Projective unification in NExt(K4)

Sławomir Kost

Institute of Informatics, Opole University Opole, Poland

> June 19,2019 TACL 2019

Transitive modal logics and unifiers

- Var = {x, x₁, x₂, ..., y, y₁, y₂, ...} the set of propositional variables,
- Fm the set of modal formulas,
- ▶ Var(A) the (finite) set of variables occurring in A.

By a (transitive) modal logic we mean any set of formulas that contains:

- all propositional tautologies,
- $\mathsf{K}: \Box(x \to y) \to (\Box x \to \Box y),$
- ▶ 4 : $\Box x \rightarrow \Box \Box x$,

which is closed under substitutions and

$$MP: rac{A o B, A}{B}$$
 and $RN: rac{A}{\Box A}$.

 $\Box^+ A = A \land \Box A \text{ (dually } \Diamond^+ A = A \lor \Diamond A \text{).}$ Cons(L) - the set of all constants of L (modulo equivalence).

Transitive modal logics and unifiers

A unifier for a formula A in a modal logic L is a substitution σ such that $\vdash_{\mathsf{L}} A[\sigma]$. σ is said to be ground if $x[\sigma] \in Cons(\mathsf{L})$ for each $x \in Var(A)$.

Lemma

Let A be a modal formula and L be a modal logic. The following condition are equivalent:

- 1. A is unifiable in L,
- 2. there exists a ground unifier for A in L,
- 3. A is satisfiable in $\langle Cons(L), \wedge, \neg, \top, \Box \rangle$.

Transitive modal logics and unifiers

Lemma

If the formula T^{\Box} : $\Box(\overrightarrow{\Box x \to x})$ is a theorem of a transitive modal logic L, then the following formulas are equivalent: .3: $\Box(\Box^+x \to y) \lor \Box(\Box^+y \to x)$,

- D1: $\Box(\Box x \rightarrow y) \lor \Box(\Box y \rightarrow x),$
- D1': $\Box(\Box x \to \Box y) \lor \Box(\Box y \to \Box x).$

Corollary

The following equality holds:

$$\mathsf{K4.3T}^{\square} = \mathsf{K4D1} = \mathsf{K4D1}'\mathsf{T}^{\square}.$$

There are infinitely many constants in K4.3 and K4D1'.

The modal algebra $(Cons(K4T^{\Box}), \land, \neg, \top, \Box)$,

is isomorphic to the product of modal algebras

$$\langle \{0,1\}, \wedge, \neg, \top, \Box_1 \rangle$$
 in which $\Box_1 0 = 0$
(Triv = Log{ \circ } = K + $\Box x \leftrightarrow x$)

and

$$\begin{split} & \langle \{0,1\}, \wedge, \neg, \top, \Box_2 \rangle \text{ in which } \Box_2 0 = 1. \\ & (\text{Verum} = \text{Log}\{\bullet\} = \mathsf{K} + \Box \bot) \end{split}$$

Corollary

A formula is unifiable in $K4T^{\Box}$ if and only if it is unifiable in Triv and in Verum.

Lemma

Let $K4T^{\Box} \subseteq L$ be a modal logic with four constants. Let A be a non-unifiable formula in L such that $Var(A) \subseteq \{x_1, \ldots, x_n\}$. Then,

 $A \vdash_{\mathsf{L}} \Diamond \top$

or

$$A \vdash_{\mathsf{L}} \Box \bot \lor (\Diamond^+ x_1 \land \Diamond^+ \neg x_1) \lor \ldots \lor (\Diamond^+ x_n \land \Diamond^+ \neg x_n).$$

The modal logic K4G is the smallest transitive modal logic containing the Gleach formula

 $G: \Diamond \Box x \to \Box \Diamond x.$

Lemma

The modal logic K4G is characterized by the class Fr_{K4G} of all finite transitive rooted frames fulfilling the condition

$$\forall w_1, w_2 \in W \setminus \{\rho\} (\exists w_3(w_1 R w_3 \land w_2 R w_3)).$$

Lemma

Let L be a modal logic extending K4G. Then, for every n there exists a formula B such that

 $\Box \bot \lor (\Diamond^+ x_1 \land \Diamond^+ \neg x_1) \lor \ldots \lor (\Diamond^+ x_n \land \Diamond^+ \neg x_n) \vdash_{\mathsf{L}} \Box \bot \lor (\Diamond B \land \Diamond \neg B).$

Modal logics K4T^{\Box} and K4G are incomparable.

Corollary

Let L be a modal logic extending K4GT^{\Box} such that Cons(L) = { \top , \bot , \Diamond \top , \Box \bot }. If a formula A is not unifiable in L, then

 $A \vdash_{\mathsf{L}} \Diamond \top$

or there exists a formula B such that

 $A \vdash_{\mathsf{L}} \Box \bot \lor (\Diamond B \land \Diamond \neg B).$

An inference rule A/B is:

- admissible in a logic L iff $\vdash_{\mathsf{L}} A[\varepsilon] \Rightarrow \vdash_{\mathsf{L}} B[\varepsilon]$,
- derivable iff $A \vdash_{\mathsf{L}} B$,

• passive iff A is not unifiable (passive \Rightarrow admissible).

A modal logic is (almost) structurally complete if every (non-passive) admissible rule is also derivable. An inference rule A/B is a consequence of a collection \mathcal{B} of rules in a modal logic L if B is derivable in L from A using rules of \mathcal{B} . A collection \mathcal{B} of rules is said to be a basis of a collection \mathcal{R} if each rule of \mathcal{R} is a consequence of \mathcal{B} .

Lemma

Let $K4GT^{\Box} \subseteq L$ be a modal logic with four constants. Then each passive rule in L is a consequence of the rules

$$\frac{\Diamond \top}{\bot} \quad \text{and} \quad \frac{\Box \bot \lor (\Diamond A \land \Diamond \neg A)}{\bot}$$

Lemma

Let $K4GT^{\Box} \subseteq L$ be a modal logic with four constants. Then each passive rule in L is a consequence of the rules

$$\frac{\mathbf{i}}{\mathbf{i}} \quad \text{and} \quad \frac{\mathbf{i} \mathbf{i} \mathbf{i} \vee (\mathbf{i} \mathbf{i} \mathbf{i} \wedge \mathbf{i} \mathbf{i} \mathbf{i})}{\mathbf{i}}$$

For each $L \in NExt(K4GT^{\Box} + \Diamond \top)$ the second rule can be replaced with

$$\mathsf{P}_2: \quad \frac{\Diamond A \land \Diamond \neg A}{\bot}.$$

The only non-unifiable formula in Verum = $K + \Box \bot$ is \bot . Verum is structurally complete.

A unifier σ for a formula A is said to be projective (in a modal logic L) if

$$A \vdash_{\mathsf{L}} x \leftrightarrow x[\sigma]$$

for each $x \in Var$. A formula is projective (in L) iff there exists a projective unifier for the formula. If each unifiable formula is projective (in L), then we say that L has projective unification.

Lemma

If a transitive modal logic L enjoys projective unification, then $\vdash_L D1$ (i.e. $K4D1 \subseteq L$).

Proof.

1. projectivity
$$\Rightarrow \vdash_{L} T^{\Box}$$

2. $\vdash_{L} T^{\Box}$ and $\vdash_{L} 4 \Rightarrow \underbrace{\vdash_{L} \Box \Box A \leftrightarrow \Box A}_{*}$ and $\vdash_{L} \Box A \rightarrow \Box \Diamond A$
3. $* \Rightarrow \underbrace{\Box x \lor \Box y =_{L} \Box^{+} (\Box x \lor \Box y)}_{**}$
4. $**$, $\vdash_{L} T^{\Box}$ and projectivity of $\Box x \lor \Box y \Rightarrow \vdash_{L} D1$.

The formula G (and T^{\Box}) is an instance of D1 in K4D1.

$$\sigma(z) = \begin{cases} \neg x & \text{for } z = y \\ z & \text{for } z \neq y \end{cases}$$

$$D1[\sigma] =_{\mathsf{K4D1}} \mathsf{G}.$$

Corollary $K4GT^{\Box} \subseteq K4D1$ and $Cons(K4D1) = \{\top, \bot, \Diamond \top, \Box \bot\}.$

A variant of a transitive Kripke model $\langle W, R, v \rangle$ is a model $\langle W, R, v' \rangle$ such that the equality v(w) = v'(w) holds for each $w \in W \setminus cl(\rho)$.

A class \mathcal{K} of Kripke models based on rooted L-frames is said to have the extension property iff for every Kripke model \mathfrak{M} based on a rooted L-frame, if $\mathfrak{M}_w \in \mathcal{K}$ for each $w \notin cl(\rho)$, then there is a variant \mathfrak{M}' of \mathfrak{M} such that $\mathfrak{M}' \in \mathcal{K}$.

Theorem (Ghilardi)

Let L be a transitive modal logic characterized by a class C of finite rooted frames. A formula A is projective in L if and only if the class

$$\{\langle \mathfrak{F}, v \rangle \colon \mathfrak{F} \in \mathcal{C} \text{ and } \langle \mathfrak{F}, v \rangle \models A\}$$

has the extension property.

Lemma

The modal logic K4D1 is characterized by the class Fr_{K4D1} of all finite transitive frames of the form $\langle W, R, \rho \rangle$ fulfilling the condition

 $\forall w_1, w_2 \in W \setminus \{\rho\} (w_1 R w_2 \lor w_2 R w_1).$

Theorem

A transitive modal logic L has projective unification if and only if K4D1 \subseteq L.

Proof.

- 1. K4D1 enjoys projective unification
- 2. extension L of K4D1 with four constants enjoys projective unification,
- 3. K4D1 + $\Diamond \top$ enjoys projective unification,
- 4. extension K4D1 + $\Diamond \top$ enjoys projective unification,
- 5. Verum enjoys projective unification.

Theorem

Every modal logic containing K4D1 is almost structurally complete.

Proof.

A/B a non-passive admissible rule (A is unifiable). Let ε be a projective unifier for A.

$$\vdash_{\mathsf{L}} A[\varepsilon] \text{ and } A \vdash_{\mathsf{L}} B[\varepsilon] \leftrightarrow B,$$
$$\vdash_{\mathsf{L}} B[\varepsilon],$$
$$A \vdash_{\mathsf{L}} B.$$

Theorem

A modal logic L extending K4D1 is structurally complete if and only if either L = Verum or K4D1M \subseteq L (M: $\Box \Diamond x \rightarrow \Diamond \Box x$).

Proof.

1. each extension of K4D1 is almost structurally complete,

2.
$$Cons(L) = \{\top, \bot, \Diamond \top, \Box \bot\}$$

 $\Diamond \top / \bot$ is admissible, but not derivable,

3. Verum. \perp is the only non-unifiable formula,

4. K4D1 +
$$\Diamond \top \subseteq L$$
.
(\Rightarrow) The rule $\stackrel{\Diamond A \land \Diamond \neg A}{\perp}$ is derivable. i.e. $\Diamond A \land \Diamond \neg A \vdash_{\mathsf{L}} \bot$.

$$\Box(\Diamond A \land \Diamond \neg A) \to \bot =_{\mathsf{K}} \Box \Diamond A \to \Diamond \Box A =_{\mathsf{K}} \mathsf{M}.$$

 $\neg M$

(\Leftarrow) Assume that $\vdash_{\mathsf{L}} \mathsf{M}$ and A/C is a passive rule.

• there exist B such that $A \vdash_{\mathsf{L}} \Box(\Diamond B \land \Diamond \neg B)$,

• $A \vdash_{\mathsf{L}} \bot$ and A/C is derivable.

- W.Dzik, P.Wojtylak, Projective unification in modal logic, Logic Journal of the IGPL Volume 20, Issue 1, pp. 121-153, February 2012.
- S.Ghilardi, *Best solving modal equations*, **Annals of Pure and Applied Logic** Volume 102, Issue 3, pp. 183-198, April 2000.
- S.Kost, Projective unification in transitive modal logics, Logic Journal of the IGPL Volume 26, Issue 35, pp. 548-566, October 2018.