Triangulations II

- Simplices are the most basic polyhedra of each dimension.
- Points, line segments, triangles, tetrahedra, pentachora, etc.

Triangulations II

- Simplices are the most basic polyhedra of each dimension.
- Points, line segments, triangles, tetrahedra, pentachora, etc.

- A triangulation is a splitting up of a polyhedron into simplices.
- Represented as a poset (Σ, \preccurlyeq) of simplices, where $\sigma \preccurlyeq \tau$ means that σ is a face of τ.
- Its underlying polyhedron is $|\Sigma|:=\bigcup \Sigma$.
- Every polyhedron admits a triangulation.

The co-Heyting algebra of Subpolyhedra

Theorem (N. Bezhanishvili, Marra, Mcneill, \& Pedrini, 2018)
The set of subpolyhedra of a polyhedron forms a co-Heyting algebra.

The Heyting algebra $\operatorname{Sub}_{0} P$

Since we're interested in logic, let's switch to the dual.

Definition

Let P be a polyhedron. An open subpolyhedron of P is the complement in P of a subpolyhedron. $\mathrm{Sub}_{\mathrm{o}} P$ is the set all of open subpolyhedra.

The Heyting algebra $\mathrm{Sub}_{0} P$

Since we're interested in logic, let's switch to the dual.

Definition

Let P be a polyhedron. An open subpolyhedron of P is the complement in P of a subpolyhedron. $\mathrm{Sub}_{\mathrm{o}} P$ is the set all of open subpolyhedra.

Corollary

Sub $_{0} P$ is a Heyting algebra.
So we arrive at a polyhedral semantics for intuitionistic logic.

Some Properties of Polyhedral Semantics

Theorem (N. Bezhanishvili et al., 2018)
The logic of a polyhedron is the logic of its triangulations.

Some Properties of Polyhedral Semantics

Theorem (N. Bezhanishvili et al., 2018)
The logic of a polyhedron is the logic of its triangulations.

Corollary

Every poly-complete logic has the finite model property.

Some Properties of Polyhedral Semantics

Theorem (N. Bezhanishvili et al., 2018)
The logic of a polyhedron is the logic of its triangulations.

Corollary

Every poly-complete logic has the finite model property.
Theorem (N. Bezhanishvili et al., 2018)
IPC is complete with respect to the class of all polyhedra.

The Nerve

Definition (Alexandrov's nerve)

The nerve, $\mathcal{N}(F)$, of finite poset F is the set of all non-empty chains in F, ordered by inclusion.

There is always a p-morphism $\mathcal{N}(F) \rightarrow F$.

Barycentric Subdivision

Given a triangulation Σ, construct its barycentric subdivision Σ^{\prime} by putting a new point in the middle of each simplex, and forming a new triangulation around it.

$$
\Sigma^{\prime} \cong \mathcal{N}(\Sigma) \text { as posets. }
$$

Barycentric Subdivision and the Nerve Criterion

Theorem (Nerve Criterion)

A logic \mathcal{L} is poly-complete if and only if it is the logic of a class \mathbf{C} of finite frames closed under \mathcal{N}.

Barycentric Subdivision and the Nerve Criterion

Theorem (Nerve Criterion)

A logic \mathcal{L} is poly-complete if and only if it is the logic of a class \mathbf{C} of finite frames closed under \mathcal{N}.

- This is about barycentric subdivision.
- Let $\Sigma^{(n)}$ be the nth iterated barycentric subdivision of Σ.
- Intuition: $\left(\Sigma^{(n)}\right)_{n \in \mathbb{N}}$ captures everything (logical) about $P=|\Sigma|$.

The Proof of the Theorem

Proof Sketch.

- The algebraic version of the theorem: For any triangulations Σ and Δ of a polyhedron P, there is $n \in \mathbb{N}$ such that the subalgebra generated by Δ is isomorphically contained in subalgebra generated by $\Sigma^{(n)}$.

The Proof of the Theorem

Proof Sketch.

- The algebraic version of the theorem: For any triangulations Σ and Δ of a polyhedron P, there is $n \in \mathbb{N}$ such that the subalgebra generated by Δ is isomorphically contained in subalgebra generated by $\Sigma^{(n)}$.
- Show that P, Σ and Δ can be assumed to be rational (i.e. that their vertices lie in \mathbb{Q}^{n}).
- Then use the De Concini-Procesi Lemma from rational polyhedral geometry to find our $n \in \mathbb{N}$.

Stable Logics

Definition

A logic is stable if its rooted frames is closed under monotone images.

Theorem (G. Bezhanishvili \& Bezhanishvili, 2017)
The logics $\mathbf{K C}, \mathbf{L C}_{n}, \mathbf{B W}_{n}, \mathbf{B T W}_{n}$ and $\mathbf{B C}_{n}$ are all stable. Moreover, there are continuum-many stable logics.

Theorem (G. Bezhanishvili \& Bezhanishvili, 2017)
Every stable logic has the finite model property.

Stable Logics are Poly-Incomplete

Theorem

If \mathcal{L} is poly-complete, stable and of height at least 2 then $\mathcal{L}=$ IPC.

Stable Logics are Poly-Incomplete

Theorem

If \mathcal{L} is poly-complete, stable and of height at least 2 then $\mathcal{L}=$ IPC.

Proof Idea.

- Purely combinatorial: exploits Nerve Criterion.
- Repeatedly applying \mathcal{N} produces wider and wider frames, which eventually monotone-map to every finite rooted frame.

Jankov-Fine Formulas for Forbidden Configurations

Theorem

For every finite rooted frame Q, there is a formula $\chi(Q)$, the Jankov-Fine formula of Q, such that for any frame F, we have $F \not \models \chi(Q)$ if and only if F up-reduces to Q.

F

Starlike Logics

Definition (starlike tree)

A tree T is starlike if it has a single branching node at the root.

Starlike Logics

Definition (starlike tree)

A tree T is starlike if it has a single branching node at the root.

Definition

A logic L is starlike if it is of the form IPC $+\chi\left(T_{1}\right)+\chi\left(T_{2}\right)+\cdots$, where $\left\{T_{1}, T_{2}, \ldots\right\}$ is a (possibly infinite) set of starlike trees other than ${ }^{\circ}$.

Starlike Poly-completeness

Theorem

A starlike logic \mathcal{L} is poly-complete if and only if it has the finite model property.

Starlike Poly-completeness

Theorem

A starlike logic \mathcal{L} is poly-complete if and only if it has the finite model property.

Corollary

$\mathbf{B D}_{n}+\chi\left(T_{1}\right)+\chi\left(T_{2}\right)+\cdots$ is poly-complete. Hence there are infinitely many poly-complete logics of each finite height.

Corollary

$\mathbf{S L}=\mathrm{IPC}+((\neg \neg p \rightarrow p) \rightarrow(p \vee \neg p)) \rightarrow(\neg \neg p \vee \neg p)(S c o t t ' s$ logic) is poly-complete.

Proof of Starlike Poly-Completeness

Proof Idea.

- Exploits the Nerve Criterion.
- A method which, given a finite frame F of \mathcal{L}, produces a finite frame F^{\prime} and a p-morphism $F^{\prime} \rightarrow F$ such that $\mathcal{N}^{k}\left(F^{\prime}\right) \vDash \mathcal{L}$ for every $n \in \mathbb{N}$.

The Logic $\mathbf{P L}_{n}$

Definition

A polyhedron P is convex if whenever $x, y \in P$, the straight line from x to y is also in P.

The Logic $\mathbf{P L}_{n}$

Definition

A polyhedron P is convex if whenever $x, y \in P$, the straight line from x to y is also in P.

Theorem (An Axiomatisation)
The logic of convex polyhedra of dimension n is axiomatised by $\mathbf{B D}_{n}+\chi(\because)+\chi(\because)$.

The Proof of the Axiomatisation

Proof Sketch.

- For soundness, we have geometrical arguments exploiting classical dimension theory.
- E.g. for $\chi(\because \bullet)$ we show that a convex polyhedron can't be partitioned into non-empty sets A, B, C, X such that A, B, C are open subpolyhedra and $X \subseteq \bar{A} \cap \bar{B} \cap \bar{C}$.

The Proof of the Axiomatisation

Proof Sketch.

- For soundness, we have geometrical arguments exploiting classical dimension theory.
- E.g. for $\chi(\because \bullet)$ we show that a convex polyhedron can't be partitioned into non-empty sets A, B, C, X such that A, B, C are open subpolyhedra and $X \subseteq \bar{A} \cap \bar{B} \cap \bar{C}$.
- For completeness, we show that every finite frame F of the axiomatisation is realised in a convex polyhedron.
- As an intermediary step we transform F into a more geometrically-amenable form, called a saw-topped tree.
- Saw-topped trees are planar, which enables the realisation.

What's Next? Future Directions

- Ultimate goal: a full classification of poly-completeness.
- What is the logic of all convex polyhedra? If IPC $+\chi(\because)+\chi(\because)$ has the fmp, then it is an axiomatisation.
- What is the natural notion of bisimulation for polyhedra?
- Can we use these techniques to prove standard polyhedral geometry results using logic?

References

Adam-Day, S. (2019). Polyhedral completeness in intermediate and modal logics (Unpublished master's thesis).
Bezhanishvili, G., \& Bezhanishvili, N. (2017). Locally finite reducts of Heyting algebras and canonical formulas. Notre Dame Journal of Formal Logic, 58(1), 21-45.
Bezhanishvili, N., Marra, V., Mcneill, D., \& Pedrini, A. (2018). Tarski's theorem on intuitionistic logic, for polyhedra. Annals of Pure and Applied Logic, 169(5), 373-391.
Gabelaia, D., Gogoladze, K., Jibladze, M., Kuznetsov, E., \& Marx, M. (2018). Modal logic of planar polygons. (Preprint submitted to Elsevier)

