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SYNTAX AND TOPOLOGICAL SEMANTICS

SIGNATURE
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SIGNATURE

Countably many propositional letters

Classical connectives: — and —

Modal connective: [J

Typical abbreviations: Q¢ 1= ==, © V1 1= =p — 1),
YA :=-(p—>),and T :=pV —p

TOPOLOGICAL INTERPRETATION

Given a space X:

o Letters = subsets of X
o Classical connectives = Boolean operations in (X)

@ Modal box = interior operator i of X;
hence, diamond = closure operator ¢ of X
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TOPOLOGICAL SEMANTICS AND S4

VALID MODAL FORMULAS

Call a formula ¢ valid in X provided it evaluates to X for any
interpretation of the letters; in symbols X I ¢

Valid Formulas Corresponding Property
OT < T iX=X
Up—p iACA

Op — O0p iA CiiA
O(pAq) < (OpAQq) i(ANB) =iANiB

The logic of X is Log(X) = {¢ | X IF ¢}

THEOREM (MCKINSEY AND TARSKI 1944)

For any space X, Log(X) is a normal extension of S4
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TOPOLOGICAL SEMANTICS AND S4-FRAMES

GENERALIZING KRIPKE SEMANTICS FOR S4

e An S4-frame is § = (W, R) where R is a reflexive and
transitive relation on W

@ An R-upset in §is U C W such that w € U and wRv imply
velU

@ The set of R-upsets forms the Alexandroff topology 7r on W

e For an S4-frame § = (W, R), § |- ¢ iff (W, 7g) IF ¢

o A Kripke complete extension of S4 is topologically complete

OBSERVATION

Such topological completeness is almost never with respect to
spaces satisfying higher separation axioms
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KNOWN ToPOLOGICAL COMPLETENESS RESULTS

RASIOWA AND SIKORSKI 1963

For a crowded metrizable space X, Log(X) = S4

S4
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KNOWN ToPOLOGICAL COMPLETENESS RESULTS

ABASHIDZE 1987 AND BLASS 1990 (INDEPENDENTLY)

For any ordinal space a > w¥, Log(a) = Grz

Grz:=S4+0(0(p —Op) > p) = p

Grz

e

sS4
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KNOWN ToPOLOGICAL COMPLETENESS RESULTS

ABASHIDZE 1987 (SEE ALSO BEZHANISHVILI AND MORANDI 2010)

For an ordinal a such that w™ ! +1 < a < w", Log(a) = Grz,

bd; = O0p1 = p
bd,,+1 = O(DP,H,:[ A _‘bdn) — p,—,+]_
Grz, =  Grz+bd,
Grzy
el
Grzp

Grzz

Grz

e

S4
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KNOWN ToPOLOGICAL COMPLETENESS RESULTS

BEzZHANISHVILI, GABELAIA, AND L-B 2015

Metrizable spaces yield exactly these logics: S4, S4.1, Grz, or Grz,

S4.1:=S4+0O0p — O0p

Grzy
Grzo

Grz3

Grz
S4.1
el
S4
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KNOWN ToPOLOGICAL COMPLETENESS RESULTS

BEZHANISHVILI AND HARDING 2012

Each of the following logics arises from a Stone space

S42 = S4+00p— O0p
S4.12 = S4+00p <« 00p
Grz;
Grzs
Grzz
S4.1.2
A T Grz
S4.2 el
T S4.1
el

S4
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KNOWN ToPOLOGICAL COMPLETENESS RESULTS

A Stone space giving rise to each logic below

the Cantor space

the Gleason cover of [0, 1]

the Cech-Stone compactification of w

the Pelczynski compactification of w Grz; 1
the singleton space

Grzo w+1
el
Grzz w? +1
el

fw S4.1.2

e T Grz w¥ +1

E S4.2 7

T S41 P

el

S4 C
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Our GOAL

QUESTION POSED IN BEZHANISHVILI AND HARDING 2012

Is there a Stone space whose logic is not in the previous list?

ANSWER
Yes!
We build a space whose logic is strictly between Grzz and Grzp

G rzo

.

/

Grzs
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MROWKA SPACES

RECALL

Call a family Z of infinite subsets of w almost disjoint provided
VR, Q € Z, if R# Q then RN Q is finite

DEFINITION

A Mrowka space is X := w U Z where & is almost disjoint and
whose topology is generated by the basis consisting of:

e O(n):={n} forncw
@ O(R,F):={R}U(R\ F) for R € Z where F C w is finite

\
X[w RN o oo/ ..

R

XA © o o 0 \0/0 0 0 0 0 0 .
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PROPERTIES OF MROWKA SPACES

Let X = wUZ be a Mrowka space

THEOREM (MROWKA)

@ w is open and dense in X
e Z is closed and discrete in X
e Each O(R, F) is clopen in X

e Each O(R, @) is homeomorphic to the one-point
compactification of w,
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PROPERTIES OF MROWKA SPACES

Let X = wUZ be a Mrowka space

THEOREM (MROWKA)
@ w is open and dense in X
e Z is closed and discrete in X
e Each O(R, F) is clopen in X

e Each O(R, @) is homeomorphic to the one-point
compactification of w, which is homeomorphic to the ordinal

space w + 1

COROLLARY
o X is a scattered locally compact Hausdorff space

o if Z is infinite then X is not compact
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There is an infinite almost disjoint family % such that the
Cech-Stone compactification SX of the Mrowka space X = w U Z
is the one-point compactification aX of X
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THE SPACES OF INTEREST I

THEOREM (MROWKA)

There is an infinite almost disjoint family % such that the
Cech-Stone compactification SX of the Mrowka space X = w U Z
is the one-point compactification aX of X

CONVENTION FOR THIS TALK

Any Mrowka space X = wUZ is such that fX = aX := X U {0}

.....v..




Introduction The Construction A ‘New' Logic

THE SPACES OF INTEREST II

If X is a Mrowka space then the space X = X U {co} is a
scattered Stone space of Cantor-Bendixson rank 3




Introduction The Construction A ‘New' Logic

THE SPACES OF INTEREST II

If X is a Mrowka space then the space X = X U {co} is a
scattered Stone space of Cantor-Bendixson rank 3

PROOF SKETCH

o Clearly X is compact and Hausdorff




Introduction The Construction A ‘New' Logic

THE SPACES OF INTEREST II

If X is a Mrowka space then the space X = X U {co} is a
scattered Stone space of Cantor-Bendixson rank 3

PROOF SKETCH

o Clearly X is compact and Hausdorff

o Letting d be the derived set operator in 5X, we have

ddd (8X) = dd (% U {c0}) = d ({o0}) = @




Introduction The Construction A ‘New' Logic

THE SPACES OF INTEREST II

If X is a Mrowka space then the space X = X U {co} is a
scattered Stone space of Cantor-Bendixson rank 3

PROOF SKETCH

o Clearly X is compact and Hausdorff

o Letting d be the derived set operator in 5X, we have
ddd (5X) =dd (Z U {c0}) =d({o0}) =2

Thus X is scattered and of Cantor-Bendixson rank 3




Introduction The Construction A ‘New' Logic

THE SPACES OF INTEREST II

If X is a Mrowka space then the space X = X U {co} is a
scattered Stone space of Cantor-Bendixson rank 3

PROOF SKETCH

o Clearly X is compact and Hausdorff

o Letting d be the derived set operator in 5X, we have
ddd (5X) =dd (Z U {c0}) =d({o0}) =2

Thus X is scattered and of Cantor-Bendixson rank 3
@ A compact scattered space is zero-dimensional
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MAIN TOOLS

DEFINITIONS AND KNOWN RESULTS

Let X and Y be spaces
@ Y is an interior image of X if there is f : X — Y which is
onto such that f~}(cyA) = cxf1(A) for each AC Y
e If Y is an interior image of X then Log(X) C Log(Y)
o If X is scattered then

o XIFO(d(p—0p) — p)—p
o X I bd, iff the Cantor-Bendixson rank of X is < n

Let § be a finite rooted S4-frame
@ Let x5 denote the Jankov-Fine formula of §, which
syntactically characterizes the structure of §
e X IF —xz iff § is not an interior image of any open subspace
of X
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ON INTERIOR IMAGES OF X

Let X be a Mrowka space such that 5X = X U {o0},
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ON INTERIOR IMAGES OF X

Let X be a Mrowka space such that 5X = X U {o0},

§ be a finite partially ordered S4-frame and
1 2 k—1k

for nonzero k € w, let T be the tree v

$ is an interior image of BX iff § is an interior image of an open
subspace of X

For nonzero k € w, the tree Ty is an interior image of SX

As Grz; is the logic of {T | k € w\ {0}},

COROLLARY
Log(8X) C Grzy (strict since SX ¥ bd, as 5X is of C-B rank 3)
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A TREE THAT 1S NOT AN INTERIOR IMAGE

Let X be a Mrowka space such that 5X = X U {oo} and

T the tree \)

T is not an interior image of X

PROOF (SKETCH)

Let f: BX — ¥ be an onto interior map
@ oo is the only preimage of the

o Let A be the preimage of red and B the preimage of blue
@ coecANcB

o A and B are disjoint opens in X with X = AU B, hence
completely separated in X giving cANcB =@ in X
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THE MAIN RESULT

Let X be a Mrowka space such that 5X = X U {oc0}

Grzz + —xg C Log(B8X) C Grz,

PROOF (SKETCH)

@ As BX is scattered with Cantor-Bendixson rank 3,
Grzz C Log(5X)

@ By topological analogue of Fine's lemma, 8X IF —xx
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THE UNFINISHED STORY

Let X and Y be Mrowka spaces such that SX = X U {co} and
BY =Y U {0}

OPEN PROBLEMS

@ Is it the case that Log(5X) = Log(8Y) when X and Y are
not homeomorphic?

e If so, is Log(8X) finitely axiomatizable?
o If not:
e How many logics arise in this manner?
o Which, if any, are finitely axiomatizable?
o Can logics arising from scattered Tychonoff spaces of
Cantor-Bendixson rank 3 be characterized?
(or more generally of rank n > 3)
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