Lifting Functors from Pos to Pries

Jim de Groot

The Australian National University College of Engeneering & Computer Science

> TACL 19 June 2019

Contents

- Coalgebraic positive logic
 - Predicate liftings
- Connection between Pos- and Pries-functors
 - Lifting via semantics (predicate liftings)
 - Lifting via (cofiltered) limits
 - Comparison

Coalgebras

Definition

A coalgebra for a functor T : C → C is a pair (X, γ) where X ∈ C and γ : X → TX.

Coalgebras

Definition

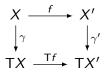
- A coalgebra for a functor T : C → C is a pair (X, γ) where X ∈ C and γ : X → TX.
- A coalgebra morphism $f:(X,\gamma) \rightarrow (X',\gamma')$ is a morphism

$$\begin{array}{ccc} X & X' \\ \downarrow^{\gamma} & \downarrow^{\gamma'} \\ \mathsf{T}X & \mathsf{T}X' \end{array}$$

Coalgebras

Definition

- A coalgebra for a functor T : C → C is a pair (X, γ) where X ∈ C and γ : X → TX.
- A coalgebra morphism $f:(X,\gamma) \rightarrow (X',\gamma')$ is a morphism



Setting

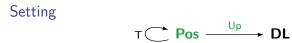
 $\mathsf{T} \bigcirc \mathsf{Pos} \longrightarrow \mathsf{DL}$

$$T \bigcirc Pos \longrightarrow DL$$

Definition

An *n*-ary predicate lifting is a natural transformation

 $\lambda: Up^n \to Up \circ T.$



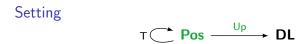
Definition

An *n*-ary predicate lifting is a natural transformation

 $\lambda: Up^n \to Up \circ T.$

For a set Λ of predicate liftings, define $\mathbb{L}(\mathsf{T},\Lambda)$ by

$$\varphi ::= \bot \mid \top \mid p \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \Diamond^{\lambda}(\varphi_1, \ldots, \varphi_n).$$



Definition

An *n*-ary predicate lifting is a natural transformation

 $\lambda: Up^n \to Up \circ T.$

For a set Λ of predicate liftings, define $\mathbb{L}(\mathsf{T},\Lambda)$ by

$$\varphi ::= \bot \mid \top \mid p \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \varphi^{\lambda}(\varphi_1, \ldots, \varphi_n).$$

Interpretation in (X, γ) with valuation $V : \operatorname{Prop} \rightarrow \bigcup pX$:

$$x \Vdash \heartsuit^{\lambda}(\varphi_1, \ldots, \varphi_n) \iff \gamma(x) \in \lambda(\llbracket \varphi_1 \rrbracket, \ldots, \llbracket \varphi_n \rrbracket).$$

Definition

An *n*-ary predicate lifting is a natural transformation

 $\lambda : \operatorname{ClpUp}^n \to \operatorname{ClpUp} \circ \mathsf{T}.$

For a set Λ of predicate liftings, define $\mathbb{L}(\mathsf{T},\Lambda)$ by

$$\varphi ::= \bot \mid \top \mid p \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid \heartsuit^{\lambda}(\varphi_1, \ldots, \varphi_n).$$

Interpretation in (\mathcal{X}, γ) with valuation $V : \operatorname{Prop} \rightarrow \operatorname{ClpUp} \mathcal{X}$:

$$x \Vdash \heartsuit^{\lambda}(\varphi_1, \ldots, \varphi_n) \iff \gamma(x) \in \lambda(\llbracket \varphi_1 \rrbracket, \ldots, \llbracket \varphi_n \rrbracket).$$

$\mathcal{P}_c: \textbf{Pos} \to \textbf{Pos}$

• $X \mapsto$ convex subsets of X ordered by \subseteq :

 $a \sqsubseteq b$ iff $a \subseteq \downarrow b$ and $b \subseteq \uparrow a$

▶ For $f: X \to X'$ define $\mathcal{P}_c f$ by $(\mathcal{P}_c f)(a) = \downarrow f[a] \cap \uparrow f[a]$

$\mathcal{P}_c: \textbf{Pos} \to \textbf{Pos}$

• $X \mapsto$ convex subsets of X ordered by \subseteq :

 $a \sqsubseteq b$ iff $a \subseteq \downarrow b$ and $b \subseteq \uparrow a$

For $f: X \to X'$ define $\mathcal{P}_c f$ by $(\mathcal{P}_c f)(a) = \downarrow f[a] \cap \uparrow f[a]$

Intuition

In a \mathcal{P}_c -coalgebras (X, γ) , γ maps x to its set of successors.

$\mathcal{P}_c: \textbf{Pos} \to \textbf{Pos}$

• $X \mapsto$ convex subsets of X ordered by \subseteq :

 $a \sqsubseteq b$ iff $a \subseteq \downarrow b$ and $b \subseteq \uparrow a$

For $f: X \to X'$ define $\mathcal{P}_c f$ by $(\mathcal{P}_c f)(a) = \downarrow f[a] \cap \uparrow f[a]$

Intuition

In a \mathcal{P}_c -coalgebras (X, γ) , γ maps x to its set of successors.

Predicate liftings

Define $\lambda^{\Box}, \lambda^{\diamondsuit} : \mathsf{Up} \to \mathsf{Up} \circ \mathcal{P}_c$ by

$$\lambda_X^{\square}(a) = \{ b \in \mathcal{P}_c X \mid b \subseteq a \}, \qquad \lambda_X^{\diamondsuit}(a) = \{ b \in \mathcal{P}_c X \mid b \cap a \neq \emptyset \}.$$

$\mathcal{P}_c: \textbf{Pos} \to \textbf{Pos}$

• $X \mapsto$ convex subsets of X ordered by \subseteq :

 $a \sqsubseteq b$ iff $a \subseteq \downarrow b$ and $b \subseteq \uparrow a$

For $f: X \to X'$ define $\mathcal{P}_c f$ by $(\mathcal{P}_c f)(a) = \downarrow f[a] \cap \uparrow f[a]$

Intuition

In a \mathcal{P}_c -coalgebras (X, γ) , γ maps x to its set of successors.

Predicate liftings

Define $\lambda^{\Box}, \lambda^{\diamondsuit} : Up \to Up \circ \mathcal{P}_c$ by

$$\lambda_X^{\square}(a) = \{ b \in \mathcal{P}_c X \mid b \subseteq a \}, \qquad \lambda_X^{\diamondsuit}(a) = \{ b \in \mathcal{P}_c X \mid b \cap a \neq \emptyset \}.$$

Then: $x \Vdash \heartsuit^{\lambda^{\square}} \varphi$ iff $\gamma(x) \in \lambda_X^{\square}(\llbracket \varphi \rrbracket)$ iff $\gamma(x) \subseteq \llbracket \varphi \rrbracket$.

Example: Convex Vietoris functor on Pries

 $\mathcal{V}_c: \textbf{Pries} \rightarrow \textbf{Pries}$

▶ $\mathcal{X} \mapsto$ closed convex subsets of \mathcal{X} ordered by \sqsubseteq , topologised by

 $\boxplus a = \{ b \in \mathcal{V}_c \mathcal{X} \mid b \subseteq a \}, \qquad \& a = \{ b \in \mathcal{V}_c \mathcal{X} \mid b \cap a \neq \emptyset \},$

where $a \in \mathsf{ClpUp}\mathcal{X}$.

For a morphism $f : \mathcal{X} \to \mathcal{X}'$ let $(\mathcal{V}_c f)(b) = \downarrow f[b] \cap \uparrow f[b]$.

Example: Convex Vietoris functor on Pries

 $\mathcal{V}_c: \mathbf{Pries} \to \mathbf{Pries}$

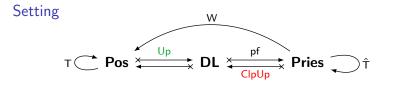
▶ $\mathcal{X} \mapsto$ closed convex subsets of \mathcal{X} ordered by \sqsubseteq , topologised by

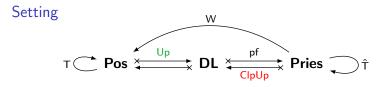
 $\boxplus a = \{b \in \mathcal{V}_c \mathcal{X} \mid b \subseteq a\}, \qquad \&a = \{b \in \mathcal{V}_c \mathcal{X} \mid b \cap a \neq \emptyset\},\$

where $a \in \mathsf{ClpUp}\mathcal{X}$.

For a morphism $f : \mathcal{X} \to \mathcal{X}'$ let $(\mathcal{V}_c f)(b) = \downarrow f[b] \cap \uparrow f[b]$.

Predicate liftings Define $\lambda^{\Box}, \lambda^{\diamondsuit} : \operatorname{ClpUp} \to \operatorname{ClpUp} \circ \mathcal{V}_c$ by $\lambda^{\Box}_{\mathcal{X}}(a) = \{ b \in \mathcal{V}_c \mathcal{X} \mid b \subseteq a \}, \qquad \lambda^{\diamondsuit}_{\mathcal{X}}(a) = \{ b \in \mathcal{V}_c \mathcal{X} \mid b \cap a \neq \emptyset \}.$ Then: $x \Vdash \heartsuit^{\lambda^{\Box}} \varphi \quad \text{iff} \quad \gamma(x) \in \lambda^{\Box}_{X}(\llbracket \varphi \rrbracket) \quad \text{iff} \quad \gamma(x) \subseteq \llbracket \varphi \rrbracket.$



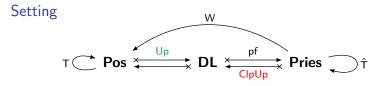


Definition

For a set Λ of predicate liftings, define $D_{T,\Lambda}: \textbf{Pries} \rightarrow \textbf{DL}$ by:

• Let $D_{T,\Lambda}\mathcal{X}$ be the sub-DL of $Up(T(W\mathcal{X}))$ generated by

$$\{\lambda_{W\mathcal{X}}(a_1,\ldots,a_n) \mid \lambda \in \Lambda, a_i \in \mathsf{ClpUp}\mathcal{X}\}.$$



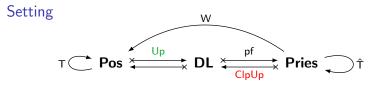
Definition

For a set Λ of predicate liftings, define $D_{T,\Lambda}: \textbf{Pries} \rightarrow \textbf{DL}$ by:

• Let $D_{T,\Lambda}\mathcal{X}$ be the sub-DL of $Up(T(W\mathcal{X}))$ generated by

$$\{\lambda_{\mathsf{W}\mathcal{X}}(a_1,\ldots,a_n) \mid \lambda \in \Lambda, a_i \in \mathsf{ClpUp}\mathcal{X}\}.$$

► For $f : \mathcal{X} \to \mathcal{Y}$ let $D_{T,\Lambda}f : D_{T,\Lambda}\mathcal{Y} \to D_{T,\Lambda}\mathcal{X}$ be the restriction of $Up(T(Wf)) = (Tf)^{-1}$.



Definition

For a set Λ of predicate liftings, define $D_{T,\Lambda}$: **Pries** \rightarrow **DL** by:

• Let $D_{T,\Lambda}\mathcal{X}$ be the sub-DL of $Up(T(W\mathcal{X}))$ generated by

$$\{\lambda_{\mathsf{W}\mathcal{X}}(a_1,\ldots,a_n) \mid \lambda \in \Lambda, a_i \in \mathsf{ClpUp}\mathcal{X}\}.$$

► For $f : \mathcal{X} \to \mathcal{Y}$ let $D_{T,\Lambda}f : D_{T,\Lambda}\mathcal{Y} \to D_{T,\Lambda}\mathcal{X}$ be the restriction of $Up(T(Wf)) = (Tf)^{-1}$.

Define the semantic lift of T w.r.t. Λ by

 $\hat{T} = pf \circ D_{T,\Lambda} : \textbf{Pries} \rightarrow \textbf{Pries}.$

Example

Consider \mathcal{P}_c and $\Lambda = \{\lambda^{\Box}, \lambda^{\diamondsuit}\}$. Then

$$\widehat{(\mathcal{P}_c)}_{\Lambda} = \mathcal{V}_c.$$

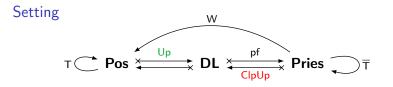
Example

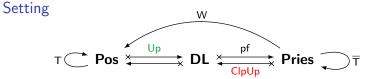
Consider
$$\mathcal{P}_c$$
 and $\Lambda = \{\lambda^{\Box}, \lambda^{\diamondsuit}\}$. Then
 $\widehat{(\mathcal{P}_c)}_{\Lambda} = \mathcal{V}_c$.

Proof idea

For a Priestley space \mathcal{X} , we have $D_{\mathcal{P}_c,\Lambda}\mathcal{X} = \mathsf{ClpUp}(\mathcal{V}_c\mathcal{X})$ via $\varphi : \mathsf{ClpUp}(\mathcal{V}_c\mathcal{X}) \to D_{\mathcal{P}_c,\Lambda}\mathcal{X}$ generated by

$$\varphi(\boxplus a) = \lambda^{\Box}(a), \qquad \varphi(\otimes a) = \lambda^{\diamondsuit}(a).$$





Remarks

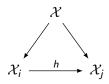
- 1. $Pos_f \cong Pries_f$
- 2. For $\mathcal{X} \in \mathbf{Pries}_f$ we have $\mathsf{ClpUp}\mathcal{X} = \mathsf{Up}(\mathsf{W}\mathcal{X})$.
- For X ∈ Pries, let X ↓ Pries_f be the coslice category and U_X : (X ↓ Pries_f) → Pries the obvious forgetful functor. Then X = lim U_X.

Objects

Suppose $T:Pos \to Pos$ restricts to an endofunctor on $Pos_f.$ For $\mathcal{X} \in Pries$ define

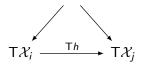
Objects

Suppose $\mathsf{T}:Pos\to Pos$ restricts to an endofunctor on $Pos_f.$ For $\mathcal{X}\in Pries$ define



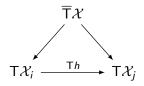
Objects

Suppose $\mathsf{T}:Pos\to Pos$ restricts to an endofunctor on $Pos_f.$ For $\mathcal{X}\in Pries$ define



Objects

Suppose $\mathsf{T}:Pos\to Pos$ restricts to an endofunctor on $Pos_f.$ For $\mathcal{X}\in Pries$ define



Objects Suppose $T : \mathbf{Pos} \to \mathbf{Pos}$ restricts to an endofunctor on \mathbf{Pos}_f . For $\mathcal{X} \in \mathbf{Pries}$ define

 $\overline{\mathsf{T}}\mathcal{X} = \lim(\mathsf{TU}_{\mathcal{X}}).$

Morphisms

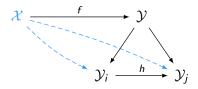
If $f : \mathcal{X} \to \mathcal{Y}$, every object in the diagram $U_{\mathcal{Y}}$ is also in $U_{\mathcal{X}}$.

Objects Suppose $T : Pos \rightarrow Pos$ restricts to an endofunctor on Pos_f . For $\mathcal{X} \in Pries$ define

$$\overline{\Gamma}\mathcal{X} = \lim(\mathsf{TU}_{\mathcal{X}}).$$

Morphisms

If $f : \mathcal{X} \to \mathcal{Y}$, every object in the diagram $U_{\mathcal{Y}}$ is also in $U_{\mathcal{X}}$.

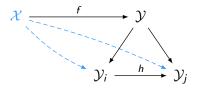


Objects Suppose $T : \mathbf{Pos} \to \mathbf{Pos}$ restricts to an endofunctor on \mathbf{Pos}_f . For $\mathcal{X} \in \mathbf{Pries}$ define

$$\overline{\Gamma}\mathcal{X} = \lim(\mathrm{TU}_{\mathcal{X}}).$$

Morphisms

If $f : \mathcal{X} \to \mathcal{Y}$, every object in the diagram $U_{\mathcal{Y}}$ is also in $U_{\mathcal{X}}$.



Therefore $\overline{\mathsf{T}}\mathcal{X}$ is a cone for $\mathsf{TU}_{\mathcal{Y}}$. By the limit property we get $\overline{\mathsf{T}}f:\overline{\mathsf{T}}\mathcal{X} \to \lim(\mathsf{TU}_{\mathcal{Y}}) = \overline{\mathsf{T}}\mathcal{Y}$.

View $ClpUp(\overline{T}\mathcal{X})$ as sub-DL of $Up(TW\mathcal{X})$.

View $ClpUp(\overline{T}\mathcal{X})$ as sub-DL of $Up(TW\mathcal{X})$.

• We know that \mathcal{X} is a cone for $U_{\mathcal{X}}$.

View $ClpUp(\overline{T}\mathcal{X})$ as sub-DL of $Up(TW\mathcal{X})$.

- We know that \mathcal{X} is a cone for $U_{\mathcal{X}}$.
- Therefore Up(TWX) is a cocone of $Up(TWU_X)$.

View $ClpUp(\overline{T}\mathcal{X})$ as sub-DL of $Up(TW\mathcal{X})$.

- We know that \mathcal{X} is a cone for $U_{\mathcal{X}}$.
- Therefore Up(TWX) is a cocone of $Up(TWU_X)$.
- ▶ By definition ClpUp(TX) = colim(Up(TWU_X)), so there is a homomorphism

$$s_{\mathcal{X}} : \mathsf{ClpUp}(\overline{\mathsf{T}}\mathcal{X}) \to \mathsf{Up}(\mathsf{TW}\mathcal{X})$$

View $ClpUp(\overline{T}\mathcal{X})$ as sub-DL of $Up(TW\mathcal{X})$.

- We know that \mathcal{X} is a cone for $U_{\mathcal{X}}$.
- Therefore Up(TWX) is a cocone of $Up(TWU_X)$.
- By definition ClpUp(TX) = colim(Up(TWUX)), so there is a homomorphism

$$s_{\mathcal{X}} : \mathsf{ClpUp}(\overline{\mathsf{T}}\mathcal{X}) \to \mathsf{Up}(\mathsf{TW}\mathcal{X})$$

Lemma

1. The collection $s = (s_{\mathcal{X}})_{\mathcal{X} \in \mathbf{Pries}} : \mathrm{ClpUp} \circ \overline{\mathsf{T}} \to \mathrm{Up} \circ \mathsf{T} \circ \mathsf{W}$ is a natural transformation.

View $ClpUp(\overline{T}\mathcal{X})$ as sub-DL of $Up(TW\mathcal{X})$.

- We know that \mathcal{X} is a cone for $U_{\mathcal{X}}$.
- Therefore Up(TWX) is a cocone of $Up(TWU_X)$.
- ▶ By definition ClpUp(TX) = colim(Up(TWU_X)), so there is a homomorphism

$$s_{\mathcal{X}} : \mathsf{ClpUp}(\overline{\mathsf{T}}\mathcal{X}) \to \mathsf{Up}(\mathsf{TW}\mathcal{X})$$

Lemma

- 1. The collection $s = (s_{\mathcal{X}})_{\mathcal{X} \in \mathbf{Pries}} : ClpUp \circ \overline{T} \to Up \circ T \circ W$ is a natural transformation.
- 2. If T preserves epis and cofiltered limits then $s_{\mathcal{X}}$ is injective.

View $ClpUp(\overline{T}\mathcal{X})$ as sub-DL of $Up(TW\mathcal{X})$.

- We know that \mathcal{X} is a cone for $U_{\mathcal{X}}$.
- Therefore Up(TWX) is a cocone of $Up(TWU_X)$.
- ▶ By definition ClpUp(TX) = colim(Up(TWU_X)), so there is a homomorphism

$$s_{\mathcal{X}} : \mathsf{ClpUp}(\overline{\mathsf{T}}\mathcal{X}) \to \mathsf{Up}(\mathsf{TW}\mathcal{X})$$

Lemma

- 1. The collection $s = (s_{\mathcal{X}})_{\mathcal{X} \in \mathbf{Pries}} : ClpUp \circ \overline{T} \to Up \circ T \circ W$ is a natural transformation.
- 2. If T preserves epis and cofiltered limits then $s_{\mathcal{X}}$ is injective.
- 3. $D_{T,\Lambda}\mathcal{X}$ is a subframe of im $s_{\mathcal{X}}$.

View $ClpUp(\overline{T}\mathcal{X})$ as sub-DL of $Up(TW\mathcal{X})$.

- We know that \mathcal{X} is a cone for $U_{\mathcal{X}}$.
- Therefore Up(TWX) is a cocone of $Up(TWU_X)$.
- ▶ By definition ClpUp(TX) = colim(Up(TWU_X)), so there is a homomorphism

$$s_{\mathcal{X}} : \mathsf{ClpUp}(\overline{\mathsf{T}}\mathcal{X}) \to \mathsf{Up}(\mathsf{TW}\mathcal{X})$$

Lemma

- 1. The collection $s = (s_{\mathcal{X}})_{\mathcal{X} \in \mathbf{Pries}} : ClpUp \circ \overline{T} \to Up \circ T \circ W$ is a natural transformation.
- 2. If T preserves epis and cofiltered limits then $s_{\mathcal{X}}$ is injective.
- 3. $D_{T,\Lambda}\mathcal{X}$ is a subframe of im $s_{\mathcal{X}}$.
- 4. If T is embedding-preserving then $D_{T,\Lambda}\mathcal{X} \cong \operatorname{im} s_{\mathcal{X}}$.

Theorem

Let T be an endofunctor on \mathbf{Pos} which

- restricts to Pos_f; and
- preserves epis, embeddings and cofiltered limits.

Let Λ be the set of all positive predicate liftings for T. Then there is a natural isomorphism $\overline{T} \rightarrow \hat{T}$.

Theorem

Let T be an endofunctor on **Pos** which

- restricts to Pos_f; and
- preserves epis, embeddings and cofiltered limits.

Let Λ be the set of all positive predicate liftings for T. Then there is a natural isomorphism $\overline{T} \rightarrow \hat{T}$.

Example

Finitely generated convex powerset functor on Pos.

Generalization?

- Similar methods and result for lifting Set-functors to Stone-functors.
- More general approach?

Thank you