Simplicial semantics and one-variable fragments of modal predicate logics

Valentin Shehtman (Moscow, Russia)

TACL 2019 June 19, Nice

Introduction

- M. Wajsberg (1933) noticed that quantifiers in first order logic can be treated as modalities:
 - the 1-variable fragment of classical predicate logic corresponds to propositional **S5**.

$$\begin{array}{cccc} \forall x & \mapsto & \square \\ \exists x & \mapsto & \diamondsuit \\ \mathsf{P}_{\mathsf{i}}(\mathsf{x}) & \mapsto & \mathsf{p}_{\mathsf{i}} \end{array} \end{array}$$

• A. Prior (1957) proposed to study the 1-variable fragment of intuitionistic predicate logic in the same way. This leads to intuitionistic modal logic **MIPC**.

Introduction-2

G. Fischer-Servi (1977) noticed that the modal transaltion of MIPC is the 1-variable fragment of QS4 (quantified S4). This is a bimodal logic (in our notation, S4 _| S5).

She proposed to study intuitionistic modal and bimodal logics obtained in such a way, but this work is still only beginning.

Introduction-3

- S.Artemov & G.Dhaparidze (1991) studied the 1variable fragment of QGL (quantified GL)= the 1variable fragment of first-order provability logic of PA.
- [D.Gabbay & V.Shehtman, 1998] described the 1variable fragments of some modal predicate logics with constant domains as *products of modal logics*.
- Semiproducts (= expanding products) were first studied by F. Wolter, M. Zakharyaschev, A. Kurucz (2003 and later on) and V. Shehtman (2005). They are related to 1-variable fragments of modal predicate logics with expanding domains.

References

[QNL] D.Gabbay, V. Shehtman, D. Skvortsov. Quantification in Nonclassical Logic, Volume 1. Elsevier, 2009.

[MDML] D.Gabbay, A. Kurucz, F. Wolter, M. Zakharyaschev. Many-dimensional modal logics: theory and applications. Elsevier, 2003.

Formulas

Modal predicate formulas are built from:

- the countable set of individual variables $Var = \{v_1, v_2, ...\}$
- countable sets of n-ary predicate letters (for every $n \ge 0$)
- \rightarrow , \perp , \square , \forall
- \neg , \diamondsuit , \lor , \land , \exists are derived.

No equality, constants or function symbols

Variable and formula substitutions [QNL]

 $[y_1,...,y_n/x_1,...,x_n] \text{ simultaneously replaces all free} \\ \text{occurrences of } x_1,...,x_n \text{ with } y_1,...,y_n \text{ (with renaming bound variables if necessary)} \\ \text{To obtain } [C(x_1,...,x_n,y_1,...,y_m)/P(x_1,...,x_n)]A: \\ (1) \text{ rename all bound variables of A that coincide with the "new" parameters } y_1,...,y_m \text{ of } C, \\ (2) \text{ replace every occurrence of every atom } P(z_1,...,z_n) \text{ with } \\ [z_1,...,z_n/x_1,...,x_n]C \\ \end{cases}$

Strictly speaking, all substitutions are defined up to congruence (α -equivalence): formulas are congruent if they can be obtained by "legal" renaming of bound variables

Modal logics -1

A modal predicate logic (mpl) is a set L of modal formulas

containing

- the classical predicate tautologies
- the axiom of **K**: $\Box(p \rightarrow q) \rightarrow (\Box p \rightarrow \Box q)$

and closed under the rules

- Modus Ponens: A, $A \rightarrow B / B$
- Necessitation: A / A
- Generalization: A / $\forall x A$

 Substitution: A/SA (for any formula substitution S) <u>Remark</u> Another definition of a modal predicate logic (Kripke, 1963) does not include all predicate tautologies.

Modal logics-2

Modal propositional logics can be regarded as fragments of predicate logics (with only 0-ary predicate letters, without quantifiers).

K := the minimal modal propositional logic

QK:= the minimal modal predicate logic

 $Q\Lambda := QK + \Lambda :=$ the minimal predicate extension of

the propositional logic Λ

Q∧C :=Q∧+ Ba (Barcan axiom)

 $\forall x \square P(x) \rightarrow \square \forall x P(x)$

1-variable fragments-1

A 1-variable predicate formula is built from monadic predicate letters P_i (i=0,1,...) using a single variable x, free or bound. The 1-variable fragment of a predicate logic L is {A \in L | A is 1-variable}. Every 1-variable predicate formula A translates into a 2modal propositional formula A_* :

replace $\forall x \mapsto P_i(x) \mapsto P_i(x)$

Then put $L-1:= \{A_* \mid A \in L, A \text{ is } 1\text{-variable}\}.$

We also call L-1 the *1-variable fragment* of L.

1-variable fragments-2

<u>Simple remarks</u> Let L be a predicate logic with the propositional fragment Λ . Then L-1 is a 2-modal propositional logic, between the *semicommutative join* $\Lambda \mid S5 := \Lambda * S5$ (fusion) + $\square p \rightarrow \square p$ and $\Lambda * Triv. (Triv: = K + \square p \leftrightarrow p)$ Note that $\square p \rightarrow \square p$ is the translation of the Converse Barcan formula (provable in **QK**):

 $\Box \forall x P(x) \rightarrow \forall x \Box P(x)$

1-variable fragments-3

For the particuar cases $L=Q\Lambda$, $Q\Lambda C$ we have <u>Lemma</u> $\Lambda | S5 \subseteq Q\Lambda - 1 \subseteq \overline{Q\Lambda} - 1$ [Λ ,S5] $\subseteq Q\Lambda C - 1 \subseteq \overline{Q\Lambda C} - 1$

where \overline{L} denotes the *Kripke-completion* of L, $\overline{L}:=ML(\{\Phi \mid \Phi \models L\})$ (the smallest Kripke-complete extension of L),

 $[\Lambda, S5] := \Lambda * S5 + \Box \Box p \leftrightarrow \Box \Box p$ (the

commutative join) The logics $\overline{QA-1}$, $\overline{QAC-1}$ can also be described as semiproducts and products with S5

Kripke semantics-1

A propositional Kripke frame F=(W, R) ($W \neq \emptyset, R \subseteq W^2$)

A predicate Kripke frame: $\Phi = (F,D)$, where

 $D=(D_{u})_{u\in W}$ is an expanding family of non-empty sets:

if u R v, then $D_{u} \subseteq D_{v}$

D_u is the domain at the world u

A Kripke model over Φ is a collection of classical models:

 $M = (\Phi, \theta)$, where $\theta = (\theta_u)_{u \in W}$ is a valuation

 $\theta_{u}(P)$ is an n-ary relation on D_{u} for each n-ary predicate letter P

Kripke semantics-2

- For a modal formula $A(x_1, ..., x_n)$ and $d_1, ..., d_n \in D_u$ consider a D_u -sentence $A(d_1, ..., d_n)$.
- <u>Def</u> Forcing (truth) relation $M, u \models B$ between the worlds u and D_u -sentences B is defined by induction:
- M,u ⊨ P(d₁,..., d_n) iff (d₁,..., d_n) ∈ θ_u(P) (for a proposition letter P: iff θ_u(P)=1) M,u ⊨ □B iff for any v, uRv implies M,v ⊨ B M,u ⊨ ∀x B iff for any d ∈ D_u M,u ⊨ [d/x]B etc. (the other cases are clear)

Kripke semantics-3

<u>Def</u> (truth in a Kripke model; validity in a frame) $M \models A(x_1,...,x_n)$ iff for any $u \in W$

 $\mathsf{M},\mathsf{u} \vDash \forall \mathsf{x}_{1} \dots \forall \mathsf{x}_{n} \mathsf{A}(\mathsf{x}_{1}, \dots, \mathsf{x}_{n})$

 $\Phi \models A$ iff for any M over Φ , M $\models A$ Soundness theorem

 $ML(\Phi):=\{A \mid \Phi \models A\}$ is an mpl (the *logic of* Φ)

<u>Def</u> The *logic of a class of frames C* is the intersection of the logics of frames from *C*. A logic of a class of Kripke frames is called Kripke-complete.

Products and semiproducts of frames-1

In this talk we are interested only in products with universal frames.

Def. The *product* of Kripke frames

$$(W_{1'}, R_{1}) \times (V, V \times V) := (W_{1} \times V, R_{h'}, R_{v}),$$

where

$$(x_1, y_1) R_h(x_2, y_2)$$
 iff $x_1 R_1 x_2 & y_1 = y_2$
 $(x_1, y_1) R_v(x_2, y_2)$ iff $x_1 = x_2$

Def. A semiproduct (or an expanding product) is a subframe of a product, which is horizontably stable: $F = (F_1 \times F_2) | W$, where $W \subseteq W_1 \times W_2$, $R_h(W) \subseteq W$.

Products and semiproducts of frames-2

A semiproduct of a linear order (W, <) with a universal frame. It is the same as a predicate Kripke frame over (W, <):

Semiproducts and products of propositional modal logics

Def. The *semiproduct* of L_1 with S5

 $L_1 \times S5 := ML({F | F is a semiproduct of some})$

 $F_1 \models L_1$ and a universal F_2)

The *product* of L_1 with S5

 $L_1 \times S5 := ML({F | F is a product of some})$

 $F_1 \models L_1$ and a universal F_2)

Semiproducts and products-2

A semiproduct with a universal frame can be regarded as a predicate Kripke frame;

• a product as a predicate frame with a constant domain. Hence <u>Proposition</u> $\Lambda \times S5 = \overline{Q\Lambda} - 1$, $\Lambda \times S5 = \overline{Q\Lambda} - 1$

<u>Def</u> Λ is quantifier-friendly if $\Lambda | S5 = Q\Lambda - 1$.

- Λ is Barcan-friendly if [Λ , S5] = Q Λ C-1
- Λ , **S5** are *semiproduct-matching* if $\Lambda \times S5 = \Lambda S5$.
- ∧,S5 are product-matching if ∧ × S5 = [∧, S5] semiproduct-matching ⇒ quantifier-friendly, product-matching ⇒ Barcan-friendly.

Semiproduct and products-3

<u>Theorem 1A</u> [MDML>>Gabbay & Sh 1998] If Λ is Horn axiomatizable and Kripke complete, then Λ ,S5 are product-matching.

<u>Theorem 1B</u> (MDML, Th.9.10). If **A** = **K**, **T**, **K4**, **S4**, **S5**,

then Λ , **S5** are semiproduct-matching.

Def. A <u>Horn sentence</u> is a classical first-order sentence of the form $\forall x \forall y \forall z (\phi(x,y,z) \rightarrow R(x,y))$, where ϕ is <u>positive</u>, R(x,y) is atomic.

Semiproduct and products-4

A propositional modal logic is *Horn axiomatizable* if the class of its frames is definable by Horn sentences and modal variable-free formulas.

A typical example is the axiom 5: $\bigcirc \Box p \rightarrow \Box p$ expressing *Euclideaness*: $\forall x \forall y \forall z$ (xRy & xRz \rightarrow yRz).

Theorem B prompts that semiproduct-matching should be a rare property.

Incompleteness

Consider the logics

 $\Box \mathbf{T} := \mathbf{K} + \Box (\Box p \rightarrow p) \text{ (frames: } \forall x \forall y \text{ (xRy } \rightarrow yRy))$

 $SL4 = K + \Box p \rightarrow \Box \Box p + \Box p \leftrightarrow \Diamond p$

(the logic of the two-world frame

with the first world irreflexive and the second one reflexive)

<u>____Theorem 1C</u> [Sh & Shkatov, in preparation]

If $\Box T \subseteq \Lambda \subseteq SL4$, then

(1) ∧ is not semiproduct-matching with **S5**

(2) **QA** is Kripke-incomplete

Quantifier-friendliness

- Theorem 1A transforms as follows:
- <u>Theorem 2</u> [MDML>>Gabbay & Sh 1998] If Λ is Horn axiomatizable and Kripke complete, then Λ is quantifier-friendly.
- For the proof we use simplicial semantics of first-order modal logics introduced by Dmitry Skvortsov in the early 1990s.
- As we have seen, Kripke semantics does not work for $Q\Lambda$. Other semantics (e.g. Ghilardi's functor semantics) may not work either.

Simplicial complexes

d

Geometric simplicial complex

Abstract simplicial complex

{acd, cde, ac, ad, cd, de, ce, ab, be, a,b,c,d,e}

$X\in S \ \& \ Y\subset X \Rightarrow Y\in S$

Simplicial sets (J.P. May, 1967)

 Δ is the category:

Ob $\Delta = \omega$,

 $\Delta(m,n) = (non-strict) \mod (m+1) \rightarrow (n+1)$

A *simplicial set* is a contravariant functor X: $\Delta^{\circ} \sim SET$

X(n) is the set of n-dimensional simplices

For every $f \in \Delta(m,n)$, X(f): $X(n) \rightarrow X(m)$ is a face map selecting an m-dimensional face of an n-dimensional simplex (it may be degenerate – if f is not injective)

Simplicial sets-2

Example: If $a \in X(2)$ is a triangle,

 $f \in \Delta(1,2), f(0)=0, f(1)=2$, then X(f) chooses the second side of a (it can be denoted by a_{02}).

Two differences between simplicial complexes and simplicial sets:

- simplicial sets include degenerate simplices (such as a₁₁, a₀₀₂)
- in simplicial sets two different simplices may have the same proper faces.

Introduced by D.Skvortsov (1990), an abstract (Skvortsov&Sh) in 1991; the paper in 1993.

In these publications simplicial frames we called 'Kripke metaframes'. Later the names were changed:

Kripke metaframes >> Simplicial frames

Cartesian metaframes >> Kripke metaframes

A *simplicial frame* is a modification of a simplicial set.

• Δ is replaced by another category Σ

 $Ob \Sigma = \omega,$

$$\Sigma_{mn} = all \text{ maps } I_m \rightarrow I_n \text{ (where } I_n = \{1, ..., n\}, I_0 = \emptyset).$$

Let $\Sigma = \bigcup \{ \Sigma_{mn} \mid m, n \ge 0 \}$

• Accessibility relations are also involved

Roughly, a simplicial frame is a layered Kripke frame. The worlds are at level 0, individuals at level 1 (0-simplices), abstract n-tuples of individuals at level n ((n-1)-simplices).

<u>Def</u> A *simplicial frame* over a propositional Kripke frame F=(W,R) is $\mathbf{F} = (F, D, \mathbf{R}, \pi)$, where

- $D=(D^n)_{n\geq 0}$, $R=(R^n)_{n\geq 0}$, (D^n,R^n) is a propositional frame, $(D^0,R^0) = F$,
- $\pi = (\pi_{\sigma})_{\sigma \in \Sigma}$, $\pi_{\sigma} \colon D^{n} \to D^{m}$ for $\sigma \in \Sigma_{mn}$ $\Sigma_{0n} = \{\emptyset_{n}\}$ (the empty map).

 π_{\varnothing_n} sends every absract n-tuple to "its possible world". Dn(u) denotes $(\pi_{\varnothing_n})^{-1}(u)$, the set of "n-tuples living in the world u",

A *metaframe* is a simplicial frame, in which n-tuples are real: $D^{n}(u)=(D^{1}(u))^{n}$

<u>Definition</u> A *valuation* in **F** is a function ξ such that $\xi_u(P) \subseteq D_u^n$ for every n-ary predicate letter P.

 $M = (F, \xi)$ is a *simplicial model* over **F**.

An *assignment* of length n at u is a pair (**x**, **a**), where **x** is a list of different variables of length n, $\mathbf{a} \in D^n(u)$. (We denote it by \mathbf{a}/\mathbf{x} .)

<u>Definition</u> (truth of a formula A in a simplicial model M at u under an assignment (x, a) involving the formula parameters) This makes sense if a lives in u Notation: M, \mathbf{a}/\mathbf{x} , $\mathbf{u} \models \mathbf{A}$. M, \mathbf{a}/\mathbf{x} , $\mathbf{u} \models \mathsf{P}(\mathbf{x} \cdot \sigma)$ iff $\pi_{\sigma}(\mathbf{a}) \in \xi_{u}(\mathsf{P})$, $(\mathbf{x} \cdot \sigma) = (x_{\sigma(1)}, \dots, x_{\sigma(n)})$, M, \mathbf{a} / \mathbf{x} , $\mathbf{u} \models \square B$ (for $\mathbf{a} \in D^n(\mathbf{u})$) iff $\forall v, b (uRv \& b \in D^n(v) \& aR^n b \Rightarrow M, b/x, v \models B)$ M, \mathbf{a} / \mathbf{x} , $\mathbf{u} \models \exists \mathbf{y} B$ (for $\mathbf{y} \notin \mathbf{x}$, $\mathbf{a} \in D^n(\mathbf{u})$) iff $\exists \mathbf{c} \in \mathsf{D}^{n+1}(\mathsf{u}) \ (\pi_{\delta_{n+1}}(\mathbf{c}) = \mathsf{a} \& \mathsf{M}, \mathbf{c}/\mathbf{x}\mathbf{y} \models \mathsf{B}),$ M, a /x, u $\models \exists x_i B$ iff M, $\pi_{\delta_i}(a)/(x \cdot \delta_i)$, u $\models \exists x_i B$, where δ_i is the

monotonic inclusion map $I_n \rightarrow I_{n+1}$ skipping i.

Truth in a model:

$$\begin{split} \mathbf{M} &\models \mathbf{A}(\mathbf{x}_{1},...,\mathbf{x}_{n}) \text{ iff for any } \mathbf{u} \in \mathbf{W} \text{ M}, \mathbf{u}, / \models \forall \mathbf{x}_{1}...\forall \mathbf{x}_{n} \mathbf{A}(\mathbf{x}_{1},...,\mathbf{x}_{n}) \\ \hline \textit{Validity in a frame: } \Phi &\models \mathbf{A} \text{ iff for any } \mathbf{M} \text{ over } \Phi, \ \mathbf{M} \models \mathbf{A} \\ \hline \textit{Strong validity in a frame: } \Phi &\models^{+} \mathbf{A} \text{ iff for any } n \ \Phi \models \mathbf{A}^{n}. \\ \hline \textit{Soundness theorem} (\mathsf{Skvortsov}, \mathsf{1991-93}) \\ \mathbf{ML}(\Phi) &:= \{\mathbf{A} \in \mathsf{MF} \mid \Phi \models^{+} \mathbf{A}\} \text{ is an mpl if } \Phi \text{ satisfies the conditions} \\ \bullet \ \pi_{\varnothing_{n}} \text{ is surjective,} \end{split}$$

- $\pi_{\sigma \cdot \tau} = \pi_{\tau} \cdot \pi_{\sigma}; \quad \pi_{id(I_n)} = id(D^n). [id(X) is the identity map on X]$
- for $\sigma \in \Sigma_{mn} \ \pi_{\sigma} \colon (D^{n}, \mathbb{R}^{n}) \to (D^{m}, \mathbb{R}^{m})$ is a morphism, i.e., $\pi_{\sigma}(\mathbb{R}^{n}(\mathbf{a})) = \mathbb{R}^{m}(\pi_{\sigma}(\mathbf{a}))$ for any $\mathbf{a} \in D^{n}$.

• (weak Kan condition) if $\pi_{\sigma_{m+1}}(b) = \pi_{\sigma}(a) = d, \ \sigma \in \Sigma_{mn}$, then for some $\mathbf{c} \in \mathsf{D}^{n+1}$ $\pi_{\sigma_{\perp}}(\mathbf{c}) = \mathbf{b} \And \pi_{\delta_{n+1}}(\mathbf{c}) = \mathbf{a}.$ c — — → b V V $(\sigma_{+} \in \Sigma_{m+1,n+1} \text{ extends } \sigma \text{ by } \sigma_{+}(m+1)=n+1)$ In particular, this means that two simplices with a common face are faces of a simplex of higher dimension: а In metaframes: $\mathbf{d} = a_{\sigma(1)} \dots a_{\sigma(m)}$, $\mathbf{b} = \mathbf{d} b_{m+1}$; then $\mathbf{c} = \mathbf{a} b_{m+1}$

The method of proof of Theorem 2 (on quantifierfriendliness): for Horn-axiomatizable and complete Λ if $\Lambda \nvDash A^*$, then $Q\Lambda \nvDash A$.

Suppose $\Lambda \nvDash A^*$, then by completeness there is a frame $G = (W, R_1, R_2) \nvDash A^*$, $G \vDash \Lambda$. We then construct a simplicial frame $F \nvDash A^*$, $F \vDash Q\Lambda$.

• Extract F_1 , F_0 from G: $F_1 = (W, R_1)$, $F_0 = (W/R_2, R_0)$, $u^R_0 v^r$ iff $\exists u' \in u^3 v' \in v^u R_1 v'$ Put $\pi_{01}(u) := u^r$.

- The main construction: the conglomerate F over G.
 (Dⁿ,Rⁿ) = (F₁)ⁿ (in the standard model-theoretic sense)∐
 - a disjoint union of several copies of $(F_1)^m$ for m < n.

As Horn sentences respect model-theoretic products, it follows that $(D^n, R^n) \models \Lambda$.

<u>Lemma</u> (Skvortsov) If Φ is a simplicial frame, B a propositional formula, then $\Phi \models^+ B$ iff $(D^n, R^n) \models B$ for all n.

Hence $\mathbf{F} \models^+ \mathbf{Q} \mathbf{\Lambda}$.

F \nvDash A follows easily from G \nvDash A_{*}. QED.

Some open problems

1. Describe $Q\Lambda$ -1 when Λ is not quantifier-friendly. What happens for $\Lambda = S4.1$, S4.2, S4.3? 2. If Λ is decidable, can $Q\Lambda$ -1 be undecidable? This question makes sense already for quantifier-friendly Λ .

3. The same questions for $Q\Lambda C-1$ and Barcan-friendliness.

THANK YOU!!!

Incompleteness-2

There is a continuum of logics $\Box T \subseteq \Lambda \subseteq SL4$

<u>Theorem</u> **T**, **SL4** are quantifier-friendly.

Some examples of completions and semiproducts

Consider the logics

Λ = □T, K5, K45, SL4, **□**S5

 $\mathbf{K5} = \mathbf{K} + \diamondsuit \Box \mathbf{p} \rightarrow \Box \mathbf{p}$

 $\mathbf{K45} = \mathbf{K} + \diamondsuit \Box \mathbf{p} \rightarrow \Box \mathbf{p}$

<u>Theorem</u>

- $\mathbf{Q}\mathbf{\Lambda} = \mathbf{Q}\mathbf{\Lambda} + \Box \forall \mathbf{x} (\Box \mathsf{P}(\mathbf{x}) \rightarrow \mathsf{P}(\mathbf{x}))$
- $\Lambda \not s5 = \Lambda | S5 + \Box (\Box p \rightarrow p)$
- These logics $\Lambda \times S5$ have the FMP

Remarks on 1-variable fragments

<u>Remark 1</u> (folklore? Behmann 1922?)

Every monadic classical first-order formula is equivalent to a Boolean combination of 1-variable formulas. So every monadic classical first-order formula with one parameter is equivalent to a 1-variable formula.

However the complexity of monadic classical logic is higher than of **S5** (NTIME($2^{n/\log n}$) > NP).

Remarks on 1-variable fragments-2

<u>Def</u> (Wolter & Zakharyaschev) A first-order modal formula is monodic if in every its subformula $\Box A A$ has at most one

parameter.

<u>Remark 2</u> Every monadic monodic first-order formula is equivalent (in **QK**) to a Boolean combination of 1-variable formulas. So every monadic monodic first-order formula with one parameter is equivalent to a 1-variable formula. Again: the complexities must be different.