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Introduction

• M. Wajsberg (1933) noticed that quantifiers in first 
order logic can be treated as modalities:

  the 1-variable fragment of classical predicate logic 
corresponds to propositional S5.

∀x   ↦     ⃞ 
 ∃x   ↦   ◇
P

i
(x)    ↦  p

i

• A. Prior (1957)  proposed to study the 1-variable 
fragment of intuitionistic predicate logic in the same 
way. This leads to intuitionistic modal logic MIPC. 



  

Introduction-2

• G. Fischer-Servi (1977)  noticed that the modal 
transaltion of MIPC is the 1-variable fragment of QS4 
(quantified S4). This is a bimodal logic (in our notation, 
S4 _| S5). 

   MIPC   -------------->   S4 _| S5

    ↓ ↓
  QH-1    -------------->   QS4-1 

She proposed to study intuitionistic modal and bimodal 
logics obtained in such a way, but this work is still only 
beginning.



  

Introduction-3

• S.Artemov & G.Dhaparidze (1991)  studied the 1-
variable fragment of QGL (quantified GL)= the  1-
variable fragment of first-order provability logic of PA. 

• [D.Gabbay & V.Shehtman, 1998] described the 1-
variable fragments of some modal predicate logics with 
constant domains as products of modal logics. 

• Semiproducts (= expanding products) were first 
studied by F. Wolter, M. Zakharyaschev, A. Kurucz 
(2003 and later on) and V. Shehtman (2005). They are 
related to 1-variable fragments of modal predicate 
logics with expanding domains.
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Formulas

Modal  predicate formulas are built from: 

• the countable set of individual variables Var={v
1
,v

2
,…}

• countable sets of  n-ary predicate letters (for every n≥0) 

•  → , ⊥ ,    ⃞ , ∀

⅂ , ◇, ∨,∧, ∃  are derived.

No equality, constants or function symbols



  

Variable and formula substitutions
[QNL]

[y
1
,..., y

n
 /x

1
,..., x

n
] simultaneously replaces all free 

occurrences of x
1
,..., x

n
 with y

1
,..., y

n
 (with renaming bound 

variables if necessary)
To obtain [C(x

1
,..., x

n
,y

1
,..., y

m
)/P(x

1
,..., x

n
)]A: 

(1) rename all bound variables of A that coincide with the 
"new" parameters y

1
,..., y

m
 of C,

(2) replace every occurrence of every atom P(z1,..., zn) with 
 [z1,..., zn /x1,..., xn]C

Strictly speaking, all substitutions are defined up to 
congruence (α-equivalence): formulas are congruent if 
they can be obtained by "legal" renaming of bound 
variables



  

Modal logics -1

A modal predicate logic (mpl) is a set L of modal formulas 

containing
• the classical predicate tautologies
• the axiom of K:     ⃞ (p→q) → (   ⃞ p →   ⃞ q)

and closed under the rules 
• Modus Ponens: A, A →B / B
• Necessitation: A /    ⃞ A
• Generalization: A /  ∀xA

• Substitution:  A/SA  (for any formula substitution S)
Remark  Another definition of a modal predicate logic 

(Kripke, 1963) does not include all predicate tautologies.



  

Modal logics-2

Modal propositional logics can be regarded as fragments of 

predicate logics (with only 0-ary predicate letters, without 

quantifiers).

 K := the minimal modal propositional logic

 QK:= the minimal modal predicate logic

 QΛ :=QK+Λ := the minimal predicate extension of     

                         the propositional logic Λ

     QΛC :=QΛ+ Ba (Barcan axiom)

             ∀x□P(x)  → □∀xP(x)



  

1-variable fragments-1

A 1-variable predicate formula is built from monadic 

predicate letters P
i
 (i=0,1,...) using a single variable x, 

free or bound. The 1-variable fragment of a predicate logic 

L is {A∈L | A is 1-variable}.

Every 1-variable predicate formula A translates into a 2-

modal propositional formula A* :

replace ∀x   ↦   ■ P
i
(x)    ↦  p

i

Then put L-1:= {A* | A∈L, A is 1-variable}.

We also call L-1 the 1-variable fragment of L. 



  

1-variable fragments-2

Simple remarks Let L be a predicate logic with the 

propositional fragment Λ.   Then L-1 is a 2-modal 

propositional logic, between the semicommutative join

 Λ_| S5:= Λ ✱ S5 (fusion) + □■p  → ■□p  

 and Λ ✱ Triv. (Triv:= K +  ■p  ↔ p)

Note that □■p  → ■□p is the translation of the 

Converse Barcan formula (provable in QK): 

□∀xP(x)  → ∀x□P(x)



  

1-variable fragments-3

For the particuar cases L=QΛ, QΛC we have

Lemma  Λ _|S5 ⊆ QΛ-1 ⊆ QΛ-1

            [Λ,S5] ⊆ QΛC-1 ⊆ QΛC-1 

where L denotes the Kripke-completion of L, 

L:=ML({Φ | Φ ⊨L})
(the smallest Kripke-complete extension of L), 

[Λ,S5] := Λ ✱ S5 + □■p  ↔ ■□p (the 

commutat ive jo in )  
The logics QΛ-1, QΛC-1 can also be described as 

semiproducts and products with S5



  

Kripke semantics-1

A propositional Kripke frame F=(W, R) (W≠∅, R ⊆ W2)  

A predicate Kripke frame: Φ = (F,D), where 

D=(D
u
)

u∈W
 is an expanding family of non-empty sets:  

if u R v, then D
u
 ⊆ D

v

D
u
 is the domain at the world u 

A Kripke model over Φ is a collection of classical models: 

M=(Φ,θ), where θ=(θ
u
)

u∈W
 is a valuation 

θ
u
(P) is an n-ary relation on D

u
 for each n-ary predicate 

letter P



  

 

 



  

Kripke semantics-2 

For a modal formula A(x1,..., xn) and d1,..., dn ∈ Du 

consider a D
u
-sentence  A(d1,..., dn).  

Def Forcing (truth) relation M,u ⊨ B 
between the worlds u and Du-sentences  B is defined by 
induction:
M,u ⊨ P(d

1
,..., d

n
) iff (d

1
,..., d

n
) ∈ θ

u
(P) 

                        (for a  proposition letter P: iff  θ
u
(P)=1)

M,u ⊨   ⃞ B iff for any v, uRv implies  M,v  ⊨ B 
M,u  ⊨ ∀x B iff for any d ∈ D

u
  M,u ⊨ [d/x]B 

etc. (the other cases are clear)



  

Kripke semantics-3

Def  (truth in a Kripke model; validity in a frame)
M ⊨ A(x

1
,...,x

n
) iff for any u ∈ W 

 M,u ⊨ ∀x
1
...∀ xn

A(x
1
,..., x

n
) 

Φ ⊨A iff for any M over Φ,  M ⊨ A
Soundness theorem

ML(Φ):={A | Φ ⊨A} is an mpl (the logic of Φ)

Def  The logic of a class of frames � is the intersection of 
the logics of frames from �. A logic of a class of Kripke 
frames is called Kripke-complete.



  

Products and semiproducts of frames-1

In this talk we are interested only in products with 

universal frames.

Def. The product of Kripke frames  

(W
1
, R

1
) × (V, V×V):= (W

1
×V, R

h
, R

v
), 

where 

(x
1
,y

1
)R

h
(x

2
,y

2
) iff x

1
R

1
x

2
 & y

1
=y

2

(x
1
,y

1
)R

 v
(x

2
,y

2
)  iff x

1
=x

2
  

Def. A semiproduct (or an expanding product) is a 

subframe of a product, which is horizontably stable:

 F= (F
1
×F

2
)|W, where  W⊆ W

1
×W

2
, R

h
(W) ⊆ W.



  

Products and semiproducts of frames-2

A semiproduct of a linear order (W,<) with a universal 
frame. It is the same as a predicate Kripke frame over 
(W,<):



  

Semiproducts and products of propositional 
modal logics

Def. The semiproduct of  L
1 
with S5

L
1
⋌ S5

 
:= ML({F | F is a semiproduct of some 

 F
1
⊨L

1 
and a universal F

2
})

The product of  L
1 
with S5

L
1 
× S5

 
:= ML({F | F is a product of some 

 F
1
⊨L

1 
and a universal F

2
})



  

A semiproduct with a universal frame can be regarded 
as a predicate Kripke frame;

●  a product as a predicate frame with a constant 
domain. Hence 
Proposition  Λ ⋌ S5= QΛ-1, Λ × S5= QΛC-1

Corollary  Λ _| S5  ⊆  QΛ-1 ⊆  Λ ⋌ S5
     [ Λ, S5]  ⊆  QΛC-1 ⊆  Λ × S5

Def Λ i s  quant i f ier- fr iendly  if  Λ _|S5 =  QΛ-1.
● Λ i s  Barcan- f r iend ly  if  [Λ,  S5]   =  QΛC -1
● Λ,S5

 
are semiproduct-matching if  Λ ⋌  S5  =  Λ_|S5

 
.

● Λ,S5
 
are product-matching if  Λ ×  S5  =  [Λ,  S5]

semiproduct-matching ⇒ quant i f ier - f r iend ly ,  
product-matching ⇒ Barcan- f r iend ly .

Semiproducts and products-2



  

Semiproduct and products-3

Theorem 1A   [MDML>>Gabbay & Sh 1998]   If  Λ  
i s  Horn ax iomat izab le  and Kr ipke complete ,  
then Λ,S5  a re  product-match ing.

Theorem 1B (MDML, Th.9.10). If Λ= K, T, K4, S4, S5,  

then  Λ,S5
 
are semiproduct-matching.

Def. A Horn sentence is a classical first-order sentence 
of the form "x"y"z (φ(x,y,z) → R(x,y)), where φ  is 
positive,  R(x,y) is atomic. 



  

Semiproduct and products-4

A propositional modal logic is Horn axiomatizable if the 
class of its frames is definable by Horn sentences and 
modal variable-free formulas.

A typical example is the axiom 5: ◇p →  p 

expressing Euclideaness: "x"y"z (xRy & xRz → yRz).

Theorem B prompts that semiproduct-matching should 
be a rare property.



  

Consider the logics

  ⃞ T:=K+  ⃞ (  ⃞ p → p)  (frames:"x"y (xRy  → yRy)) 

SL4 = K +   ⃞ p →   ⃞   ⃞ p +   ⃞  p ↔ ◇p

( the logic of the two-world frame  

with the first world irreflexive and the second one reflexive)

 Theorem 1C  [Sh & Shkatov, in preparation]

If    ⃞ T ⊆ Λ ⊆ SL4, then 

(1) Λ  is not semiproduct-matching with S5

(2) QΛ  is Kripke-incomplete

Abstract simplicial complex

{acd, cde, ac, ad, cd, de, ce, ab, be, a,b,c,d,e}

  X ∈ S & Y ⊂ X ⇒ Y ∈ S

Incompleteness



  

Quantifier-friendliness

Theorem 1A t rans forms as  fo l lows:
Theorem 2   [MDML>>Gabbay & Sh 1998]  If  Λ  i s  
Horn  ax iomat izab le  and Kr ipke  complete,  then Λ  
i s  quant i f ie r- f r iend ly.
For  the proof  we use s imp l i c ia l  semant ics  of  
f i r s t-o rder  moda l  log ics  in t roduced by  Dmitry  
Skvor tsov in  the ear ly  1990s .
As  we have seen,  Kr ipke semant i cs  does not  
work  for  QΛ. Other  semant ics  (e .g .  Gh i lard i ' s  
functor  semant i cs)   may not  work e i ther.



  

Simplicial complexes

Geometric simplicial complex

Abstract simplicial complex

{acd, cde, ac, ad, cd, de, ce, ab, be, a,b,c,d,e}

  X ∈ S & Y ⊂ X ⇒ Y ∈ S

c
d

c
d

b e



  

Simplicial sets

(J.P. May, 1967)

Δ is the category: 

Ob Δ =  ω,

Δ(m,n) = (non-strict) monotonic maps  (m+1) → (n+1) 

A simplicial set is a contravariant functor X: Δ◦ ↝ SET

X(n) is the set of n-dimensional simplices

For every f ∈  Δ(m,n), X(f): X(n) → X(m) is a face map selecting an 

m-dimensional face of an n-dimensional simplex (it may be 

degenerate – if f is not injective)



  

Simplicial sets-2

Example: If a ∈  X(2) is a triangle, 

f ∈  Δ(1,2), f(0)=0, f(1)=2, then X(f) chooses the second side of a 

(it can be denoted by a
02

) .

Two differences between simplicial complexes and simplicial sets:

● simplicial sets include degenerate simplices (such as a
11

, a
002

)

● in simplicial sets two different simplices may have the same 

proper faces.

a
a01 a02

a12

a
a01 a02

a12

a
a01 a02

a12

a
a01 a02

a12

a
a01 a02

a12

a0

a1
a2



  

Simplicial frames-1

Introduced by D.Skvortsov (1990),  an abstract (Skvortsov&Sh) in 
1991; the paper in 1993.

In these publications simplicial frames we called 'Kripke 
metaframes'. Later the names were changed:

Kripke metaframes  >> Simplicial frames

Cartesian metaframes >> Kripke metaframes

A simplicial frame is a modification of a simplicial set.

●  Δ is replaced by another category  Σ

Ob Σ =  ω,

Σ
mn

 = all maps  I
m
 → I

n
  (where I

n
={1,...,n}, I

0
=∅).

Let Σ = ∪{ Σ
mn

 |m,n≥0}

●  Accessibility relations are also involved



  

Simplicial frames-2

Roughly, a simplicial frame is a layered Kripke frame. The 

worlds are at level 0, individuals at level 1 (0-simplices), 

abstract n-tuples of individuals at level n ((n-1)-simplices).

Def A simplicial frame over a propositional Kripke frame F=(W,R) 

is F = (F, D, R, π), where

● D=(Dn)
n≥0

 , R=(Rn)
n≥0 

, (Dn,Rn) is a propositional frame,

     (D0,R0) = F,
● π = (π

σ
)
σ∈Σ 

,    π
σ 
: Dn  → Dm  for  σ ∈ Σ

mn

Σ
0n

 ={∅
n
} (the empty map).

π
∅n  

sends every absract n-tuple to “its possible world”.

Dn(u) denotes (π
∅n

)-1(u), the set of “n-tuples living in the world 

u”, 



  

Simplicial frames-3

A metaframe is a simplicial frame, in which n-tuples are real: 

Dn(u)=(D1(u))n

Definition A valuation in F is a function ξ such that ξ
u
(P) ⊆ Dn

u
 

for every n-ary predicate letter P.

M=(F, ξ) is a simplicial model over F.

An assignment of length n at u is a pair (x, a), where x is a list of 

different variables of length n, a ∈ Dn(u). (We denote it by a/x.)



  

Simplicial frames-4

Definition (truth of a formula А in a simplicial model М at u 

under an assignment (x, а) involving the formula parameters)

This makes sense if а lives in u
Notation: M, a/x, u ⊨ А.

M, a/x, u ⊨ P(x⋅ σ)  iff  π
σ
(a) ∈ ξ

u
(P), (x⋅ σ:=(xσ(1),...,xσ(n))),

M, a /x, u ⊨   ⃞ B (for a ∈ Dn(u))   iff 

∀v,b (uRv & b ∈ Dn(v)  & aRn
b  ⇒ M, b/x, v ⊨ B)

M, a /x, u ⊨  ∃y B (for y ∉ x, a ∈ Dn(u))  iff 

∃c ∈ Dn+1(u)  (πδn+1
(c) = a & M,c/xy ⊨ B ),

M, a /x, u ⊨  ∃x
i
 B  iff  M, π

δi
(a)/(x⋅ δ

i
), u ⊨ ∃x

i
 B, where δ

i
 is the 

monotonic inclusion map  I
n
 → I

n+1 
skipping i. 



  

Simplicial frames-5

Truth in a model: 

M ⊨ A(x
1
,..., x

n
) iff for any u ∈ W  M,u, / ⊨ ∀x

1
...∀x

n
A(x

1
,..., x

n
)

Validity in a frame: Φ ⊨A iff for any M over Φ,  M ⊨ A

Strong validity in a frame: Φ ⊨+ A iff for any n  Φ⊨ An.

Soundness theorem (Skvortsov,1991-93)

ML(Φ):={A ∈ MF | Φ ⊨+A} is an mpl if Φ satisfies the conditions
● π

∅n  
is surjective,

● π
σ·τ 

= π
τ
·π

σ 
;   π

id(In) 
= id(Dn). [id(X) is the identity map on X]

● for  σ ∈ Σ
mn

  π
σ 
: (Dn,Rn)  → (Dm,Rm) is a morphism, i.e.,

 π
σ 
(Rn(a)) = Rm(π

σ
(a))  for any a ∈ Dn

.



  

Simplicial frames-6

● (weak Kan condition) if π
δm+1

(b) = π
σ
(a)=d,  σ ∈ Σ

mn
  , then 

 for some c ∈ Dn+1
   π

σ+
(c)=b & π

δn+1
(c) = a.

 а
(σ+ ∈ Σ

m+1,n+1
  extends σ by σ+(m+1)=n+1)

In particular, this means that two simplices with a common face
are faces of a simplex of higher dimension:

In metaframes: d=a
σ(1)

...a
σ(m)

, b=db
m+1

; then  c=ab
m+1

c b

d

b

c

a
d



  

Simplicial frames-7

The method of proof of Theorem 2 (on quantifier-
friendliness): for Horn-axiomatizable and complete Λ

if Λ ⊬ A*, then QΛ ⊬ A.

Suppose Λ ⊬ A*, then by completeness there is a 
frame G=(W,R1,R2) ⊭ A*, G ⊨ Λ. We then construct a 
simplicial frame F⊭ A*, F ⊨ QΛ.

● Extract F1, F0 from G: F1=(W,R1), F0=(W/R2,R0), 

u~R0v
~ iff  ∃u'∈u~∃v'∈v~u'R1v'

Put π
∅1

(u):=u~.



  

Simplicial frames-8

● The main construction: the conglomerate F over G.

(Dn,Rn) = (F1)
n (in the standard model-theoretic 

sense)∐ 

a disjoint union of several copies of (F1)
m for m<n.

As Horn sentences respect model-theoretic products, it 
follows that (Dn,Rn) ⊨ Λ.

Lemma (Skvortsov) If Ф is a simplicial frame, B a 
propositional formula, then Ф ⊨+ B iff (Dn,Rn) ⊨ B for all n.

Hence F ⊨+ QΛ. 

F⊭ A follows easily from G⊭ A*. QED.



  

Some open problems

1. Describe  QΛ-1 when Λ  is not quantifier-friendly. What 

happens for  Λ = S4.1, S4.2, S4.3? 

2. If Λ is decidable, can QΛ-1 be undecidable? This question 

makes sense already for quantifier-friendly Λ.

3. The same questions for QΛC-1 and Barcan-friendliness.



  

    

THANK YOU!!!
    



  

Incompleteness-2

There is a continuum of logics    ⃞ T ⊆ Λ ⊆ SL4

Theorem     ⃞ T , SL4 are quantifier-friendly.



  

Some examples of completions and semiproducts

Consider the logics

Λ =   ⃞ T, K5, K45, SL4,   ⃞ S5

K5 = K + ◇   ⃞ p →   ⃞ p

K45 = K + ◇   ⃞ p →   ⃞ p

Theorem

●    QΛ = QΛ+   ⃞ "x(   ⃞ P(x)→ P(x))

●   Λ⋌S5= Λ  _| S5+  □ ■ (□p  →p)

●  These logics Λ⋌S5 have the  FMP

    



  

Remarks on 1-variable fragments

Remark 1 (folklore? Behmann 1922?)

Every monadic classical first-order formula is equivalent to a 

Boolean combination of 1-variable formulas. So every monadic 

classical first-order formula  with one parameter is equivalent to 

a 1-variable formula.

However the complexity of monadic classical logic is higher 

than of S5 (NTIME(2n/log n) > NP).



  

Remarks on 1-variable fragments-2

Def (Wolter & Zakharyaschev) A first-order modal formula is 

monodic if in every its subformula □A А has  a t  most  one  

parameter .
Remark 2 Every monadic monodic first-order formula is 

equivalent (in QK) to a Boolean combination of 1-variable 

formulas. So every monadic monodic first-order formula  with 

one parameter is equivalent to a 1-variable formula.

Again: the complexities must be different.
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