A NEW LOGIC ARISING FROM A SCATTERED STONE SPACE

Joel Lucero-Bryan, Khalifa University

Joint work: Guram Bezhanishvili, New Mexico State University Nick Bezhanishvili, University of Amsterdam Jan van Mill, University of Amsterdam

> TACL 2019, Nice, France 17–21 June 2019

SYNTAX AND TOPOLOGICAL SEMANTICS

SIGNATURE

- Countably many propositional letters
- \bullet Classical connectives: \neg and \rightarrow
- Modal connective: \Box
- Typical abbreviations: $\Diamond \varphi := \neg \Box \neg \varphi, \ \varphi \lor \psi := \neg \varphi \rightarrow \psi, \ \varphi \land \psi := \neg (\varphi \rightarrow \neg \psi), \text{ and } \top := p \lor \neg p$

TOPOLOGICAL INTERPRETATION

Given a space X:

- Letters \Rightarrow subsets of X
- Classical connectives \Rightarrow Boolean operations in $\wp(X)$
- Modal box ⇒ interior operator i of X; hence, diamond ⇒ closure operator c of X

SYNTAX AND TOPOLOGICAL SEMANTICS

SIGNATURE

- Countably many propositional letters
- \bullet Classical connectives: \neg and \rightarrow
- Modal connective: \Box
- Typical abbreviations: $\Diamond \varphi := \neg \Box \neg \varphi, \ \varphi \lor \psi := \neg \varphi \to \psi, \ \varphi \land \psi := \neg (\varphi \to \neg \psi), \text{ and } \top := p \lor \neg p$

TOPOLOGICAL INTERPRETATION

Given a space X:

- Letters \Rightarrow subsets of X
- Classical connectives \Rightarrow Boolean operations in $\wp(X)$
- Modal box ⇒ interior operator i of X; hence, diamond ⇒ closure operator c of X

90

・ロット (雪) (日) (日) 日

Topological Semantics and ${\sf S4}$

VALID MODAL FORMULAS

Call a formula φ valid in X provided it evaluates to X for any interpretation of the letters; in symbols $X \Vdash \varphi$

Valid Formulas	Corresponding Property
$\Box \top \leftrightarrow \top$	iX = X
$\Box p ightarrow p$	$iA\subseteq A$
$\Box p ightarrow \Box \Box p$	$iA \subseteq iiA$
$\square(p \land q) \leftrightarrow (\squarep \land \squareq)$	$i(A \cap B) = iA \cap iB$

The logic of X is $Log(X) = \{\varphi \mid X \Vdash \varphi\}$

Theorem (McKinsey and Tarski 1944)

For any space X, Log(X) is a normal extension of S4

・ロット (雪) (日) (日) 日

Topological Semantics and ${\sf S4}$

VALID MODAL FORMULAS

Call a formula φ valid in X provided it evaluates to X for any interpretation of the letters; in symbols $X \Vdash \varphi$

Valid Formulas	Corresponding Property
$\Box \top \leftrightarrow \top$	iX = X
$\square p ightarrow p$	$iA \subseteq A$
$\square p ightarrow \square p$	iA⊆iiA
$\square(p \land q) \leftrightarrow (\square p \land \square q)$	$i(A \cap B) = iA \cap iB$

The logic of X is $Log(X) = \{\varphi \mid X \Vdash \varphi\}$

Theorem (McKinsey and Tarski 1944)

For any space X, Log(X) is a normal extension of S4

Topological Semantics and ${\sf S4}$

VALID MODAL FORMULAS

Call a formula φ valid in X provided it evaluates to X for any interpretation of the letters; in symbols $X \Vdash \varphi$

Valid Formulas	Corresponding Property
$\Box \top \leftrightarrow \top$	$\mathbf{i}X = X$
$\square ho ightarrow ho$	$iA \subseteq A$
$\square p ightarrow \square p$	$iA \subseteq iiA$
$\square(p \land q) \leftrightarrow (\Box p \land \Box q)$	$\mathbf{i}(A \cap B) = \mathbf{i}A \cap \mathbf{i}B$

The logic of X is $Log(X) = \{ \varphi \mid X \Vdash \varphi \}$

Theorem (McKinsey and Tarski 1944)

For any space X, Log(X) is a normal extension of S4

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の()

Topological Semantics and ${\sf S4}$

VALID MODAL FORMULAS

Call a formula φ valid in X provided it evaluates to X for any interpretation of the letters; in symbols $X \Vdash \varphi$

Valid Formulas	Corresponding Property
$\Box \top \leftrightarrow \top$	iX = X
$\square p ightarrow p$	$iA \subseteq A$
$\square p ightarrow \square p$	iA⊆iiA
$\square(p \land q) \leftrightarrow (\square p \land \square q)$	$\mathbf{i}(A \cap B) = \mathbf{i}A \cap \mathbf{i}B$

The logic of X is $Log(X) = \{ \varphi \mid X \Vdash \varphi \}$

Theorem (McKinsey and Tarski 1944)

For any space X, Log(X) is a normal extension of S4

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 のへで

GENERALIZING KRIPKE SEMANTICS FOR S4

- An S4-frame is $\mathfrak{F} = (W, R)$ where R is a reflexive and transitive relation on W
- An *R*-upset in \mathfrak{F} is $U \subseteq W$ such that $w \in U$ and wRv imply $v \in U$
- The set of *R*-upsets forms the Alexandroff topology au_R on *W*

Theorem (folklore)

- For an S4-frame $\mathfrak{F} = (W, R)$, $\mathfrak{F} \Vdash \varphi$ iff $(W, \tau_R) \Vdash \varphi$
- A Kripke complete extension of S4 is topologically complete

Observation

GENERALIZING KRIPKE SEMANTICS FOR S4

- An S4-frame is $\mathfrak{F} = (W, R)$ where R is a reflexive and transitive relation on W
- An *R*-upset in \mathfrak{F} is $U \subseteq W$ such that $w \in U$ and wRv imply $v \in U$
- The set of *R*-upsets forms the Alexandroff topology τ_R on *W*

THEOREM (FOLKLORE)

- For an S4-frame $\mathfrak{F} = (W, R)$, $\mathfrak{F} \Vdash \varphi$ iff $(W, \tau_R) \Vdash \varphi$
- A Kripke complete extension of S4 is topologically complete

Observation

GENERALIZING KRIPKE SEMANTICS FOR S4

- An S4-frame is $\mathfrak{F} = (W, R)$ where R is a reflexive and transitive relation on W
- An *R*-upset in \mathfrak{F} is $U \subseteq W$ such that $w \in U$ and wRv imply $v \in U$
- The set of *R*-upsets forms the Alexandroff topology τ_R on *W*

THEOREM (FOLKLORE)

- For an S4-frame $\mathfrak{F} = (W, R)$, $\mathfrak{F} \Vdash \varphi$ iff $(W, \tau_R) \Vdash \varphi$
- A Kripke complete extension of S4 is topologically complete

OBSERVATION

GENERALIZING KRIPKE SEMANTICS FOR S4

- An S4-frame is $\mathfrak{F} = (W, R)$ where R is a reflexive and transitive relation on W
- An *R*-upset in \mathfrak{F} is $U \subseteq W$ such that $w \in U$ and wRv imply $v \in U$
- The set of *R*-upsets forms the Alexandroff topology τ_R on *W*

THEOREM (FOLKLORE)

- For an S4-frame $\mathfrak{F} = (W, R)$, $\mathfrak{F} \Vdash \varphi$ iff $(W, \tau_R) \Vdash \varphi$
- A Kripke complete extension of S4 is topologically complete

OBSERVATION

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

KNOWN TOPOLOGICAL COMPLETENESS RESULTS

McKinsey and Tarski 1944

For a separable crowded metrizable space X, Log(X) = S4

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

KNOWN TOPOLOGICAL COMPLETENESS RESULTS

RASIOWA AND SIKORSKI 1963

For a crowded metrizable space X, Log(X) = S4

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

KNOWN TOPOLOGICAL COMPLETENESS RESULTS

Abashidze 1987 and Blass 1990 (independently)

For any ordinal space $\alpha \geq \omega^{\omega}$, $Log(\alpha) = Grz$

 $\mathsf{Grz} := \mathsf{S4} + \Box (\Box (p \rightarrow \Box p) \rightarrow p) \rightarrow p$

Abashidze 1987 (see also Bezhanishvili and Morandi 2010)

For an ordinal α such that $\omega^{n-1} + 1 \le \alpha \le \omega^n$, $Log(\alpha) = Grz_n$

BEZHANISHVILI, GABELAIA, AND L-B 2015

Metrizable spaces yield exactly these logics: S4, S4.1, Grz, or Grz_n

 $\mathsf{S4.1} := \mathsf{S4} + \Box \Diamond p \to \Diamond \Box p$

Bezhanishvili and Harding 2012

Each of the following logics arises from a Stone space

 $\begin{array}{rcl} \mathsf{S4.2} & := & \mathsf{S4} + \Diamond \Box p \to \Box \Diamond p \\ \mathsf{S4.1.2} & := & \mathsf{S4} + \Box \Diamond p \leftrightarrow \Diamond \Box p \end{array}$

EXAMPLES

A Stone space giving rise to each logic below

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Our Goal

Question posed in Bezhanishvili and Harding $2012\,$

Is there a Stone space whose logic is not in the previous list?

ANSWER

Yes!

We build a space whose logic is strictly between Grz_3 and Grz_2

Our Goal

Question posed in Bezhanishvili and Harding $2012\,$

Is there a Stone space whose logic is not in the previous list?

Answer

Yes!

We build a space whose logic is strictly between $\mathsf{Gr}z_3$ and $\mathsf{Gr}z_2$

MROWKA SPACES

Recall

Call a family \mathscr{R} of infinite subsets of ω almost disjoint provided $\forall R, Q \in \mathscr{R}$, if $R \neq Q$ then $R \cap Q$ is finite

Definition

A Mrowka space is $X := \omega \cup \mathscr{R}$ where \mathscr{R} is almost disjoint and whose topology is generated by the basis consisting of:

•
$$O(n) := \{n\}$$
 for $n \in \omega$

• $O(R,F) := \{R\} \cup (R \setminus F)$ for $R \in \mathscr{R}$ where $F \subset \omega$ is finite

 $\omega = \frac{O(R, \emptyset)}{R} = \frac{O(n)}{R}$

MROWKA SPACES

Recall

Call a family \mathscr{R} of infinite subsets of ω almost disjoint provided $\forall R, Q \in \mathscr{R}$, if $R \neq Q$ then $R \cap Q$ is finite

DEFINITION

A Mrowka space is $X := \omega \cup \mathscr{R}$ where \mathscr{R} is almost disjoint and whose topology is generated by the basis consisting of:

•
$$O(n) := \{n\}$$
 for $n \in \omega$

• $O(R,F) := \{R\} \cup (R \setminus F)$ for $R \in \mathscr{R}$ where $F \subset \omega$ is finite

$$X \begin{bmatrix} \omega & \bullet & \bullet & \bullet \\ \mathcal{R} & \bullet \\ \mathcal$$

▲ロ▶ ▲圖▶ ▲国▶ ▲国▶ ▲国 ▼ の Q @

イロト 不得 トイヨト イヨト

-

PROPERTIES OF MROWKA SPACES

Let $X = \omega \cup \mathscr{R}$ be a Mrowka space

THEOREM (MROWKA)

- ω is open and dense in X
- \mathscr{R} is closed and discrete in X
- Each O(R, F) is clopen in X
- Each O(R, Ø) is homeomorphic to the one-point compactification of ω, which is homeomorphic to the ordinal space ω + 1

COROLLARY

- X is a scattered locally compact Hausdorff space
- if \mathscr{R} is infinite then X is not compact

イロト 不得 トイヨト イヨト

-

PROPERTIES OF MROWKA SPACES

Let $X = \omega \cup \mathscr{R}$ be a Mrowka space

THEOREM (MROWKA)

- ω is open and dense in X
- \mathscr{R} is closed and discrete in X
- Each O(R, F) is clopen in X
- Each $O(R, \emptyset)$ is homeomorphic to the one-point compactification of ω , which is homeomorphic to the ordinal space $\omega + 1$

Corollary

- X is a scattered locally compact Hausdorff space
- if \mathscr{R} is infinite then X is not compact

PROPERTIES OF MROWKA SPACES

Let $X = \omega \cup \mathscr{R}$ be a Mrowka space

THEOREM (MROWKA)

- ω is open and dense in X
- \mathscr{R} is closed and discrete in X
- Each O(R, F) is clopen in X
- Each $O(R, \emptyset)$ is homeomorphic to the one-point compactification of ω , which is homeomorphic to the ordinal space $\omega + 1$

COROLLARY

- X is a scattered locally compact Hausdorff space
- if \mathscr{R} is infinite then X is not compact

The Spaces of Interest I

THEOREM (MROWKA)

There is an infinite almost disjoint family \mathscr{R} such that the Čech-Stone compactification βX of the Mrowka space $X = \omega \cup \mathscr{R}$ is the one-point compactification αX of X

Convention for this talk

Any Mrowka space $X = \omega \cup \mathscr{R}$ is such that $\beta X = \alpha X := X \cup \{\infty\}$

THEOREM (MROWKA)

There is an infinite almost disjoint family \mathscr{R} such that the Čech-Stone compactification βX of the Mrowka space $X = \omega \cup \mathscr{R}$ is the one-point compactification αX of X

CONVENTION FOR THIS TALK

Any Mrowka space $X = \omega \cup \mathscr{R}$ is such that $\beta X = \alpha X := X \cup \{\infty\}$

THEOREM

If X is a Mrowka space then the space $\beta X = X \cup \{\infty\}$ is a scattered Stone space of Cantor-Bendixson rank 3

Proof sketch

- Clearly βX is compact and Hausdorff
- Letting **d** be the derived set operator in βX , we have

$$\mathsf{ddd}\,(\beta X) = \mathsf{dd}\,(\mathscr{R} \cup \{\infty\}) = \mathsf{d}\,(\{\infty\}) = \varnothing$$

Thus βX is scattered and of Cantor-Bendixson rank 3
A compact scattered space is zero-dimensional

THEOREM

If X is a Mrowka space then the space $\beta X = X \cup \{\infty\}$ is a scattered Stone space of Cantor-Bendixson rank 3

PROOF SKETCH

- Clearly βX is compact and Hausdorff
- Letting **d** be the derived set operator in βX , we have

 $\mathsf{ddd}\,(\beta X) = \mathsf{dd}\,(\mathscr{R} \cup \{\infty\}) = \mathsf{d}\,(\{\infty\}) = \varnothing$

Thus βX is scattered and of Cantor-Bendixson rank 3
A compact scattered space is zero-dimensional

Theorem

If X is a Mrowka space then the space $\beta X = X \cup \{\infty\}$ is a scattered Stone space of Cantor-Bendixson rank 3

PROOF SKETCH

- Clearly βX is compact and Hausdorff
- Letting **d** be the derived set operator in βX , we have

$$\mathsf{ddd}\,(\beta X) = \mathsf{dd}\,(\mathscr{R} \cup \{\infty\}) = \mathsf{d}\,(\{\infty\}) = \varnothing$$

Thus βX is scattered and of Cantor-Bendixson rank 3
A compact scattered space is zero-dimensional

Theorem

If X is a Mrowka space then the space $\beta X = X \cup \{\infty\}$ is a scattered Stone space of Cantor-Bendixson rank 3

PROOF SKETCH

- Clearly βX is compact and Hausdorff
- Letting **d** be the derived set operator in βX , we have

$$\mathsf{ddd}\,(\beta X) = \mathsf{dd}\,(\mathscr{R} \cup \{\infty\}) = \mathsf{d}\,(\{\infty\}) = \varnothing$$

Thus βX is scattered and of Cantor-Bendixson rank 3

• A compact scattered space is zero-dimensional

Theorem

If X is a Mrowka space then the space $\beta X = X \cup \{\infty\}$ is a scattered Stone space of Cantor-Bendixson rank 3

PROOF SKETCH

- Clearly βX is compact and Hausdorff
- Letting **d** be the derived set operator in βX , we have

$$\mathsf{ddd}\,(\beta X) = \mathsf{dd}\,(\mathscr{R} \cup \{\infty\}) = \mathsf{d}\,(\{\infty\}) = \varnothing$$

Thus βX is scattered and of Cantor-Bendixson rank 3

• A compact scattered space is zero-dimensional

Definitions and known results

Let X and Y be spaces

- Y is an interior image of X if there is f : X → Y which is onto such that f⁻¹(c_YA) = c_Xf⁻¹(A) for each A ⊆ Y
- If Y is an interior image of X then $Log(X) \subseteq Log(Y)$
- If X is scattered then
 - $X \Vdash \Box (\Box (p \to \Box p) \to p) \to p$
 - $X \Vdash bd_n$ iff the Cantor-Bendixson rank of X is $\leq n$

- Let $\chi_{\mathfrak{F}}$ denote the Jankov-Fine formula of \mathfrak{F} , which syntactically characterizes the structure of \mathfrak{F}
- $X \Vdash \neg \chi_{\mathfrak{F}}$ iff \mathfrak{F} is not an interior image of any open subspace of X

Definitions and known results

Let X and Y be spaces

- Y is an interior image of X if there is f : X → Y which is onto such that f⁻¹(c_YA) = c_Xf⁻¹(A) for each A ⊆ Y
- If Y is an interior image of X then $Log(X) \subseteq Log(Y)$
- If X is scattered then
 - $X \Vdash \Box (\Box (p \to \Box p) \to p) \to p$
 - X ⊨ bd_n iff the Cantor-Bendixson rank of X is ≤ n

- Let $\chi_{\mathfrak{F}}$ denote the Jankov-Fine formula of \mathfrak{F} , which syntactically characterizes the structure of \mathfrak{F}
- $X \Vdash \neg \chi_{\mathfrak{F}}$ iff \mathfrak{F} is not an interior image of any open subspace of X

Definitions and known results

Let X and Y be spaces

- Y is an interior image of X if there is f : X → Y which is onto such that f⁻¹(c_YA) = c_Xf⁻¹(A) for each A ⊆ Y
- If Y is an interior image of X then $Log(X) \subseteq Log(Y)$
- If X is scattered then
 - $X \Vdash \Box (\Box (p \to \Box p) \to p) \to p$
 - X ⊢ bd_n iff the Cantor-Bendixson rank of X is ≤ n

- Let $\chi_{\mathfrak{F}}$ denote the Jankov-Fine formula of \mathfrak{F} , which syntactically characterizes the structure of \mathfrak{F}
- $X \Vdash \neg \chi_{\mathfrak{F}}$ iff \mathfrak{F} is not an interior image of any open subspace of X

Definitions and known results

Let X and Y be spaces

- Y is an interior image of X if there is f : X → Y which is onto such that f⁻¹(c_YA) = c_Xf⁻¹(A) for each A ⊆ Y
- If Y is an interior image of X then $Log(X) \subseteq Log(Y)$
- If X is scattered then
 - $X \Vdash \Box (\Box (p \to \Box p) \to p) \to p$
 - $X \Vdash bd_n$ iff the Cantor-Bendixson rank of X is $\leq n$

- Let $\chi_{\mathfrak{F}}$ denote the Jankov-Fine formula of \mathfrak{F} , which syntactically characterizes the structure of \mathfrak{F}
- $X \Vdash \neg \chi_{\mathfrak{F}}$ iff \mathfrak{F} is not an interior image of any open subspace of X

Definitions and known results

Let X and Y be spaces

- Y is an interior image of X if there is f : X → Y which is onto such that f⁻¹(c_YA) = c_Xf⁻¹(A) for each A ⊆ Y
- If Y is an interior image of X then $Log(X) \subseteq Log(Y)$
- If X is scattered then
 - $X \Vdash \Box (\Box (p \to \Box p) \to p) \to p$
 - $X \Vdash bd_n$ iff the Cantor-Bendixson rank of X is $\leq n$

- Let $\chi_{\mathfrak{F}}$ denote the Jankov-Fine formula of \mathfrak{F} , which syntactically characterizes the structure of \mathfrak{F}
- $X \Vdash \neg \chi_{\mathfrak{F}}$ iff \mathfrak{F} is not an interior image of any open subspace of X

Definitions and known results

Let X and Y be spaces

- Y is an interior image of X if there is f : X → Y which is onto such that f⁻¹(c_YA) = c_Xf⁻¹(A) for each A ⊆ Y
- If Y is an interior image of X then $Log(X) \subseteq Log(Y)$
- If X is scattered then
 - $X \Vdash \Box (\Box (p \to \Box p) \to p) \to p$
 - $X \Vdash bd_n$ iff the Cantor-Bendixson rank of X is $\leq n$

- Let $\chi_{\mathfrak{F}}$ denote the Jankov-Fine formula of \mathfrak{F} , which syntactically characterizes the structure of \mathfrak{F}
- $X \Vdash \neg \chi_{\mathfrak{F}}$ iff \mathfrak{F} is not an interior image of any open subspace of X

Let X be a Mrowka space such that $\beta X = X \cup \{\infty\}$, \mathfrak{F} be a finite partially ordered S4-frame and $1 \quad 2 \qquad k-1 \quad k$

for nonzero $k \in \omega$, let \mathfrak{T}_k be the tree

Lemma

 $\mathfrak F$ is an interior image of βX iff $\mathfrak F$ is an interior image of an open subspace of X

Lemma

For nonzero $k\in\omega,$ the tree \mathfrak{T}_k is an interior image of eta X

As Grz₂ is the logic of $\{\mathfrak{T}_k \mid k \in \omega \setminus \{0\}\},\$

COROLLARY

 $Log(\beta X) \subset Grz_2$ (strict since $\beta X \not\Vdash bd_2$ as βX is of C-B rank 3)

Let X be a Mrowka space such that $\beta X = X \cup \{\infty\}$, \mathfrak{F} be a finite partially ordered S4-frame and

for nonzero $k \in \omega$, let \mathfrak{T}_k be the tree

Lemma

 $\mathfrak F$ is an interior image of βX iff $\mathfrak F$ is an interior image of an open subspace of X

Lemma

For nonzero $k \in \omega$, the tree \mathfrak{T}_k is an interior image of βX

As Grz₂ is the logic of $\{\mathfrak{T}_k \mid k \in \omega \setminus \{0\}\}$,

Corollary

 $Log(\beta X) \subset Grz_2$ (strict since $\beta X \not\Vdash bd_2$ as βX is of C-B rank 3)

Let X be a Mrowka space such that $\beta X = X \cup \{\infty\}$, \mathfrak{F} be a finite partially ordered S4-frame and

for nonzero $k \in \omega$, let \mathfrak{T}_k be the tree

Lemma

 $\mathfrak F$ is an interior image of βX iff $\mathfrak F$ is an interior image of an open subspace of X

Lemma

For nonzero $k \in \omega$, the tree \mathfrak{T}_k is an interior image of βX

As Grz_2 is the logic of $\{\mathfrak{T}_k \mid k \in \omega \setminus \{0\}\}$,

COROLLARY

 $Log(\beta X) \subset Grz_2$ (strict since $\beta X \not\models bd_2$ as βX is of C-B rank 3)

Let X be a Mrowka space such that $\beta X = X \cup \{\infty\}$, \mathfrak{F} be a finite partially ordered S4-frame and

for nonzero $k \in \omega$, let \mathfrak{T}_k be the tree

Lemma

 $\mathfrak F$ is an interior image of βX iff $\mathfrak F$ is an interior image of an open subspace of X

Lemma

For nonzero $k \in \omega$, the tree \mathfrak{T}_k is an interior image of βX

As Grz_2 is the logic of $\{\mathfrak{T}_k \mid k \in \omega \setminus \{0\}\}$,

COROLLARY

 $Log(\beta X) \subset Grz_2$ (strict since $\beta X \not\Vdash bd_2$ as βX is of C-B rank 3)

 A and B are disjoint opens in X with X = A ∪ B, hence completely separated in X giving cA ∩ cB = Ø in βX

 A and B are disjoint opens in X with X = A ∪ B, hence completely separated in X giving cA ∩ cB = Ø in βX

 A and B are disjoint opens in X with X = A ∪ B, hence completely separated in X giving cA ∩ cB = Ø in βX

The Main Result

Let X be a Mrowka space such that $\beta X = X \cup \{\infty\}$

THEOREM

 $\operatorname{\mathsf{Grz}}_3 + \neg \chi_\mathfrak{T} \subseteq \operatorname{\mathsf{Log}}(\beta X) \subset \operatorname{\mathsf{Grz}}_2$

Proof (sketch)

- As βX is scattered with Cantor-Bendixson rank 3, Grz₃ ⊆ Log(βX)
- By topological analogue of Fine's lemma, $\beta X \Vdash \neg \chi_{\mathfrak{T}}$

The Main Result

Let X be a Mrowka space such that $\beta X = X \cup \{\infty\}$

Theorem

 $\operatorname{\mathsf{Grz}}_3 + \neg \chi_\mathfrak{T} \subseteq \operatorname{\mathsf{Log}}(\beta X) \subset \operatorname{\mathsf{Grz}}_2$

Proof (sketch)

- As βX is scattered with Cantor-Bendixson rank 3, Grz₃ \subseteq Log(βX)
- By topological analogue of Fine's lemma, $\beta X \Vdash \neg \chi_{\mathfrak{T}}$

The Main Result

Let X be a Mrowka space such that $\beta X = X \cup \{\infty\}$

Theorem

 $\operatorname{\mathsf{Grz}}_3 + \neg \chi_\mathfrak{T} \subseteq \operatorname{\mathsf{Log}}(\beta X) \subset \operatorname{\mathsf{Grz}}_2$

Proof (sketch)

- As βX is scattered with Cantor-Bendixson rank 3, Grz₃ ⊆ Log(βX)
- By topological analogue of Fine's lemma, $\beta X \Vdash \neg \chi_{\mathfrak{T}}$

Let X and Y be Mrowka spaces such that $\beta X = X \cup \{\infty\}$ and $\beta Y = Y \cup \{\infty\}$

OPEN PROBLEMS

- Is it the case that Log(βX) = Log(βY) when X and Y are not homeomorphic?
- If so, is $Log(\beta X)$ finitely axiomatizable?

• If not:

- How many logics arise in this manner?
- Which, if any, are finitely axiomatizable?
- Can logics arising from scattered Tychonoff spaces of Cantor-Bendixson rank 3 be characterized? (or more generally of rank n ≥ 3)

Let X and Y be Mrowka spaces such that $\beta X = X \cup \{\infty\}$ and $\beta Y = Y \cup \{\infty\}$

OPEN PROBLEMS

- Is it the case that Log(βX) = Log(βY) when X and Y are not homeomorphic?
- If so, is $Log(\beta X)$ finitely axiomatizable?

• If not:

- How many logics arise in this manner?
- Which, if any, are finitely axiomatizable?
- Can logics arising from scattered Tychonoff spaces of Cantor-Bendixson rank 3 be characterized? (or more generally of rank n ≥ 3)

Let X and Y be Mrowka spaces such that $\beta X = X \cup \{\infty\}$ and $\beta Y = Y \cup \{\infty\}$

OPEN PROBLEMS

- Is it the case that Log(βX) = Log(βY) when X and Y are not homeomorphic?
- If so, is $Log(\beta X)$ finitely axiomatizable?
- If not:
 - How many logics arise in this manner?
 - Which, if any, are finitely axiomatizable?
- Can logics arising from scattered Tychonoff spaces of Cantor-Bendixson rank 3 be characterized? (or more generally of rank n ≥ 3)

Let X and Y be Mrowka spaces such that $\beta X = X \cup \{\infty\}$ and $\beta Y = Y \cup \{\infty\}$

Open problems

- Is it the case that Log(βX) = Log(βY) when X and Y are not homeomorphic?
- If so, is $Log(\beta X)$ finitely axiomatizable?
- If not:
 - How many logics arise in this manner?
 - Which, if any, are finitely axiomatizable?
- Can logics arising from scattered Tychonoff spaces of Cantor-Bendixson rank 3 be characterized?

or more generally of rank $n \geq 3$)

Let X and Y be Mrowka spaces such that $\beta X = X \cup \{\infty\}$ and $\beta Y = Y \cup \{\infty\}$

Open problems

- Is it the case that Log(βX) = Log(βY) when X and Y are not homeomorphic?
- If so, is $Log(\beta X)$ finitely axiomatizable?
- If not:
 - How many logics arise in this manner?
 - Which, if any, are finitely axiomatizable?
- Can logics arising from scattered Tychonoff spaces of Cantor-Bendixson rank 3 be characterized? (or more generally of rank n ≥ 3)

Thank You...

Organizers and Audience

Questions ...

THANK YOU...

Organizers and Audience

Questions ...

