Simplicial semantics and one-variable fragments of modal predicate logics

Valentin Shehtman (Moscow, Russia)

TACL 2019
June 19, Nice

Introduction

- M. Wajsberg (1933) noticed that quantifiers in first order logic can be treated as modalities:
the 1 -variable fragment of classical predicate logic corresponds to propositional S5.

$$
\begin{aligned}
& \forall \mathrm{x} \mapsto \square \\
& \exists \mathrm{x} \mapsto \diamond \\
& \mathrm{P}_{\mathrm{i}}(\mathrm{x}) \mapsto \mathrm{p}_{\mathrm{i}}
\end{aligned}
$$

- A. Prior (1957) proposed to study the 1-variable fragment of intuitionistic predicate logic in the same way. This leads to intuitionistic modal logic MIPC.

Introduction-2

- G. Fischer-Servi (1977) noticed that the modal transaltion of MIPC is the 1 -variable fragment of QS4 (quantified S4). This is a bimodal logic (in our notation, S4 _| S5).

MIPC --------------> S4 _| S5

QH-1 --------------> QS4-1
She proposed to study intuitionistic modal and bimodal logics obtained in such a way, but this work is still only beginning.

Introduction-3

- S.Artemov \& G.Dhaparidze (1991) studied the 1variable fragment of $\mathbf{Q G L}$ (quantified $\mathbf{G L}$) = the 1variable fragment of first-order provability logic of PA.
- [D.Gabbay \& V.Shehtman, 1998] described the 1variable fragments of some modal predicate logics with constant domains as products of modal logics.
- Semiproducts (= expanding products) were first studied by F. Wolter, M. Zakharyaschev, A. Kurucz (2003 and later on) and V. Shehtman (2005). They are related to 1-variable fragments of modal predicate logics with expanding domains.

References

[QNL] D.Gabbay, V. Shehtman, D. Skvortsov. Quantification in Nonclassical Logic, Volume 1. Elsevier, 2009.
[MDML] D.Gabbay, A. Kurucz, F. Wolter, M. Zakharyaschev. Many-dimensional modal logics: theory and applications. Elsevier, 2003.

Formulas

Modal predicate formulas are built from:

- the countable set of individual variables Var $=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots\right\}$
- countable sets of n-ary predicate letters (for every $n \geq 0$)
- $\rightarrow, \perp, \square, \forall$
$\urcorner, \diamond, \vee, \wedge, \exists$ are derived.
No equality, constants or function symbols

Variable and formula substitutions [QNL]

$\left[y_{1}, \ldots, y_{n} / X_{1}, \ldots, x_{n}\right]$ simultaneously replaces all free occurrences of x_{1}, \ldots, x_{n} with y_{1}, \ldots, y_{n} (with renaming bound variables if necessary)
To obtain $\left[C\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right) / P\left(x_{1}, \ldots, x_{n}\right)\right] A$:
(1) rename all bound variables of A that coincide with the "new" parameters y_{1}, \ldots, y_{m} of C,
(2) replace every occurrence of every atom $\mathrm{P}\left(\mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{n}}\right)$ with
$\left[z_{1}, \ldots, z_{n} / x_{1}, \ldots, x_{n}\right] C$
Strictly speaking, all substitutions are defined up to congruence (α-equivalence): formulas are congruent if they can be obtained by "legal" renaming of bound variables

Modal logics -1

A modal predicate logic (mpl) is a set L of modal formulas containing

- the classical predicate tautologies
- the axiom of $\mathbf{K}: \square(p \rightarrow q) \rightarrow(\square \mathrm{p} \rightarrow \square \mathrm{q})$
and closed under the rules
- Modus Ponens: $\mathrm{A}, \mathrm{A} \rightarrow \mathrm{B} / \mathrm{B}$
- Necessitation: A / $\square \mathrm{A}$
- Generalization: A / $\forall x A$
- Substitution: A/SA (for any formula substitution S) Remark Another definition of a modal predicate logic (Kripke, 1963) does not include all predicate tautologies.

Modal logics-2

Modal propositional logics can be regarded as fragments of predicate logics (with only 0-ary predicate letters, without quantifiers).

K := the minimal modal propositional logic
QK:= the minimal modal predicate logic
$\mathbf{Q \Lambda}:=\mathbf{Q K}+\mathbf{\Lambda}:=$ the minimal predicate extension of the propositional logic $\boldsymbol{\Lambda}$
$\mathbf{Q \wedge C}:=\mathbf{Q \Lambda + \mathbf { B a }}$ (Barcan axiom)

$$
\forall \mathrm{x} \square \mathrm{P}(\mathrm{x}) \rightarrow \square \forall \mathrm{xP}(\mathrm{x})
$$

1-variable fragments-1

A 1-variable predicate formula is built from monadic predicate letters $P_{i}(i=0,1, \ldots)$ using a single variable x, free or bound. The 1-variable fragment of a predicate logic L is $\{A \in L \mid A$ is 1 -variable $\}$.

Every 1-variable predicate formula A translates into a 2modal propositional formula A_{*} :
replace $\forall \mathrm{x} \mapsto \square \quad \mathrm{P}_{\mathrm{i}}(\mathrm{x}) \mapsto \mathrm{p}_{\mathrm{i}}$
Then put $L-1:=\left\{A_{*} \mid A \in L, A\right.$ is 1 -variable $\}$.
We also call L-1 the 1-variable fragment of L.

1-variable fragments-2

Simple remarks Let L be a predicate logic with the propositional fragment $\boldsymbol{\Lambda}$. Then L-1 is a 2 -modal propositional logic, between the semicommutative join
^_| S5:= ^* S5 (fusion) + $\square \square \mathrm{p} \rightarrow \square \square \mathrm{p}$
and $\boldsymbol{\wedge} \boldsymbol{*}$ Triv. (Triv: $=\mathbf{K}+\boldsymbol{\square} \leftrightarrow \mathrm{p}$)
Note that $\square \square \mathrm{p} \rightarrow \square \square \mathrm{p}$ is the translation of the
Converse Barcan formula (provable in QK):

$$
\square \forall \mathrm{xP}(\mathrm{x}) \rightarrow \forall \mathrm{x} \square \mathrm{P}(\mathrm{x})
$$

1-variable fragments-3

For the particuar cases $\mathbf{L =} \mathbf{Q} \mathbf{\Lambda}, \mathbf{Q} \mathbf{\Lambda C}$ we have Lemma $\mathbf{\Lambda} \quad \mid \mathbf{S 5} \subseteq \mathbf{Q} \boldsymbol{\Lambda}-1 \subseteq \overline{\mathbf{Q} \mathbf{\Lambda}} \mathbf{- 1}$

```
[\,S5] \subseteq Q^C-1 \subseteq Q\C-1
```

where \mathbf{L} denotes the Kripke-completion of \mathbf{L},

$$
\overline{\mathrm{L}}:=\mathrm{ML}(\{\Phi \mid \Phi \vDash \mathrm{L}\})
$$

(the smallest Kripke-complete extension of L),

[^,S5]: = ^* S5 + $\square \square \mathrm{p} \leftrightarrow \square \square \mathrm{p}$ (the commutative join)
The logics $\overline{\mathbf{Q \Lambda}} \mathbf{- 1 ,} \overline{\mathbf{Q \Lambda C}} \mathbf{- 1}$ can also be described as semiproducts and products with S5

Kripke semantics-1

A propositional Kripke frame $\mathrm{F}=(\mathrm{W}, \mathrm{R})\left(\mathrm{W} \neq \varnothing, \mathrm{R} \subseteq \mathrm{W}^{2}\right)$
A predicate Kripke frame: $\Phi=(F, D)$, where
$D=\left(D_{u}\right)_{u \in W}$ is an expanding family of non-empty sets:

$$
\text { if } u R v \text {, then } D_{u} \subseteq D_{v}
$$

D_{u} is the domain at the world u
A Kripke model over Φ is a collection of classical models:
$M=(\Phi, \theta)$, where $\theta=\left(\theta_{u}\right)_{u \in W}$ is a valuation
$\theta_{u}(P)$ is an n-ary relation on D_{u} for each n-ary predicate letter P

Kripke semantics-2

For a modal formula $A\left(x_{1}, \ldots, x_{n}\right)$ and $d_{1}, \ldots, d_{n} \in D_{u}$ consider a D_{u}-sentence $A\left(d_{1}, \ldots, d_{n}\right)$.
Def Forcing (truth) relation $M, u \vDash B$ between the worlds u and D_{u}-sentences B is defined by induction:
$M, u \vDash P\left(d_{1}, \ldots, d_{n}\right)$ iff $\left(d_{1}, \ldots, d_{n}\right) \in \theta_{u}(P)$
(for a proposition letter P : iff $\theta_{u}(P)=1$)
$M, u \vDash \square B$ iff for any v, uRv implies $M, v \vDash B$
$M, u \vDash \forall x B \quad$ iff for any $d \in D_{u} M, u \vDash[d / x] B$
etc. (the other cases are clear)

Kripke semantics-3

Def (truth in a Kripke model; validity in a frame)
$M \vDash A\left(x_{1}, \ldots, x_{n}\right)$ iff for any $u \in W$

$$
M, u \vDash \forall x_{1}, \ldots \forall x_{n} A\left(x_{1}, \ldots, x_{n}\right)
$$

$\Phi \vDash A$ iff for any M over $\Phi, M \vDash A$

Soundness theorem

$$
M L(\Phi):=\{A \mid \Phi \vDash A\} \text { is an } \mathrm{mpl} \text { (the logic of } \Phi \text {) }
$$

Def The logic of a class of frames \mathscr{C} is the intersection of the logics of frames from \mathscr{C}. A logic of a class of Kripke frames is called Kripke-complete.

Products and semiproducts of frames-1

In this talk we are interested only in products with universal frames.

Def. The product of Kripke frames

$$
\left(W_{1}, R_{1}\right) \times(V, V \times V):=\left(W_{1} \times V, R_{h^{\prime}}, R_{v}\right)
$$

where

$$
\begin{gathered}
\left(x_{1}, y_{1}\right) R_{h}\left(x_{2}, y_{2}\right) \text { iff } \quad x_{1} R_{1} x_{2} \& y_{1}=y_{2} \\
\left(x_{1}, y_{1}\right) R_{v}\left(x_{2}, y_{2}\right) \text { iff } x_{1}=x_{2}
\end{gathered}
$$

Def. A semiproduct (or an expanding product) is a subframe of a product, which is horizontably stable:
$F=\left(F_{1} \times F_{2}\right) \mid W$, where $W \subseteq W_{1} \times W_{2}, R_{h}(W) \subseteq W$.

Products and semiproducts of frames-2

A semiproduct of a linear order ($\mathrm{W},<$) with a universal frame. It is the same as a predicate Kripke frame over ($\mathrm{W},<$):
\triangle

Semiproducts and products of propositional modal logics

Def. The semiproduct of L_{1} with S5
$\mathrm{L}_{1} \times \mathbf{S 5}:=\mathbf{M L}(\{\mathrm{F} \mid \mathrm{F}$ is a semiproduct of some

$$
\left.\mathrm{F}_{1} \models \mathrm{~L}_{1} \text { and a universal } \mathrm{F}_{2}\right\} \text {) }
$$

The product of L_{1} with S 5
$\mathrm{L}_{1} \times \mathbf{S 5}:=\mathbf{M L}(\{\mathrm{F} \mid \mathrm{F}$ is a product of some

$$
\left.\mathrm{F}_{1} \models \mathrm{~L}_{1} \text { and a universal } \mathrm{F}_{2}\right\} \text {) }
$$

Semiproducts and products-2

A semiproduct with a universal frame can be regarded as a predicate Kripke frame;

- a product as a predicate frame with a constant domain. Hence
Proposition $\mathbf{\Lambda} \times \mathbf{S 5}=\overline{\mathbf{Q} \boldsymbol{\Lambda}} \mathbf{- 1}, \mathbf{\Lambda} \times \mathbf{S 5}=\overline{\mathbf{Q} \boldsymbol{\mathbf { C }}-\mathbf{1}}$
Corollary $\boldsymbol{\Lambda} \quad \mid \mathbf{S 5} \subseteq \mathbf{Q N} \mathbf{- 1} \subseteq \mathbf{\Lambda} \times \mathbf{S 5}$
$[\mathbf{\Lambda}, \mathbf{S 5}] \subseteq \mathbf{Q} \mathbf{\Lambda C} \mathbf{- 1} \subseteq \mathbf{\Lambda} \times \mathbf{S 5}$
Def $\boldsymbol{\Lambda}$ is quantifier-friendly if $\boldsymbol{\Lambda}$ _|S5 = $\mathbf{Q} \boldsymbol{\Lambda}-1$.
- $\boldsymbol{\Lambda}$ is Barcan-friendly if [$\mathbf{\Lambda}, \mathbf{S 5]}=\mathbf{Q \Lambda C - 1}$
- $\mathbf{\Lambda}, \mathbf{S} \mathbf{5}$ are semiproduct-matching if $\mathbf{\Lambda}$ 人 $\mathbf{S 5}=\mathbf{\Lambda} _\mid \mathbf{S} \mathbf{5}$.
- $\mathbf{\Lambda}, \mathbf{S 5}$ are product-matching if $\mathbf{\Lambda} \times \mathbf{S 5}=[\mathbf{\Lambda}, \mathbf{S 5]}$ semiproduct-matching \Rightarrow quantifier-friendly, product-matching \Rightarrow Barcan-friendly.

Semiproduct and products-3

Theorem 1A [MDML>>Gabbay \& Sh 1998] If $\boldsymbol{\Lambda}$ is Horn axiomatizable and Kripke complete, then $\boldsymbol{\Lambda}, \mathbf{S 5}$ are product-matching.

Theorem 1B (MDML, Th.9.10). If $\mathbf{\Lambda}=\mathbf{K}, \mathbf{T}, \mathbf{K 4}, \mathbf{S 4}, \mathbf{S 5}$, then $\boldsymbol{\Lambda}, \mathbf{S 5}$ are semiproduct-matching.

Def. A Horn sentence is a classical first-order sentence of the form $\forall x \forall y \forall z(\varphi(x, y, z) \rightarrow R(x, y))$, where φ is positive, $R(x, y)$ is atomic.

Semiproduct and products-4

A propositional modal logic is Horn axiomatizable if the class of its frames is definable by Horn sentences and modal variable-free formulas.

A typical example is the axiom 5: $\diamond \square \mathrm{p} \rightarrow \square \mathrm{p}$ expressing Euclideaness: $\forall \mathrm{x} \forall \mathrm{y} \forall \mathrm{z}$ ($\mathrm{xRy} \& \mathrm{xRz} \rightarrow \mathrm{yRz}$).

Theorem B prompts that semiproduct-matching should be a rare property.

Incompleteness

Consider the logics

$$
\begin{gathered}
\square \mathbf{T}:=\mathbf{K}+\square(\square \mathrm{p} \rightarrow \mathrm{p}) \text { (frames: } \forall \mathrm{x} \forall \mathrm{y}(\mathrm{xRy} \rightarrow \mathrm{yRy})) \\
\mathbf{S L 4}=\mathbf{K}+\square \mathrm{p} \rightarrow \square \square \mathrm{p}+\square \mathrm{p} \leftrightarrow \diamond \mathrm{p}
\end{gathered}
$$

(the logic of the two-world frame
with the first world irreflexive and the second one reflexive)

- Theorem 1C [Sh \& Shkatov, in preparation]

If $\square \mathbf{T} \subseteq \boldsymbol{\Lambda} \subseteq \mathbf{S L 4}$, then
(1) $\boldsymbol{\Lambda}$ is not semiproduct-matching with $\mathbf{S} 5$
(2) $\mathbf{Q} \boldsymbol{\Lambda}$ is Kripke-incomplete

Quantifier-friendliness

Theorem 1A transforms as follows:
Theorem 2 [MDML>>Gabbay \& Sh 1998] If $\boldsymbol{\Lambda}$ is Horn axiomatizable and Kripke complete, then $\boldsymbol{\Lambda}$ is quantifier-friendly.
For the proof we use simplicial semantics of first-order modal logics introduced by Dmitry Skvortsov in the early 1990 s.
As we have seen, Kripke semantics does not work for $\mathbf{Q} \boldsymbol{\wedge}$. Other semantics (e.g. Ghilardi's functor semantics) may not work either.

Simplicial complexes

Geometric simplicial complex

Abstract simplicial complex
\{acd, cde, ac, ad, cd, de, ce, ab, be, a,b,c,d,e\}

$$
X \in S \& Y \subset X \Rightarrow Y \in S
$$

Simplicial sets

(J.P. May, 1967)
Δ is the category:
Ob $\Delta=\omega$,
$\Delta(m, n)=($ non-strict $)$ monotonic maps $(m+1) \rightarrow(n+1)$

A simplicial set is a contravariant functor $\mathrm{X}: \Delta^{\circ} \leadsto$ SET
$\mathrm{X}(\mathrm{n})$ is the set of n -dimensional simplices
For every $\mathrm{f} \in \Delta(\mathrm{m}, \mathrm{n}), \mathrm{X}(\mathrm{f}): \mathrm{X}(\mathrm{n}) \rightarrow \mathrm{X}(\mathrm{m})$ is a face map selecting an m-dimensional face of an n-dimensional simplex (it may be degenerate - if f is not injective)

Simplicial sets-2

Example: If $a \in \mathbf{X}(2)$ is a triangle,
$f \in \Delta(1,2), f(0)=0, f(1)=2$, then $X(f)$ chooses the second side of a (it can be denoted by a_{02}).

Two differences between simplicial complexes and simplicial sets:

- simplicial sets include degenerate simplices (such as $\mathrm{a}_{11}, \mathrm{a}_{002}$)
- in simplicial sets two different simplices may have the same proper faces.

Simplicial frames-1

Introduced by D.Skvortsov (1990), an abstract (Skvortsov\&Sh) in 1991; the paper in 1993.

In these publications simplicial frames we called 'Kripke metaframes'. Later the names were changed:
Kripke metaframes >> Simplicial frames
Cartesian metaframes >> Kripke metaframes
A simplicial frame is a modification of a simplicial set.

- $\boldsymbol{\Delta}$ is replaced by another category $\boldsymbol{\Sigma}$

Ob $\boldsymbol{\Sigma}=\omega$,
$\Sigma_{m n}=$ all maps $I_{m} \rightarrow I_{n}\left(\right.$ where $I_{n}=\{1, \ldots, n\}, I_{0}=\varnothing$).
Let $\Sigma=\cup\left\{\Sigma_{m n} \mid m, n \geq 0\right\}$

- Accessibility relations are also involved

Simplicial frames-2

Roughly, a simplicial frame is a layered Kripke frame. The worlds are at level 0 , individuals at level 1 (0 -simplices), abstract n -tuples of individuals at level n (($\mathrm{n}-1$)-simplices).

Def A simplicial frame over a propositional Kripke frame $\mathrm{F}=(\mathrm{W}, \mathrm{R})$ is $F=(F, D, R, \pi)$, where

- $D=\left(D^{n}\right)_{n \geq 0}, R=\left(R^{n}\right)_{n \geq 0},\left(D^{n}, R^{n}\right)$ is a propositional frame, $\left(D^{0}, R^{0}\right)=F$,
- $\pi=\left(\pi_{\sigma}\right)_{\sigma \in \Sigma}, \quad \pi_{\sigma}: D^{n} \rightarrow D^{m}$ for $\sigma \in \Sigma_{m n}$ $\Sigma_{0 n}=\left\{\varnothing_{n}\right\}$ (the empty map).
$\pi_{\varnothing_{\mathrm{n}}}$ sends every absract n -tuple to "its possible world". $\mathrm{Dn}^{\mathrm{n}}(\mathrm{u})$ denotes $\left(\pi_{\varnothing_{\mathrm{n}}}\right)^{-1}(\mathrm{u})$, the set of " n -tuples living in the world u",

Simplicial frames-3

A metaframe is a simplicial frame, in which n-tuples are real:
$D^{n}(u)=\left(D^{1}(u)\right)^{n}$

Definition A valuation in F is a function ξ such that $\xi_{u}(P) \subseteq D n_{u}$ for every n -ary predicate letter P .
$\mathrm{M}=(\mathrm{F}, \xi)$ is a simplicial model over F .
An assignment of length n at u is a pair (\mathbf{x}, a), where \mathbf{x} is a list of different variables of length $n, a \in D^{n}(u)$. (We denote it by a / x.)

Simplicial frames-4

Definition (truth of a formula A in a simplicial model M at u under an assignment (\mathbf{x}, \mathbf{a}) involving the formula parameters)

This makes sense if a lives in u Notation: $M, a / x, u \vDash A$.
$M, \mathbf{a} / \mathbf{x}, \mathrm{u} \vDash \mathrm{P}(\mathbf{x} \cdot \sigma)$ iff $\pi_{\sigma}(\mathbf{a}) \in \xi_{\mathrm{u}}(\mathrm{P}),\left(\mathbf{x} \cdot \sigma:=\left(\mathrm{x}_{\sigma(1)}, \ldots, \mathrm{x}_{\sigma(n)}\right)\right)$,
$\mathrm{M}, \mathrm{a} / \mathrm{x}, \mathrm{u} \vDash \square \mathrm{B}\left(\right.$ for $\mathbf{a} \in \mathrm{Dn}^{\mathrm{n}}(\mathrm{u})$) iff
$\forall v, \mathbf{b}\left(u R v \& \mathbf{b} \in D n(v) \& \mathbf{R}^{n} \mathbf{b} \Rightarrow M, \mathbf{b} / \mathbf{x}, v \vDash B\right)$
$\mathrm{M}, \mathbf{a} / \mathbf{x}, \mathrm{u} \vDash \exists \mathrm{y} B \quad\left(\right.$ for $\mathrm{y} \notin \mathbf{x}, \mathbf{a} \in \mathrm{Dn}^{\mathrm{n}}(\mathrm{u})$) iff
$\exists \mathbf{c} \in \mathrm{Dn}^{\mathrm{n}} 1(\mathrm{u})\left(\pi_{\delta_{\mathrm{n}+1}}(\mathbf{c})=\mathrm{a} \& \mathrm{M}, \mathbf{c} / \mathrm{xy} \vDash \mathrm{B}\right)$,
$\mathrm{M}, \mathrm{a} / \mathrm{x}, \mathrm{u} \vDash \exists \mathrm{x}_{\mathrm{i}} \mathrm{B} \quad$ iff $\mathrm{M}, \pi_{\delta_{i}}(\mathrm{a}) /\left(\mathbf{x} \cdot \delta_{i}\right), \mathrm{u} \vDash \exists \mathrm{x}_{\mathrm{i}} \mathrm{B}$, where δ_{i} is the monotonic inclusion map $I_{n} \rightarrow I_{n+1}$ skipping i.

Simplicial frames-5

Truth in a model:
$\mathrm{M} \vDash \mathrm{A}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ iff for any $\mathrm{u} \in \mathrm{W} \mathrm{M}, \mathrm{u}, / \vDash \forall \mathrm{x}_{1} \ldots \forall \mathrm{x}_{\mathrm{n}} \mathrm{A}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$
Validity in a frame: $\Phi \vDash$ A iff for any M over $\Phi, \mathrm{M} \vDash \mathrm{A}$
Strong validity in a frame: $\Phi \vDash^{+} \mathrm{A}$ iff for any $\mathrm{n} \Phi \vDash \mathrm{A}^{\mathrm{n}}$.
Soundness theorem (Skvortsov,1991-93)
$\operatorname{ML}(\Phi):=\left\{A \in \operatorname{MF} \mid \Phi \vDash^{+} A\right\}$ is an mpl if Φ satisfies the conditions

- $\Pi_{\varnothing_{\mathrm{n}}}$ is surjective,
- $\pi_{\sigma \cdot T}=\pi_{T} \cdot \pi_{\sigma} ; \quad \pi_{i d\left(l_{n}\right)}=\mathrm{id}\left(D^{n}\right) .[i d(X)$ is the identity map on $X]$
- for $\sigma \in \Sigma_{m n} \pi_{\sigma}:\left(D^{n}, R^{n}\right) \rightarrow\left(D^{m}, R^{m}\right)$ is a morphism, i.e.,

$$
\pi_{\sigma}\left(R^{n}(a)\right)=R^{m}\left(\pi_{\sigma}(a)\right) \text { for any } a \in D^{n}
$$

Simplicial frames-6

- (weak Kan condition) if $\pi_{\delta_{m+1}}(\mathbf{b})=\pi_{\sigma}(\mathbf{a})=\mathbf{d}, \sigma \in \Sigma_{m n}$, then for some $\mathbf{c} \in D^{n+1} \pi_{\sigma_{+}}(\mathbf{c})=\mathbf{b} \& \pi_{\delta_{n+1}}(\mathbf{c})=\mathbf{a}$.

$\left(\sigma_{+} \in \Sigma_{m+1, n+1}\right.$ extends σ by $\left.\sigma_{+}(m+1)=n+1\right)$
In particular, this means that two simplices with a common face are faces of a simplex of higher dimension:

In metaframes: $\mathbf{d}=a_{\sigma(1)} \ldots a_{\sigma(m)}, \mathbf{b}=\mathbf{d} b_{m+1}$; then $\mathbf{c}=\mathbf{a b} b_{m+1}$

Simplicial frames-7

The method of proof of Theorem 2 (on quantifierfriendliness): for Horn-axiomatizable and complete $\boldsymbol{\Lambda}$ if $\boldsymbol{\Lambda} \nvdash A^{*}$, then $\mathbf{Q} \boldsymbol{\Lambda} \nvdash \mathrm{A}$.

Suppose $\boldsymbol{\Lambda} \nVdash \mathbf{A} *$, then by completeness there is a frame $G=\left(W, R_{1}, R_{2}\right) \not \models A^{*}, G \vDash \boldsymbol{\Lambda}$. We then construct a simplicial frame $\mathbf{F \not \models} A^{*}, \mathbf{F} \vDash \mathbf{Q} \boldsymbol{\Lambda}$.

- Extract F_{1}, F_{0} from $G: F_{1}=\left(W, R_{1}\right), F_{0}=\left(W / R_{2}, R_{0}\right)$,
$u^{\sim} R_{0} v^{\sim}$ iff $\exists u^{\prime} \in u^{\sim} \exists v^{\prime} \in v^{\sim} u^{\prime} R_{1} v^{\prime}$
Put $\pi_{\varnothing_{1}}(u):=u^{\sim}$.

Simplicial frames-8

- The main construction: the conglomerate F over G. $\left(D^{n}, R^{n}\right)=\left(F_{1}\right)^{n}$ (in the standard model-theoretic sense)
a disjoint union of several copies of $\left(F_{1}\right)^{m}$ for $m<n$.
As Horn sentences respect model-theoretic products, it follows that $\left(D^{n}, R^{n}\right) \vDash \boldsymbol{\Lambda}$.

Lemma (Skvortsov) If Φ is a simplicial frame, B a propositional formula, then $\Phi \vDash^{+} B$ iff $\left(D^{n}, R^{n}\right) \vDash B$ for all n.

Hence $\mathbf{F} \vDash^{+} \mathbf{Q} \mathbf{\Lambda}$.
$F \not \models A$ follows easily from $G \not \models A_{*}$. QED.

Some open problems

1. Describe $\mathbf{Q} \boldsymbol{\Lambda}-1$ when $\boldsymbol{\Lambda}$ is not quantifier-friendly. What happens for $\boldsymbol{\Lambda}=\mathbf{S 4 . 1}, \mathbf{S 4} .2, \mathbf{S 4 . 3}$?
2. If $\boldsymbol{\Lambda}$ is decidable, can $\mathbf{Q} \boldsymbol{\Lambda}-1$ be undecidable? This question makes sense already for quantifier-friendly $\boldsymbol{\Lambda}$.
3. The same questions for $\mathbf{Q \wedge \mathbf { C }} \mathbf{- 1}$ and Barcan-friendliness.

THANK YOU!!!

Incompleteness-2

There is a continuum of logics $\square \mathbf{T} \subseteq \mathbf{\Lambda} \subseteq \mathbf{S L 4}$

Theorem $\square \mathbf{T}$, SL4 are quantifier-friendly.

Some examples of completions and semiproducts

$$
\begin{gathered}
\text { Consider the logics } \\
\mathbf{\Lambda}=\square \mathbf{T}, \mathbf{K 5}, \mathbf{K 4 5}, \mathbf{S L 4}, \square \mathbf{S 5} \\
\mathbf{K 5}=\mathbf{K}+\diamond \square \mathrm{p} \rightarrow \square \mathrm{p} \\
\mathbf{K 4 5}=\mathbf{K}+\diamond \square \mathrm{p} \rightarrow \square \mathrm{p}
\end{gathered}
$$

Theorem

- $\overline{\mathbf{Q \Lambda}}=\mathbf{Q} \boldsymbol{\Lambda}+\square \forall \mathrm{x}(\square \mathrm{P}(\mathrm{x}) \rightarrow \mathrm{P}(\mathrm{x}))$
- $\boldsymbol{\Lambda}<\mathbf{S 5}=\mathbf{\Lambda}-\mid \mathbf{S 5}+\square \square(\square \mathrm{p} \rightarrow \mathrm{p})$
- These logics $\boldsymbol{\Lambda}$ 人 $\mathbf{S 5}$ have the FMP

Remarks on 1-variable fragments

Remark 1 (folklore? Behmann 1922?)
Every monadic classical first-order formula is equivalent to a Boolean combination of 1-variable formulas. So every monadic classical first-order formula with one parameter is equivalent to a 1-variable formula.

However the complexity of monadic classical logic is higher than of $\operatorname{S5}\left(\operatorname{NTIME}\left(2^{n / \log n}\right)>N P\right)$.

Remarks on 1-variable fragments-2

Def (Wolter \& Zakharyaschev) A first-order modal formula is monodic if in every its subformula $\square \mathrm{A}$ A has at most one
parameter.
Remark 2 Every monadic monodic first-order formula is equivalent (in QK) to a Boolean combination of 1-variable formulas. So every monadic monodic first-order formula with one parameter is equivalent to a 1-variable formula.

Again: the complexities must be different.

