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Introduction The Construction A ‘New’ Logic

Syntax and Topological Semantics

Signature

Countably many propositional letters

Classical connectives: ¬ and →
Modal connective: �

Typical abbreviations: ♦ϕ := ¬�¬ϕ, ϕ ∨ ψ := ¬ϕ→ ψ,
ϕ ∧ ψ := ¬(ϕ→ ¬ψ), and > := p ∨ ¬p

Topological Interpretation

Given a space X :

Letters ⇒ subsets of X

Classical connectives ⇒ Boolean operations in ℘(X )

Modal box ⇒ interior operator i of X ;
hence, diamond ⇒ closure operator c of X
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Topological Semantics and S4

Valid Modal formulas

Call a formula ϕ valid in X provided it evaluates to X for any
interpretation of the letters; in symbols X  ϕ

Valid Formulas Corresponding Property

�> ↔ > iX = X
�p → p iA ⊆ A

�p → ��p iA ⊆ iiA
�(p ∧ q)↔ (�p ∧�q) i(A ∩ B) = iA ∩ iB

The logic of X is Log(X ) = {ϕ | X  ϕ}

Theorem (McKinsey and Tarski 1944)

For any space X , Log(X ) is a normal extension of S4
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Topological Semantics and S4-frames

Generalizing Kripke Semantics for S4

An S4-frame is F = (W ,R) where R is a reflexive and
transitive relation on W

An R-upset in F is U ⊆W such that w ∈ U and wRv imply
v ∈ U

The set of R-upsets forms the Alexandroff topology τR on W

Theorem (folklore)

For an S4-frame F = (W ,R), F  ϕ iff (W , τR)  ϕ

A Kripke complete extension of S4 is topologically complete

Observation

Such topological completeness is almost never with respect to
spaces satisfying higher separation axioms
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Known Topological Completeness Results

McKinsey and Tarski 1944

For a separable crowded metrizable space X , Log(X ) = S4

S4
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Known Topological Completeness Results

Rasiowa and Sikorski 1963

For a crowded metrizable space X , Log(X ) = S4

S4
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Known Topological Completeness Results

Abashidze 1987 and Blass 1990 (independently)

For any ordinal space α ≥ ωω, Log(α) = Grz

Grz := S4 + �(�(p → �p)→ p)→ p

S4

Grz

�
�
�
�3
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Known Topological Completeness Results

Abashidze 1987 (see also Bezhanishvili and Morandi 2010)

For an ordinal α such that ωn−1 + 1 ≤ α ≤ ωn, Log(α) = Grzn

bd1 := ♦�p1 → p1
bdn+1 := ♦(�pn+1 ∧ ¬bdn)→ pn+1

Grzn := Grz + bdn

S4

Grz

Grz3

Grz2

Grz1

�
�
�
�3

�3

�3

�3
···
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Known Topological Completeness Results

Bezhanishvili, Gabelaia, and L-B 2015

Metrizable spaces yield exactly these logics: S4, S4.1, Grz, or Grzn

S4.1 := S4 + �♦p → ♦�p

S4

S4.1

Grz

Grz3

Grz2

Grz1

�3

�3

�3

�3

�3
···
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Known Topological Completeness Results

Bezhanishvili and Harding 2012

Each of the following logics arises from a Stone space

S4.2 := S4 + ♦�p → �♦p
S4.1.2 := S4 + �♦p ↔ ♦�p

S4

S4.1

Grz

Grz3

Grz2

Grz1

S4.2

S4.1.2

6

6�3

�3

�3

�3

�3

�3
···
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Known Topological Completeness Results

Examples

A Stone space giving rise to each logic below

C := the Cantor space
E := the Gleason cover of [0, 1]
βω := the Čech-Stone compactification of ω
P := the Pelczynski compactification of ω
1 := the singleton space

S4

S4.1

Grz

Grz3

Grz2

Grz1

βω

E

C

P

ωω + 1

ω2 + 1

ω + 1

1

S4.2

S4.1.2

6

6�3

�3

�3

�3

�3

�3
···
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Our Goal

Question posed in Bezhanishvili and Harding 2012

Is there a Stone space whose logic is not in the previous list?

Answer

Yes!
We build a space whose logic is strictly between Grz3 and Grz2

Grz3
���

���

Grz2

•
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Mrowka Spaces

Recall

Call a family R of infinite subsets of ω almost disjoint provided
∀R,Q ∈ R, if R 6= Q then R ∩ Q is finite

Definition

A Mrowka space is X := ω ∪R where R is almost disjoint and
whose topology is generated by the basis consisting of:

O(n) := {n} for n ∈ ω
O(R,F ) := {R} ∪ (R \ F ) for R ∈ R where F ⊂ ω is finite

X
ω

R • • • • • • • • • •
• • • • • • • • • •

•
· · ·

· · ·
· · ·

R

R

J
J
J
J
JJ













O(R,∅)

J
J
JJ









n

O(n)
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Properties of Mrowka Spaces

Let X = ω ∪R be a Mrowka space

Theorem (Mrowka)

ω is open and dense in X

R is closed and discrete in X

Each O(R,F ) is clopen in X

Each O(R,∅) is homeomorphic to the one-point
compactification of ω, which is homeomorphic to the ordinal
space ω + 1

Corollary

X is a scattered locally compact Hausdorff space

if R is infinite then X is not compact
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The Spaces of Interest I

Theorem (Mrowka)

There is an infinite almost disjoint family R such that the
Čech-Stone compactification βX of the Mrowka space X = ω ∪R
is the one-point compactification αX of X

Convention for this talk

Any Mrowka space X = ω ∪R is such that βX = αX := X ∪ {∞}

βX
X

ω

R

{∞}

• • • • • • • • • •

• • • • • • • • • •

•

•

· · ·

· · ·

· · ·

J
J
J
JJ











J
J
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The Spaces of Interest II

Theorem

If X is a Mrowka space then the space βX = X ∪ {∞} is a
scattered Stone space of Cantor-Bendixson rank 3

Proof sketch

Clearly βX is compact and Hausdorff

Letting d be the derived set operator in βX , we have

ddd (βX ) = dd (R ∪ {∞}) = d ({∞}) = ∅

Thus βX is scattered and of Cantor-Bendixson rank 3

A compact scattered space is zero-dimensional
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Introduction The Construction A ‘New’ Logic

Main Tools

Definitions and known results

Let X and Y be spaces

Y is an interior image of X if there is f : X → Y which is
onto such that f −1(cYA) = cX f

−1(A) for each A ⊆ Y

If Y is an interior image of X then Log(X ) ⊆ Log(Y )

If X is scattered then

X  �(�(p → �p)→ p)→ p
X  bdn iff the Cantor-Bendixson rank of X is ≤ n

Let F be a finite rooted S4-frame

Let χF denote the Jankov-Fine formula of F, which
syntactically characterizes the structure of F

X  ¬χF iff F is not an interior image of any open subspace
of X
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On Interior Images of βX

Let X be a Mrowka space such that βX = X ∪ {∞},
F be a finite partially ordered S4-frame and

for nonzero k ∈ ω, let Tk be the tree
•HH

HH

@
@
�
�
�
��
�• •• •· · ·

1 2 k − 1 k

Lemma

F is an interior image of βX iff F is an interior image of an open
subspace of X

Lemma

For nonzero k ∈ ω, the tree Tk is an interior image of βX

As Grz2 is the logic of {Tk | k ∈ ω \ {0}},

Corollary

Log(βX ) ⊂ Grz2 (strict since βX 6 bd2 as βX is of C-B rank 3)
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A Tree that is NOT an Interior Image

Let X be a Mrowka space such that βX = X ∪ {∞} and

T the tree
@
@
�
�
•

• •
•

Lemma

T is not an interior image of βX

Proof (sketch)

Let f : βX → T be an onto interior map

∞ is the only preimage of the root

Let A be the preimage of red and B the preimage of blue

∞ ∈ cA ∩ cB

A and B are disjoint opens in X with X = A ∪ B, hence
completely separated in X giving cA ∩ cB = ∅ in βX
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Open problems

Is it the case that Log(βX ) = Log(βY ) when X and Y are
not homeomorphic?

If so, is Log(βX ) finitely axiomatizable?

If not:

How many logics arise in this manner?
Which, if any, are finitely axiomatizable?

Can logics arising from scattered Tychonoff spaces of
Cantor-Bendixson rank 3 be characterized?
(or more generally of rank n ≥ 3)
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