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Starting point

Question
How can we define general relational semantics for arbitrary
non-classical first-order logics?

I What are the models?
I What do quantifiers mean in those models?
I What does completeness mean?
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Methodology: dual characterizations
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A brief recap on classical first-order logic: Language

I Set of relation symbols (Ri)i∈I each of finite arity ni.
I Set of function symbols ( f j) j∈J each of finite arity n j.
I Set of constant symbols (ck)k∈K (0-ary functions).
I Set of variables Var = {v1, . . . , vn, . . .}.

The first-order language L = ((Ri)i∈I , ( f j) j∈J , (ck)k∈K) over Var is
built up from terms defined recursively as follows:

Trm 3 t ::= vm | ck | f j(t, . . . , t).

The formulas of first-order logic are defined recursively as follows:

L 3 A ::= Ri(t) | t1 = t2 | > | ⊥ | A ∧ A | A ∨ A | ¬A | ∀vmA | ∃vmA
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A brief recap on classical first-order logic: Meaning

The models of a first-order logic L are tuples

M = (D, (RD
i )i∈I , ( f D

j ) j∈J , (cD
k )k∈K)

where D is a non-empty set and RD
i , f D

j , c
D
k are concrete ni-ary

relations over D, n j-ary functions on D and elements of D resp.
interpreting the symbols of the language in the model M.

M |= > Always
M |= ⊥ Never
M |= A ∧ B ⇐⇒ M |= A and M |= B
M |= A ∨ B ⇐⇒ M |= A or M |= A
M |= ¬A ⇐⇒ M 2 A
M |= ∀xA(x) ⇐⇒ M |= A(d) for all d ∈ D
M |= ∃xA(x) ⇐⇒ M |= A(d) for some d ∈ D.

For a set of sentences Σ, we write Σ |= A if M |= A for every model
M such that M |= B for all B ∈ Σ.
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Display Calculi

I Natural generalization of Gentzen’s sequent calculi;
I sequents X ` Y, where X and Y are structures:

- formulas are atomic structures
- built-up: structural connectives (generalizing meta-linguistic

comma in sequents φ1, . . . , φn ` ψ1, . . . , ψm)
- generation trees (generalizing sets, multisets, sequences)

I Display property:

Y ` X > Z
X ; Y ` Z
Y ; X ` Z

X ` Y > Z
display rules semantically justified by adjunction/residuation

I Canonical proof of cut elimination (via metatheorem)
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Quantifiers as adjoints

Consider ∀x : ℘(D × Dn)→ ℘(Dn), ∃x : ℘(D × Dn)→ ℘(Dn) and
π−1 : ℘(Dn)→ ℘(D × Dn) defined as:
I ∀x(A) =

⋂
d0∈D{d ∈ D | (d0, d) ∈ A}

I ∃x(A) =
⋃

d0∈D{d ∈ Dn | (d0, d) ∈ A}
I π−1

x (B) = D × B

We have:
π−1

x (B) ⊆ A ⇐⇒ B ⊆ ∀x(A)

∃x(A) ⊆ B ⇐⇒ A ⊆ π−1
x (B)

I Existential and universal quantification are the left and right
adjoints respectively of the inverse projection map (Lawvere).
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Algebraic properties of inverse projection maps

Let M be a model of L. For every finite set F ( Var such that x < F
we define maps (x)F ,∃xF ,∀xF such that (x)F is the inverse
projection map,

℘(DF∪{x}) oo (x)F

∀xF

##

∃xF

<<

>

>

℘(DF)

then the following properties hold:

(x)(A ∩ B) = (x)(A) ∩ (x)(B) (x)(A ∪ B) = (x)(A) ∪ (x)(B)
(x)(DF \ A) = DF∪{x} \ (x)(A) (x)(y)(A) = (y)(x)(A)

(x)∀y(A) = ∀y(x)(A) (x)∃y(A) = ∃y(x)(A)
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Algebraic semantics for first-order logic
An heterogeneous L-algebra is a tuple H = (A,Q), such that
I A = {AF | F ∈ Pω(Var)};
I Q = {(x)F ,∃xF ,∀xF , | x < F ( Var};

where for every F ∈ Pω(Var), AF is a complete Boolean algebra

AF∪{x} oo (x)F oo

∀xF∪{x}

  

∃xF∪{x}

>>

>

>

AF

such that (x)F is an order embedding and the following hold:

(x)(a ∧ b) = (x)(a) ∧ (x)(b) (x)(a ∨ b) = (x)(a) ∨ (x)(b)
(x)(−a) = −(x)(a) (x)(y)(a) = (y)(x)(a)

(x)∀y(a) = ∀y(x)(a) (x)∃y(a) = ∃y(x)(a)
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Logical connectives and types

I Types will be named after the elements F ∈ ℘ω(Var).
I A type LF contains a formula A iff FV(ϕ) = F.
I A ∈ LF∪{y} ⇐⇒ ∀yA ∈ LF

I A ∈ LF\{x} ⇐⇒ (x)A ∈ LF

I Symbols for quantifiers and cylindrification for each x ∈ Var:

Structural symbols Qx ((x))
Operational symbols ∃x ∀x (x) (x)
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Display Calculus

Introduction rules for quantifiers and their adjoint:

QxA ` F X
∃L
∃xA ` F X

X ` F A
∃R

QxX ` F\{x}∃xA

A ` F X
∀L
∀xA ` F\{x}QxA

X ` FQxA
∀RX ` F∀xA

X ` F\{x}Y
◦M

((x))X ` F∪{x}((x))Y

((x))A ` F X
·L

(x)A ` F X
X ` F((x))A

·R
X ` F(x)A
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Display Calculus
Display postulates for quantifiers and cylindrification:

QxX ` F\{x}Y

X ` F∪{x}((x))Y

Y ` F\{x}QxX

((x))Y ` F∪{x}X

Further adjunction rules:

((x))QxX ` FY
X ` FY

X ` F((x))QxY
X ` FY

Interaction rules:

((x))X; ((x))Y ` Z
((x))(X; Y) ` Z

Z ` ((x))X; ((x))Y
Z ` ((x))(X; Y)

((x))QyX ` Y

Qy((x))X ` Y

Y ` ((x))QyX

Y ` Qy((x))X
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Completeness (Canonical model)

If Σ is consistent then it has a model.
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Σ can be extended to a set Σ′ such that
I Σ′ is a maximal consistent theory (an ultrafilter)
I If ∃xA ∈ Σ′ then A(t) ∈ Σ′ for some term t

Define t ≡ s if and only if t = s ∈ Σ′:
I Let D = Trm/ ≡
I Let RD(t) iff R(t) ∈ Σ′

I Let M = (D,RD, f D, cD)

Then M |= A if and only if A ∈ Σ′.
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Witnesses

Problem
{∃xP(x),¬P(t1, ), . . . ,¬P(tn), . . .}.

Solution(s)

I Add infinite constants in the language, and construct the
ultrafilter by “carefully” using the constants for witnesses.

I Rename the variables in your set so that you have enough
(infinite) variables unused.
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Algebraic predicate semantics

A heterogeneous L-algebra is a tuple H = (A,Q) where for every
F ∈ Pω(Var), AF is a complete Heyting algebra/ distributive
lattice/DLE/LE/etc. . .

AF∪{x} oo (x)F oo

∀xF∪{x}

  

∃xF∪{x}

>>

>

>

AF

such that (x)F is an order embedding and a Heyting
algebra/distributive lattice/etc. . . homomorphism and the following
hold:

(x)(y)(a) = (y)(x)(a)
(x)∀y(a) = ∀y(x)(a) (x)∃y(a) = ∃y(x)(a)
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Completeness revisited

Classical completeness
If Σ is consistent then it is satisfiable.

Completeness in weaker logics

I If Σ is consistent then it is satisfiable
I If ∆ is not provable then it is falsifiable
I If Σ does not imply ∆ then there is a model that satisfies Σ and

falsifies ∆.

Filter-ideal pairs

DL: Every disjoint filter ideal pair can be extended to a prime
filter-ideal pair.

Lattices: Every disjoint filter ideal pair can be extended to a maximal
one.
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A case in point: Intuitionistic logic

I We let M := (W,≤), where each element of W is a classical
first-order model

I u ≤ w implies that f : Dw → Du is a homomorphism of
models.

I w |= ∃xA(x) if and only if there is some d ∈ Dw, w |= A(d)
I w |= ∀xA(x) if and only if for all w ∈ W such that u ≤ w and for

all d ∈ Du, u |= A(d).

Categorically
A model is a functor from a poset W to the category of f.o. models
and homomorphisms. The meaning of a formula (with one free
variable) is a subobject of the model in this category of functors.
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Canonical model: A story in multi-type

I A is the algebra of the logic excluding infinite free variables
I F is a prime filter of A
I If ∃xA ∈ F then A(t) ∈ F for some term t

Define t ≡ s if and only if t = s ∈ F :
I Let D = Trm/ ≡
I Let RD(t) iff R(t) ∈ Σ′

I Let MF = (D,RD, f D, cD)

Define M = (W,≤)
I W = {MF | F is a prime filter of some A}
I MF ≤ MG if and only if G ⊆ F
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A curiosity?

(x)(A→ B) = (x)A→ (x)B if and only if (∃xA(x))∧B = ∃x(A(x)∧B)

(x)(A \ B) = (x)A \ (x)B if and only if ∀x(A(x) ∨ B) = (∀xA(x)) ∨ B
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Witnesses, counterexamples and completeness

Question
Why witnesses and not counterexamples? Why not require that if
∀xA(x) is falsified then A(t) is falsified for some t?

Lemma

1. Assume that (∃xA(x)) ∧ B = ∃x(A(x) ∧ B) and let (F, I) be a
disjoint filter-ideal pair. Then (F, I) can be expanded to a filter
ideal pair (F ,I) such that for all ∃xA(x) < I there exists some
A(xn) < I for some n.

2. Assume that ∀x(A(x) ∨ B) = (∀xA(x)) ∨ B and let (F, I) be a
disjoint filter-ideal pair. Then (F, I) can be expanded to a filter
ideal pair (F ,I) such that for all ∀xA(x) < F there exists some
A(xn) < F for some n.
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Co-intuitionistic logic: Local counterexamples

I We let M := (W,≤), where each element of W is a classical
first-order model

I u ≤ w implies that R ⊆ Du × Dw is a co-homomorphic relation
and R−1Dw = Du

I u |= ∃xA(x) if and only if there is some w such that u ≤ w and
some d ∈ Dw, w |= A(d)

I w |= ∀xA(x) if and only if for all d ∈ Dw, w |= A(d).

Categorically
A model is a functor from a poset W to the category of f.o. models
and co-homomorphic relations. The meaning of a formula (with
one free variable) is a subobject of the model in this category of
functors.
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Canonical model: A story in multi-type part 2

I A is the algebra of the logic excluding infinite free variables
I I is a prime ideal of A
I If ∀xA ∈ I then A(t) ∈ I for some term t

Define t ≡ s if and only if t = s < I:
I Let D = Trm/ ≡
I Let RD(t) iff R(t) < I
I Let MI = (D,RD, f D, cD)

Define M = (W,≤)
I W = {MI | I is a prime ideal of some A}
I MI ≤ MJ if and only if I ⊆ J
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Distributive lattices

I We let M := (W,≤1,≤2), where each element of W is a
classical first-order model

I u ≤1 w implies that f : Dw → Du is a homomorphism of
models.

I u ≤2 w implies that R ⊆ Du × Dw is a co-homomorphic relation.
I u |= ∃xA(x) if and only if there is some w such that u ≤2 w and

some d ∈ Dw, w |= A(d)
I w |= ∀xA(x) if and only if for all w ∈ W such that u ≤1 w and for

all d ∈ Du, u |= A(d).

Question
Are two separate relations needed?
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Non-distributive logic

I No prime filters/ideals
I Logic as given should not "locally" provide witnesses and

counterexamples

Witnesses and counterexamples
Let F be a filter of an lattice and I an ideal of A, the lattice of the
first-order logic excluding infinite free variables.

1. If ∃xA(x) < I then I can be expanded to an ideal I′ such that
A(xn) < I′

2. If ∀xA(x) < F then F can be expanded to an ideal F′ such that
A(xn) < I′
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Non-distributive semantics

Let P = (M,C,N , S ), whereM is a set of first-order L-models, the
models, C is a set of first-order L-models, the countermodels,
N ⊆ M× C and S :

⋃
M×

⋃
C is a similarity relation between

points of models and countermodels.
Subobjects:
I Let X :M→ ℘(

⋃
Mn) and Y : C → ℘(

⋃
Cn)

I X(M) ⊆ Mn and X(C) ⊆ Cn

X↑(C) = {b ∈ Cn | ∀M ∈ M∀a ∈ Mn((aS b & a ∈ X(M))⇒ MNC)}

Y↓(M) = {a ∈ Mn | ∀C ∈ C∀b ∈ Cn((aS b & b ∈ Y(C))⇒ MNC)}.

I (·)↑ and (·)↓ form a Galois connection.
I A subojbect is a Galois-closed pair.
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Satisfaction and refutation

Interpretation:

M  ∀xA(a) iff for all C ∈ C, aS b and b ∈ C(C � A(b, b)⇒ MNC)

M � ∃xA(b) iff for all M ∈ M, aS b and a ∈ M(M  A(a, a)⇒ MNC)
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Canonical model: A story of algebra and co-algebra
I A is the algebra of the logic excluding infinite free variables
I F is a filter A
I I is an ideal A

Define t ≡ s if and only if t = s ∈ F :
I Let D = Trm/ ≡
I Let RD(t) iff R(t) ∈ F
I Let MF = (D,RD, f D, cD)

Define ¬t ≡ s if and only if A(t) ∈ I while A(s) < I:
I Let DF = Trm/ ≡
I Let RD(t) iff R(t) < I
I Let CI = (D,RD, f D, cD)

Define P = (M,C,N , S )
I MFNCI if and only if MF ∩CI , ∅
I aS b if and only if [a] ∩ [b] , ∅
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Final thoughts

I Define (reasonable?) algebraic semantics for predicate logics
encompassing already well-studied logics.

I Designe modular and general proof-systems for predicate
logics.

I Provide understanding for semantics for non-classical logics.
I What is the categorical framework for non-distributive

predicate logics?
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