A NEW LOGIC ARISING FROM A SCATTERED Stone space

Joel Lucero-Bryan, Khalifa University

Joint work:
Guram Bezhanishvili, New Mexico State University
Nick Bezhanishvili, University of Amsterdam Jan van Mill, University of Amsterdam

TACL 2019, Nice, France
17-21 June 2019

Syntax and Topological Semantics

Signature

- Countably many propositional letters
- Classical connectives: \neg and \rightarrow
- Modal connective: \square
- Typical abbreviations: $\diamond \varphi:=\neg \square \neg \varphi, \varphi \vee \psi:=\neg \varphi \rightarrow \psi$, $\varphi \wedge \psi:=\neg(\varphi \rightarrow \neg \psi)$, and $\top:=p \vee \neg p$

Topological Interpretation
Given a space X

- Letters \Rightarrow subsets of X
- Classical connectives \Rightarrow Boolean operations in $\wp(X)$
- Modal box \Rightarrow interior operator \mathbf{i} of X
hence, diamond \Rightarrow closure operator c of X

Syntax and Topological Semantics

Signature

- Countably many propositional letters
- Classical connectives: \neg and \rightarrow
- Modal connective: \square
- Typical abbreviations: $\diamond \varphi:=\neg \square \neg \varphi, \varphi \vee \psi:=\neg \varphi \rightarrow \psi$, $\varphi \wedge \psi:=\neg(\varphi \rightarrow \neg \psi)$, and $\top:=p \vee \neg p$

Topological Interpretation

Given a space X :

- Letters \Rightarrow subsets of X
- Classical connectives \Rightarrow Boolean operations in $\wp(X)$
- Modal box \Rightarrow interior operator \mathbf{i} of X; hence, diamond \Rightarrow closure operator \mathbf{c} of X

Topological Semantics and S4

Valid Modal formulas

Call a formula φ valid in X provided it evaluates to X for any interpretation of the letters; in symbols $X \Vdash \varphi$

Theorem (McKinsey and Tarski 1944)
For any space $X, \log (X)$ is a normal extension of $S 4$

Topological Semantics and S4

Valid Modal formulas

Call a formula φ valid in X provided it evaluates to X for any interpretation of the letters; in symbols $X \Vdash \varphi$

Valid Formulas	Corresponding Property
$\square \top \leftrightarrow T$	$\mathbf{i} X=X$
$\square p \rightarrow p$	$\mathbf{i} A \subseteq A$
$\square p \rightarrow \square \square p$	$\mathbf{i} A \subseteq \mathbf{i i} A$
$\square(p \wedge q) \leftrightarrow(\square p \wedge \square q)$	$\mathbf{i}(A \cap B)=\mathbf{i} A \cap \mathbf{i} B$

Topological Semantics and S4

Valid Modal formulas

Call a formula φ valid in X provided it evaluates to X for any interpretation of the letters; in symbols $X \Vdash \varphi$

Valid Formulas	Corresponding Property
$\square \top \leftrightarrow \top$	$\mathbf{i} X=X$
$\square p \rightarrow p$	$\mathbf{i} A \subseteq A$
$\square p \rightarrow \square \square p$	$\mathbf{i} A \subseteq \mathbf{i i} A$
$\square(p \wedge q) \leftrightarrow(\square p \wedge \square q)$	$\mathbf{i}(A \cap B)=\mathbf{i} A \cap \mathbf{i} B$

The logic of X is $\log (X)=\{\varphi \mid X \Vdash \varphi\}$

For any space $X, \log (X)$ is a normal extension of $S 4$

Topological Semantics and S4

Valid Modal formulas

Call a formula φ valid in X provided it evaluates to X for any interpretation of the letters; in symbols $X \Vdash \varphi$

Valid Formulas	Corresponding Property
$\square \top \leftrightarrow \top$	$\mathbf{i} X=X$
$\square p \rightarrow p$	$\mathbf{i} A \subseteq A$
$\square p \rightarrow \square \square p$	$\mathbf{i} A \subseteq \mathbf{i i} A$
$\square(p \wedge q) \leftrightarrow(\square p \wedge \square q)$	$\mathbf{i}(A \cap B)=\mathbf{i} A \cap \mathbf{i} B$

The logic of X is $\log (X)=\{\varphi \mid X \Vdash \varphi\}$

Theorem (McKinsey and Tarski 1944)

For any space $X, \log (X)$ is a normal extension of S4

Topological Semantics and S4-Frames

Generalizing Kripke Semantics for S4

- An S4-frame is $\mathfrak{F}=(W, R)$ where R is a reflexive and transitive relation on W
- An R-upset in \mathfrak{F} is $U \subseteq W$ such that $w \in U$ and $w R v$ imply $v \in U$
- The set of R-upsets forms the Alexandroff topology τ_{R} on W

```
Theorem (FOlklore)
    - For an S4-frame }\mathfrak{F}=(W,R),\mathfrak{F}\Vdash\varphi\mathrm{ iff }(W,\mp@subsup{\tau}{R}{})|
    - A Kripke complete extension of S4 is topologically complete
```

\square
Such topological completeness is almost never with respect to spaces satisfying higher separation axioms

Topological Semantics and S4-Frames

Generalizing Kripke Semantics for S4

- An S4-frame is $\mathfrak{F}=(W, R)$ where R is a reflexive and transitive relation on W
- An R-upset in \mathfrak{F} is $U \subseteq W$ such that $w \in U$ and $w R v$ imply $v \in U$
- The set of R-upsets forms the Alexandroff topology τ_{R} on W

Theorem (folklore)

- For an S4-frame $\mathfrak{F}=(W, R), \mathfrak{F} \Vdash \varphi$ iff $\left(W, \tau_{R}\right) \Vdash \varphi$
- A Kripke complete extension of S4 is topologically complete

Observation
Such topological completeness is almost never with respect to spaces satisfying higher separation axioms

Topological Semantics and S4-Frames

Generalizing Kripke Semantics for S4

- An S4-frame is $\mathfrak{F}=(W, R)$ where R is a reflexive and transitive relation on W
- An R-upset in \mathfrak{F} is $U \subseteq W$ such that $w \in U$ and $w R v$ imply $v \in U$
- The set of R-upsets forms the Alexandroff topology τ_{R} on W

Theorem (folklore)

- For an S4-frame $\mathfrak{F}=(W, R), \mathfrak{F} \Vdash \varphi$ iff $\left(W, \tau_{R}\right) \Vdash \varphi$
- A Kripke complete extension of S4 is topologically complete

[^0]
Topological SEmantics and S4-FRAMES

Generalizing Kripke Semantics for S4

- An S4-frame is $\mathfrak{F}=(W, R)$ where R is a reflexive and transitive relation on W
- An R-upset in \mathfrak{F} is $U \subseteq W$ such that $w \in U$ and $w R v$ imply $v \in U$
- The set of R-upsets forms the Alexandroff topology τ_{R} on W

Theorem (FOLKLORE)

- For an S4-frame $\mathfrak{F}=(W, R), \mathfrak{F} \Vdash \varphi$ iff $\left(W, \tau_{R}\right) \Vdash \varphi$
- A Kripke complete extension of S4 is topologically complete

ObSERVATION

Such topological completeness is almost never with respect to spaces satisfying higher separation axioms

Known Topological Completeness Results

McKinsey and TARSki 1944

For a separable crowded metrizable space $X, \log (X)=$ S4

Known Topological Completeness Results

Rasiowa And Sikorski 1963

For a crowded metrizable space $X, \log (X)=$ S4

Known Topological Completeness Results

Abashidze 1987 and Blass 1990 (independently)

For any ordinal space $\alpha \geq \omega^{\omega}, \log (\alpha)=G r z$

$$
\mathrm{Grz}:=\mathrm{S} 4+\square(\square(p \rightarrow \square p) \rightarrow p) \rightarrow p
$$

Known Topological Completeness Results

Abashidze 1987 (see also Bezhanishvili and Morandi 2010)

For an ordinal α such that $\omega^{n-1}+1 \leq \alpha \leq \omega^{n}, \log (\alpha)=\operatorname{Grz}_{n}$

$$
\begin{aligned}
\mathrm{bd}_{1} & :=\diamond \square p_{1} \rightarrow p_{1} \\
\mathrm{bd}_{n+1} & :=\diamond\left(\square p_{n+1} \wedge \neg \mathrm{bd}_{n}\right) \rightarrow p_{n+1} \\
\mathrm{Grz}_{n} & :=\mathrm{Grz}+\mathrm{bd}
\end{aligned}
$$

Known Topological Completeness Results

Bezhanishvili, Gabelaia, and L-B 2015

Metrizable spaces yield exactly these logics: S4, S4.1, Grz, or Grz_{n}

$$
\mathrm{S} 4.1:=\mathrm{S} 4+\square \diamond p \rightarrow \diamond \square p
$$

Known Topological Completeness Results

Bezhanishvili and Harding 2012

Each of the following logics arises from a Stone space
$\mathrm{S} 4.2 \quad:=\quad \mathrm{S} 4+\diamond \square p \rightarrow \square \diamond p$
S4.1.2 $:=\quad \mathrm{S} 4+\square \diamond p \leftrightarrow \diamond \square p$

Known Topological Completeness Results

Examples

A Stone space giving rise to each logic below

C := the Cantor space
$E \quad:=$ the Gleason cover of $[0,1]$
$\beta \omega:=$ the Čech-Stone compactification of ω
$P \quad:=$ the Pelczynski compactification of ω
$1:=$ the singleton space

Our Goal

Question posed in Bezhanishvili and Harding 2012

Is there a Stone space whose logic is not in the previous list?

Answ ${ }^{2}$
Yes!
We build a space whose logic is strictly between Grz3 and Grzz

Our Goal

Question posed in Bezhanishvili and Harding 2012

Is there a Stone space whose logic is not in the previous list?

ANSWER
Yes!
We build a space whose logic is strictly between Grz_{3} and Grz_{2}

Mrowka Spaces

ReCALL

Call a family \mathscr{R} of infinite subsets of ω almost disjoint provided $\forall R, Q \in \mathscr{R}$, if $R \neq Q$ then $R \cap Q$ is finite

DEFINITION

A Mrowka snare is $X:=\omega \cup \mathscr{R}$ where \mathscr{R} is almost disjoint and whose topology is generated by the basis consisting of:
\square

Mrowka Spaces

RECALL

Call a family \mathscr{R} of infinite subsets of ω almost disjoint provided $\forall R, Q \in \mathscr{R}$, if $R \neq Q$ then $R \cap Q$ is finite

Definition

A Mrowka space is $X:=\omega \cup \mathscr{R}$ where \mathscr{R} is almost disjoint and whose topology is generated by the basis consisting of:

- $O(n):=\{n\}$ for $n \in \omega$
- $O(R, F):=\{R\} \cup(R \backslash F)$ for $R \in \mathscr{R}$ where $F \subset \omega$ is finite

Properties of Mrowka Spaces

Let $X=\omega \cup \mathscr{R}$ be a Mrowka space

Theorem (Mrowka)

- ω is open and dense in X
- \mathscr{R} is closed and discrete in X
- Each $O(R, F)$ is clopen in X
- Each $O(R, \varnothing)$ is homeomorphic to the one-point compactification of ω, which is homeomorphic to the ordinal
space $\omega+1$

Corollary

- X is a scattered locally compact Hausdorff space
- if \mathscr{R} is infinite then X is not compact

Properties of Mrowka Spaces

Let $X=\omega \cup \mathscr{R}$ be a Mrowka space

Theorem (Mrowka)

- ω is open and dense in X
- \mathscr{R} is closed and discrete in X
- Each $O(R, F)$ is clopen in X
- Each $O(R, \varnothing)$ is homeomorphic to the one-point compactification of ω, which is homeomorphic to the ordinal space $\omega+1$
- X is a scattered locally compact Hausdorff space
- if \mathscr{R} is infinite then X is not comnact

Properties of Mrowka Spaces

$$
\text { Let } X=\omega \cup \mathscr{R} \text { be a Mrowka space }
$$

Theorem (Mrowka)

- ω is open and dense in X
- \mathscr{R} is closed and discrete in X
- Each $O(R, F)$ is clopen in X
- Each $O(R, \varnothing)$ is homeomorphic to the one-point compactification of ω, which is homeomorphic to the ordinal space $\omega+1$

Corollary

- X is a scattered locally compact Hausdorff space
- if \mathscr{R} is infinite then X is not compact

The Spaces of Interest I

Theorem (Mrowka)

There is an infinite almost disjoint family \mathscr{R} such that the Čech-Stone compactification βX of the Mrowka space $X=\omega \cup \mathscr{R}$ is the one-point compactification αX of X

Convention for this talk

Any Mrowka space $X=\omega \cup \mathscr{R}$ is such that

The Spaces of Interest I

Theorem (Mrowka)

There is an infinite almost disjoint family \mathscr{R} such that the Čech-Stone compactification βX of the Mrowka space $X=\omega \cup \mathscr{R}$ is the one-point compactification αX of X

CONVENTION FOR THIS TALK

Any Mrowka space $X=\omega \cup \mathscr{R}$ is such that $\beta X=\alpha X:=X \cup\{\infty\}$

The Spaces of Interest II

Theorem

If X is a Mrowka space then the space $\beta X=X \cup\{\infty\}$ is a scattered Stone space of Cantor-Bendixson rank 3

PROOF SKETCH

- Clearly βX is compact and Hausdorff
- Letting d be the derived set operator in βX, we have

$$
\mathbf{d d d}(\beta X)=\mathbf{d d}(\mathscr{R} \cup\{\infty\})=\mathbf{d}(\{\infty\})=\varnothing
$$

Thus βX is scattered and of Cantor-Bendixson rank 3

- A compact scattered space is zero-dimensional

The Spaces of Interest II

Theorem

If X is a Mrowka space then the space $\beta X=X \cup\{\infty\}$ is a scattered Stone space of Cantor-Bendixson rank 3

Proof sketch

- Clearly βX is compact and Hausdorff

Thus βX is scattered and of Cantor-Bendixson rank 3

- A compact scattered space is zero-dimensional

The Spaces of Interest II

Theorem

If X is a Mrowka space then the space $\beta X=X \cup\{\infty\}$ is a scattered Stone space of Cantor-Bendixson rank 3

Proof sketch

- Clearly βX is compact and Hausdorff
- Letting d be the derived set operator in βX, we have $\mathbf{d d d}(\beta X)=\mathbf{d d}(\mathscr{R} \cup\{\infty\})=\mathbf{d}(\{\infty\})=\varnothing$ Thus βX is scattered and of Cantor-Bendixson rank 3 - A compact scattered space is zero-dimensional

The Spaces of Interest II

Theorem

If X is a Mrowka space then the space $\beta X=X \cup\{\infty\}$ is a scattered Stone space of Cantor-Bendixson rank 3

Proof sketch

- Clearly βX is compact and Hausdorff
- Letting \mathbf{d} be the derived set operator in βX, we have $\mathbf{d d d}(\beta X)=\mathbf{d d}(\mathscr{R} \cup\{\infty\})=\mathbf{d}(\{\infty\})=\varnothing$

Thus βX is scattered and of Cantor-Bendixson rank 3
\square

The Spaces of Interest II

Theorem

If X is a Mrowka space then the space $\beta X=X \cup\{\infty\}$ is a scattered Stone space of Cantor-Bendixson rank 3

PROOF SKETCH

- Clearly βX is compact and Hausdorff
- Letting \mathbf{d} be the derived set operator in βX, we have

$$
\mathbf{d d d}(\beta X)=\mathbf{d d}(\mathscr{R} \cup\{\infty\})=\mathbf{d}(\{\infty\})=\varnothing
$$

Thus βX is scattered and of Cantor-Bendixson rank 3

- A compact scattered space is zero-dimensional

Main Tools

Definitions and known results

Let X and Y be spaces

- Y is an interior image of X if there is $f: X \rightarrow Y$ which is onto such that $f^{-1}\left(\mathbf{c}_{Y} A\right)=\mathbf{c}_{X} f^{-1}(A)$ for each $A \subseteq Y$
- If Y is an interior image of X then $\log (X) \subseteq \log (Y)$
- If X is scattered then

Let \mathfrak{F} be a finite rooted $S 4$-frame

- Let $\chi \approx$ denote the Jankov-Fine formula of \mathfrak{F}, which syntactically characterizes the structure of \mathfrak{F}
- $X \Vdash \neg \chi_{\mathfrak{F}}$ iff \mathfrak{F} is not an interior image of any open subspace of X

Main Tools

Definitions and known results

Let X and Y be spaces

- Y is an interior image of X if there is $f: X \rightarrow Y$ which is onto such that $f^{-1}\left(\mathbf{c}_{Y} A\right)=\mathbf{c}_{X} f^{-1}(A)$ for each $A \subseteq Y$
- If Y is an interior image of X then $\log (X) \subseteq \log (Y)$
- If X is scattered then

Let \mathfrak{F} be a finite rooted $S 4$-frame

- Let χ_{\approx} denote the Jankov-Fine formula of \mathfrak{F}, which syntactically characterizes the structure of \mathfrak{F}
- $X \Vdash \neg \chi_{\mathfrak{F}}$ iff \mathfrak{F} is not an interior image of any open subspace

Main Tools

Definitions and known results

Let X and Y be spaces

- Y is an interior image of X if there is $f: X \rightarrow Y$ which is onto such that $f^{-1}\left(\mathbf{c}_{Y} A\right)=\mathbf{c}_{X} f^{-1}(A)$ for each $A \subseteq Y$
- If Y is an interior image of X then $\log (X) \subseteq \log (Y)$
- If X is scattered then
- $X \Vdash \square(\square(p \rightarrow \square p) \rightarrow p) \rightarrow p$

Let \mathfrak{F} be a finite rooted $S 4$-frame

- Let χ_{\approx} denote the Jankov-Fine formula of \mathfrak{F}, which syntactically characterizes the structure of \mathfrak{F}
- $X \Vdash \neg \chi_{\mathfrak{F}}$ iff \mathfrak{F} is not an interior image of any open subspace

Main Tools

Definitions and known results

Let X and Y be spaces

- Y is an interior image of X if there is $f: X \rightarrow Y$ which is onto such that $f^{-1}\left(\mathbf{c}_{Y} A\right)=\mathbf{c}_{X} f^{-1}(A)$ for each $A \subseteq Y$
- If Y is an interior image of X then $\log (X) \subseteq \log (Y)$
- If X is scattered then
- $X \Vdash \square(\square(p \rightarrow \square p) \rightarrow p) \rightarrow p$
- $X \Vdash \mathrm{bd}_{n}$ iff the Cantor-Bendixson rank of X is $\leq n$

Let \mathfrak{F} be a finite rooted S4-frame

- Let $\chi_{\mathfrak{F}}$ denote the Jankov-Fine formula of \mathfrak{F}, which syntactically characterizes the structure of \mathfrak{F}
- $X \Vdash \neg \chi_{\mathfrak{F}}$ iff \mathfrak{F} is not an interior image of any open subspace

Main Tools

Definitions and known results

Let X and Y be spaces

- Y is an interior image of X if there is $f: X \rightarrow Y$ which is onto such that $f^{-1}\left(\mathbf{c}_{Y} A\right)=\mathbf{c}_{X} f^{-1}(A)$ for each $A \subseteq Y$
- If Y is an interior image of X then $\log (X) \subseteq \log (Y)$
- If X is scattered then
- $X \Vdash \square(\square(p \rightarrow \square p) \rightarrow p) \rightarrow p$
- $X \Vdash \mathrm{bd}_{n}$ iff the Cantor-Bendixson rank of X is $\leq n$

Let \mathfrak{F} be a finite rooted S 4 -frame

- Let $\chi_{\mathfrak{F}}$ denote the Jankov-Fine formula of \mathfrak{F}, which syntactically characterizes the structure of \mathfrak{F}

Main Tools

Definitions and known results

Let X and Y be spaces

- Y is an interior image of X if there is $f: X \rightarrow Y$ which is onto such that $f^{-1}\left(\mathbf{c}_{Y} A\right)=\mathbf{c}_{X} f^{-1}(A)$ for each $A \subseteq Y$
- If Y is an interior image of X then $\log (X) \subseteq \log (Y)$
- If X is scattered then
- $X \Vdash \square(\square(p \rightarrow \square p) \rightarrow p) \rightarrow p$
- $X \Vdash \mathrm{bd}_{n}$ iff the Cantor-Bendixson rank of X is $\leq n$

Let \mathfrak{F} be a finite rooted S 4 -frame

- Let $\chi_{\mathfrak{F}}$ denote the Jankov-Fine formula of \mathfrak{F}, which syntactically characterizes the structure of \mathfrak{F}
- $X \Vdash \neg \chi_{\mathfrak{F}}$ iff \mathfrak{F} is not an interior image of any open subspace of X

On Interior Images of βX

Let X be a Mrowka space such that $\beta X=X \cup\{\infty\}$, \mathfrak{F} be a finite partially ordered S4-frame and

LEMMA

\mathfrak{F} is an interior image of βX iff \mathfrak{F} is an interior image of an open subspace of X
\square
For nonzero $k \in \omega$, the tree \mathfrak{T}_{k} is an interior image of βX
\square
\square
\square

On Interior Images of βX

Let X be a Mrowka space such that $\beta X=X \cup\{\infty\}$, \mathfrak{F} be a finite partially ordered S 4 -frame and for nonzero $k \in \omega$, let \mathfrak{T}_{k} be the tree

LEMMA

\mathfrak{F} is an interior image of βX iff \mathfrak{F} is an interior image of an open subspace of X

LEMMA

For nonzero $k \in \omega$, the tree \mathfrak{T}_{k} is an interior image of βX
As Grz_{2} is the logic of $\left\{\mathfrak{T}_{k} \mid k \in \omega \backslash\{0\}\right\}$
$\log (\beta X) \subset \mathrm{Grzz}_{2}$ (strict since $\beta X \Vdash^{\prime} \mathrm{bd}_{2}$ as βX is of $\mathrm{C}-\mathrm{B}$ rank 3)

On Interior Images of βX

Let X be a Mrowka space such that $\beta X=X \cup\{\infty\}$, \mathfrak{F} be a finite partially ordered S 4 -frame and
for nonzero $k \in \omega$, let \mathfrak{T}_{k} be the tree

LEMMA

\mathfrak{F} is an interior image of βX iff \mathfrak{F} is an interior image of an open subspace of X

LEMMA

For nonzero $k \in \omega$, the tree \mathfrak{T}_{k} is an interior image of βX
As Grz_{2} is the logic of $\left\{\mathfrak{T}_{k} \mid k \in \omega \backslash\{0\}\right\}$,

Corollary

$\log (\beta X) \subset \operatorname{Grz}_{2}$

On Interior Images of βX

Let X be a Mrowka space such that $\beta X=X \cup\{\infty\}$, \mathfrak{F} be a finite partially ordered S 4 -frame and
for nonzero $k \in \omega$, let \mathfrak{T}_{k} be the tree

LEMMA

\mathfrak{F} is an interior image of βX iff \mathfrak{F} is an interior image of an open subspace of X

LEMMA

For nonzero $k \in \omega$, the tree \mathfrak{T}_{k} is an interior image of βX
As Grz_{2} is the logic of $\left\{\mathfrak{T}_{k} \mid k \in \omega \backslash\{0\}\right\}$,

Corollary

$\log (\beta X) \subset \operatorname{Grz}_{2}$ (strict since $\beta X \nVdash \mathrm{bd}_{2}$ as βX is of $\mathrm{C}-\mathrm{B}$ rank 3)

A Tree that is NOT an Interior Image

Let X be a Mrowka space such that $\beta X=X \cup\{\infty\}$ and
\mathfrak{T} the tree
LEMMA
\mathfrak{T} is not an interior image of βX
Proof (sketch)
Let $f: \beta X \rightarrow \mathfrak{T}$ be an onto interior map

- ∞ is the only preimage of the root
- Let A be the preimage of red and B the preimage of blue
- $\infty \in \mathbf{c} A \cap \mathbf{c} B$
- A and B are disjoint opens in X with $X=A \cup B$, hence completely separated in X giving $\mathbf{c} A \cap \mathbf{c} B=\varnothing$ in βX

A Tree that is NOT an Interior Image

Let X be a Mrowka space such that $\beta X=X \cup\{\infty\}$ and
\mathfrak{T} the tree

LEMMA

\mathfrak{T} is not an interior image of βX
Proof (Sketch)
Let $f: \beta X \rightarrow \mathfrak{T}$ be an onto interior map

- ∞ is the only preimage of the
- Let A be the preimage of red and B the preimage of blue
- $\infty \in \mathbf{c} A \cap \mathbf{c} B$
- A and B are disjoint opens in X with $X=A \cup B$, hence completely separated in X giving $\mathbf{c} A \cap \mathbf{c} B=\varnothing$ in βX

A Tree that is NOT an Interior Image

Let X be a Mrowka space such that $\beta X=X \cup\{\infty\}$ and
\mathfrak{T} the tree

LEMMA

\mathfrak{T} is not an interior image of βX

Proof (SKETCH)

Let $f: \beta X \rightarrow \mathfrak{T}$ be an onto interior map

- ∞ is the only preimage of the root
- Let A be the preimage of red and B the preimage of blue
- $\infty \in \mathbf{c} A \cap \mathbf{c} B$
- A and B are disioint opens in X with $X=A \cup B$, hence completely separated in X giving $\mathbf{c} A \cap \mathbf{c} B=\varnothing$ in βX

A Tree that is NOT an Interior Image

Let X be a Mrowka space such that $\beta X=X \cup\{\infty\}$ and
\mathfrak{T} the tree

LEMMA

\mathfrak{T} is not an interior image of βX
Proof (Sketch)
Let $f: \beta X \rightarrow \mathfrak{T}$ be an onto interior map

- ∞ is the only preimage of the root
- Let A be the preimage of red and B the preimage of blue
- A and B are disjoint opens in X with $X=A \cup B$, hence completely separated in X giving $\mathbf{c} A \cap \mathbf{c} B=\varnothing$ in βX

A Tree that is NOT an Interior Image

Let X be a Mrowka space such that $\beta X=X \cup\{\infty\}$ and
\mathfrak{T} the tree

LEMMA

\mathfrak{T} is not an interior image of βX
Proof (Sketch)
Let $f: \beta X \rightarrow \mathfrak{T}$ be an onto interior map

- ∞ is the only preimage of the root
- Let A be the preimage of red and B the preimage of blue
- $\infty \in \mathbf{c} A \cap \mathbf{c} B$
- A and B are disjoint opens in X with $X=A \cup B$, hence completely separated in X giving $\mathbf{c} A \cap \mathbf{c} B=\varnothing$ in βX

A Tree that is NOT an Interior Image

Let X be a Mrowka space such that $\beta X=X \cup\{\infty\}$ and
\mathfrak{T} the tree

LEMMA

\mathfrak{T} is not an interior image of βX
Proof (Sketch)
Let $f: \beta X \rightarrow \mathfrak{T}$ be an onto interior map

- ∞ is the only preimage of the root
- Let A be the preimage of red and B the preimage of blue
- $\infty \in \mathbf{c} A \cap \mathbf{c} B$
- A and B are disjoint opens in X with $X=A \cup B$,

A Tree that is NOT an Interior Image

Let X be a Mrowka space such that $\beta X=X \cup\{\infty\}$ and
\mathfrak{T} the tree

LEMMA

\mathfrak{T} is not an interior image of βX
Proof (Sketch)
Let $f: \beta X \rightarrow \mathfrak{T}$ be an onto interior map

- ∞ is the only preimage of the root
- Let A be the preimage of red and B the preimage of blue
- $\infty \in \mathbf{c} A \cap \mathbf{c} B$
- A and B are disjoint opens in X with $X=A \cup B$, hence completely separated in X

A Tree that is NOT an Interior Image

Let X be a Mrowka space such that $\beta X=X \cup\{\infty\}$ and
\mathfrak{T} the tree

LEMMA

\mathfrak{T} is not an interior image of βX
Proof (Sketch)
Let $f: \beta X \rightarrow \mathfrak{T}$ be an onto interior map

- ∞ is the only preimage of the root
- Let A be the preimage of red and B the preimage of blue
- $\infty \in \mathbf{c} A \cap \mathbf{c} B$
- A and B are disjoint opens in X with $X=A \cup B$, hence completely separated in X giving $\mathbf{c} A \cap \mathbf{c} B=\varnothing$ in βX

The Main Result

Let X be a Mrowka space such that $\beta X=X \cup\{\infty\}$

Theorem

$\operatorname{Grz}_{3}+\neg \chi_{\mathfrak{T}} \subseteq \log (\beta X) \subset \operatorname{Grz}_{2}$

Proof (Sketch)

- As βX is scattered with Cantor-Bendixson rank 3 $\mathrm{Grz}_{3} \subseteq \log (\beta X)$
- By topological analogue of Fine's lemma, $\beta X \Vdash \neg \chi_{\mathfrak{T}}$

The Main Result

Let X be a Mrowka space such that $\beta X=X \cup\{\infty\}$

Theorem

$\mathrm{Grz}_{3}+\neg \chi_{\mathfrak{T}} \subseteq \log (\beta X) \subset \mathrm{Grz}_{2}$

Proof (Sketch)

- As βX is scattered with Cantor-Bendixson rank 3, $\mathrm{Grz}_{3} \subseteq \log (\beta X)$

- By topological analogue of Fine's lemma, $\beta X \Vdash \neg \chi_{\mathfrak{z}}$

The Main Result

Let X be a Mrowka space such that $\beta X=X \cup\{\infty\}$

Theorem

$\mathrm{Grz}_{3}+\neg \chi_{\mathfrak{T}} \subseteq \log (\beta X) \subset \mathrm{Grz}_{2}$

Proof (Sketch)

- As βX is scattered with Cantor-Bendixson rank 3, $\mathrm{Grz}_{3} \subseteq \log (\beta X)$
- By topological analogue of Fine's lemma, $\beta X \Vdash \neg \chi_{\mathfrak{T}}$

The Unfinished Story

Let X and Y be Mrowka spaces such that $\beta X=X \cup\{\infty\}$ and $\beta Y=Y \cup\{\infty\}$

Open problems

- Is it the case that $\log (\beta X)=\log (\beta Y)$ when X and Y are not homeomorphic?
- If so, is $\log (\beta X)$ finitely axiomatizable?
- If not:
- How many logics arise in this manner? - Which, if any, are finitely axiomatizable?
- Can logics arising from scattered Tychonoff spaces of Cantor-Bendixson rank 3 be characterized? (or more generally of rank $n \geq 3$)

The Unfinished Story

Let X and Y be Mrowka spaces such that $\beta X=X \cup\{\infty\}$ and $\beta Y=Y \cup\{\infty\}$

Open problems

- Is it the case that $\log (\beta X)=\log (\beta Y)$ when X and Y are not homeomorphic?
- If so, is $\log (\beta X)$ finitely axiomatizable?
- If not:
- How many logics arise in this manner? - Which, if any, are finitely axiomatizable?
- Can logics arising from scattered Tychonoff spaces of Cantor-Bendixson rank 3 be characterized? (or more generally of rank $n \geq 3$)

The Unfinished Story

Let X and Y be Mrowka spaces such that $\beta X=X \cup\{\infty\}$ and $\beta Y=Y \cup\{\infty\}$

Open Problems

- Is it the case that $\log (\beta X)=\log (\beta Y)$ when X and Y are not homeomorphic?
- If so, is $\log (\beta X)$ finitely axiomatizable?
- If not:
- How many logics arise in this manner?
- Which, if any, are finitely axiomatizable?
- Can logics arising from scattered Tychonoff spaces of Cantor-Bendixson rank 3 be characterized?
(or more generally of rank $n \geq 3$)

The Unfinished Story

Let X and Y be Mrowka spaces such that $\beta X=X \cup\{\infty\}$ and $\beta Y=Y \cup\{\infty\}$

Open problems

- Is it the case that $\log (\beta X)=\log (\beta Y)$ when X and Y are not homeomorphic?
- If so, is $\log (\beta X)$ finitely axiomatizable?
- If not:
- How many logics arise in this manner?
- Which, if any, are finitely axiomatizable?
- Can logics arising from scattered Tychonoff spaces of Cantor-Bendixson rank 3 be characterized?
(or more generally of rank $n \geq 3$)

The Unfinished Story

Let X and Y be Mrowka spaces such that $\beta X=X \cup\{\infty\}$ and $\beta Y=Y \cup\{\infty\}$

Open problems

- Is it the case that $\log (\beta X)=\log (\beta Y)$ when X and Y are not homeomorphic?
- If so, is $\log (\beta X)$ finitely axiomatizable?
- If not:
- How many logics arise in this manner?
- Which, if any, are finitely axiomatizable?
- Can logics arising from scattered Tychonoff spaces of Cantor-Bendixson rank 3 be characterized? (or more generally of rank $n \geq 3$)

Organizers and Audience

Questions

Organizers and Audience

Questions ...

[^0]: Observation
 Such topological completeness is almost never with respect to spaces satisfying higher separation axioms

