Nonclassical first order logics: Semantics and proof theory

Apostolos Tzimoulis joint work with G. Greco, P. Jipsen, A. Kurz, M. A. Moshier, A. Palmigiano

TACL Nice, 20 June 2019

Starting point

Question

How can we define general relational semantics for arbitrary non-classical first-order logics?

- What are the models?
- What do quantifiers mean in those models?
- What does completeness mean?

Methodology: dual characterizations

A brief recap on classical first-order logic: Language

- Set of relation symbols $(R_i)_{i \in I}$ each of finite arity n_i .
- Set of function symbols $(f_j)_{j \in J}$ each of finite arity n_j .
- Set of constant symbols $(c_k)_{k \in K}$ (0-ary functions).
- Set of variables $Var = \{v_1, \ldots, v_n, \ldots\}.$

The first-order language $\mathcal{L} = ((R_i)_{i \in I}, (f_j)_{j \in J}, (c_k)_{k \in K})$ over Var is built up from **terms** defined recursively as follows:

$$\operatorname{Trm} \ni t ::= v_m \mid c_k \mid f_j(t, \ldots, t).$$

The formulas of first-order logic are defined recursively as follows:

$$\mathcal{L} \ni A ::= R_i(\bar{t}) \mid t_1 = t_2 \mid \top \mid \bot \mid A \land A \mid A \lor A \mid \neg A \mid \forall v_m A \mid \exists v_m A$$

A brief recap on classical first-order logic: Meaning

The models of a first-order logic ${\mathcal L}$ are tuples

$$M = (D, (R_i^D)_{i \in I}, (f_j^D)_{j \in J}, (c_k^D)_{k \in K})$$

where *D* is a non-empty set and R_i^D , f_j^D , c_k^D are concrete n_i -ary relations over *D*, n_j -ary functions on *D* and elements of *D* resp. interpreting the symbols of the language in the model *M*.

$$M \models \top$$
Always $M \models \bot$ Never $M \models A \land B$ \longleftrightarrow $M \models A \lor B$ \longleftrightarrow $M \models A \circ M$ $\models A$ or $M \models A$ $M \models \neg A$ \longleftrightarrow $M \models \forall xA(x)$ \longleftrightarrow $M \models A(d)$ for all $d \in D$ $M \models \exists xA(x)$ \longleftrightarrow $M \models A(d)$ for some $d \in D$

For a set of sentences Σ , we write $\Sigma \models A$ if $M \models A$ for every model M such that $M \models B$ for all $B \in \Sigma$.

Display Calculi

- Natural generalization of Gentzen's sequent calculi;
- sequents $X \vdash Y$, where X and Y are structures:
 - formulas are **atomic structures**
 - built-up: structural connectives (generalizing meta-linguistic comma in sequents $\phi_1, \ldots, \phi_n \vdash \psi_1, \ldots, \psi_m$)
 - generation trees (generalizing sets, multisets, sequences)
- Display property:

$$\frac{Y \vdash X > Z}{X; Y \vdash Z}$$

$$\frac{Y \vdash X > Z}{Y; X \vdash Z}$$

$$\frac{Y \vdash Y > Z}{X \vdash Y > Z}$$

display rules semantically justified by adjunction/residuation

Canonical proof of cut elimination (via metatheorem)

Quantifiers as adjoints

Consider $\forall x : \wp(D \times D^n) \to \wp(D^n), \exists x : \wp(D \times D^n) \to \wp(D^n) \text{ and } \pi^{-1} : \wp(D^n) \to \wp(D \times D^n) \text{ defined as:}$

$$\blacktriangleright \quad \forall x(A) = \bigcap_{d_0 \in D} \{ \overline{d} \in D \mid (d_0, \overline{d}) \in A \}$$

$$\blacktriangleright \exists x(A) = \bigcup_{d_0 \in D} \{ \overline{d} \in D^n \mid (d_0, \overline{d}) \in A \}$$

$$\bullet \ \pi_x^{-1}(B) = D \times B$$

We have:

$$\pi_x^{-1}(B) \subseteq A \quad \Longleftrightarrow \quad B \subseteq \forall x(A)$$

$$\exists x(A) \subseteq B \quad \Longleftrightarrow \quad A \subseteq \pi_x^{-1}(B)$$

 Existential and universal quantification are the left and right adjoints respectively of the inverse projection map (Lawvere).

Algebraic properties of inverse projection maps

Let *M* be a model of \mathcal{L} . For every finite set $F \subsetneq$ Var such that $x \notin F$ we define maps $(x)_F$, $\exists x_F$, $\forall x_F$ such that $(x)_F$ is the inverse projection map,

then the following properties hold:

$$\begin{array}{rcl} (x)(A \cap B) &=& (x)(A) \cap (x)(B) \\ (x)(D^F \setminus A) &=& D^{F \cup \{x\}} \setminus (x)(A) \\ (x) \forall y(A) &=& \forall y(x)(A) \end{array} \qquad \begin{array}{rcl} (x)(A \cup B) &=& (x)(A) \cup (x)(B) \\ (x)(y)(A) &=& (y)(x)(A) \\ (x) \exists y(A) &=& \exists y(x)(A) \end{array}$$

Algebraic semantics for first-order logic

An heterogeneous \mathcal{L} -algebra is a tuple $\mathbb{H} = (\mathcal{A}, Q)$, such that

•
$$\mathcal{A} = \{ \mathbb{A}_F \mid F \in \mathcal{P}_{\omega}(\text{Var}) \};$$

(

►
$$Q = \{(x)_F, \exists x_F, \forall x_F, | x \notin F \subsetneq Var\};$$

where for every $F \in \mathcal{P}_{\omega}(Var)$, \mathbb{A}_F is a complete Boolean algebra

such that $(x)_F$ is an order embedding and the following hold:

Logical connectives and types

- ► Types will be named after the elements $F \in \wp_{\omega}(Var)$.
- A type \mathcal{L}_F contains a formula A iff $FV(\varphi) = F$.

$$\blacktriangleright A \in \mathcal{L}_{F \cup \{y\}} \iff \forall y A \in \mathcal{L}_F$$

$$\blacktriangleright A \in \mathcal{L}_{F \setminus \{x\}} \iff (x)A \in \mathcal{L}_F$$

Symbols for quantifiers and cylindrification for each $x \in Var$:

Structural symbols	Q_x		((x))	
Operational symbols	$\exists x$	$\forall x$	(<i>x</i>)	(<i>x</i>)

Display Calculus

Introduction rules for quantifiers and their adjoint:

$$\exists_{L} \frac{Q_{x}A \vdash FX}{\exists xA \vdash FX} \quad \frac{X \vdash FA}{QxX \vdash F \setminus \{x\}} \exists xA} \exists_{R}$$
$$\forall_{L} \frac{A \vdash FX}{\forall xA \vdash F \setminus \{x\}} QxA \quad \frac{X \vdash FQ_{x}A}{X \vdash F \forall xA} \forall_{R}$$
$$\circ_{M} \frac{X \vdash F \setminus \{x\}Y}{((x))X \vdash F \cup \{x\}((x))Y}$$
$$\cdot_{L} \frac{((x))A \vdash FX}{(x)A \vdash FX} \quad \frac{X \vdash F((x))A}{X \vdash F(x)A} \cdot_{R}$$

Display Calculus

Display postulates for quantifiers and cylindrification:

$$-\frac{\mathsf{Q}_{x}X \vdash_{F \setminus \{x\}}Y}{X \vdash_{F \cup \{x\}}((x))Y} \quad \frac{Y \vdash_{F \setminus \{x\}}\mathsf{Q}_{x}X}{((x))Y \vdash_{F \cup \{x\}}X}$$

Further adjunction rules:

$$\frac{((x))\mathsf{Q}_xX\vdash_FY}{X\vdash_FY} \quad \frac{X\vdash_F((x))\mathsf{Q}_xY}{X\vdash_FY}$$

Interaction rules:

$$\frac{((x))X;((x))Y \vdash Z}{((x))(X;Y) \vdash Z} \qquad \frac{Z \vdash ((x))X;((x))Y}{Z \vdash ((x))(X;Y)}$$
$$\frac{((x))Q_{y}X \vdash Y}{\overline{Q_{y}((x))X \vdash Y}} \qquad \frac{Y \vdash ((x))Q_{y}X}{\overline{Y \vdash Q_{y}((x))X}}$$

Completeness (Canonical model)

If Σ is consistent then it has a model.

 Σ can be extended to a set Σ' such that

- \triangleright Σ' is a maximal consistent theory (an ultrafilter)
- If $\exists x A \in \Sigma'$ then $A(t) \in \Sigma'$ for some term t

Define $t \equiv s$ if and only if $t = s \in \Sigma'$:

• Let
$$D = \text{Trm} / \equiv$$

• Let
$$R^{D}(\overline{t})$$
 iff $R(\overline{t}) \in \Sigma'$

• Let
$$M = (D, R^D, f^D, c^D)$$

Then $M \models A$ if and only if $A \in \Sigma'$.

Witnesses

Problem $\{\exists x P(x), \neg P(t_1), \ldots, \neg P(t_n), \ldots\}.$

Solution(s)

- Add infinite constants in the language, and construct the ultrafilter by "carefully" using the constants for witnesses.
- Rename the variables in your set so that you have enough (infinite) variables unused.

Algebraic predicate semantics

A heterogeneous \mathcal{L} -algebra is a tuple $\mathbb{H} = (\mathcal{A}, Q)$ where for every $F \in \mathcal{P}_{\omega}(\text{Var}), \mathbb{A}_F$ is a complete Heyting algebra/ distributive lattice/DLE/LE/etc. . .

such that $(x)_F$ is an order embedding and a Heyting algebra/distributive lattice/etc... homomorphism and the following hold:

$$(x)(y)(a) = (y)(x)(a)$$
$$(x)\forall y(a) = \forall y(x)(a)$$
$$(x)\exists y(a) = \exists y(x)(a)$$

Completeness revisited

Classical completeness

If Σ is consistent then it is satisfiable.

Completeness in weaker logics

- If Σ is consistent then it is satisfiable
- If Δ is not provable then it is falsifiable
- If Σ does not imply Δ then there is a model that satisfies Σ and falsifies Δ.

Filter-ideal pairs

- DL: Every disjoint filter ideal pair can be extended to a prime filter-ideal pair.
- Lattices: Every disjoint filter ideal pair can be extended to a maximal one.

A case in point: Intuitionistic logic

- We let M := (W, ≤), where each element of W is a classical first-order model
- $u \le w$ implies that $f: D_w \to D_u$ is a homomorphism of models.
- ▶ $w \models \exists x A(x)$ if and only if there is some $d \in D_w$, $w \models A(d)$
- ▶ $w \models \forall xA(x)$ if and only if for all $w \in W$ such that $u \le w$ and for all $d \in D_u$, $u \models A(d)$.

Categorically

A model is a functor from a poset W to the category of f.o. models and homomorphisms. The meaning of a formula (with one free variable) is a subobject of the model in this category of functors.

Canonical model: A story in multi-type

- A is the algebra of the logic excluding infinite free variables
- \mathcal{F} is a prime filter of \mathbb{A}
- If $\exists x A \in \mathcal{F}$ then $A(t) \in \mathcal{F}$ for some term t

Define $t \equiv s$ if and only if $t = s \in \mathcal{F}$:

- Let $D = \text{Trm} / \equiv$
- Let $R^D(\overline{t})$ iff $R(\overline{t}) \in \Sigma'$
- Let $M_{\mathcal{F}} = (D, R^D, f^D, c^D)$

Define $M = (W, \leq)$

- $W = \{M_{\mathcal{F}} \mid \mathcal{F} \text{ is a prime filter of some } \mathbb{A}\}$
- $M_{\mathcal{F}} \leq M_{\mathcal{G}}$ if and only if $\mathcal{G} \subseteq \mathcal{F}$

A curiosity?

 $(x)(A \rightarrow B) = (x)A \rightarrow (x)B$ if and only if $(\exists xA(x)) \land B = \exists x(A(x) \land B)$

 $(x)(A \setminus B) = (x)A \setminus (x)B$ if and only if $\forall x(A(x) \lor B) = (\forall xA(x)) \lor B$

Witnesses, counterexamples and completeness

Question

Why witnesses and not counterexamples? Why not require that if $\forall xA(x)$ is falsified then A(t) is falsified for some *t*?

Lemma

- Assume that (∃*x*A(*x*)) ∧ B = ∃*x*(A(*x*) ∧ B) and let (F, I) be a disjoint filter-ideal pair. Then (F, I) can be expanded to a filter ideal pair (F, I) such that for all ∃*x*A(*x*) ∉ I there exists some A(*x_n*) ∉ I for some n.
- 2. Assume that $\forall x(A(x) \lor B) = (\forall xA(x)) \lor B$ and let (F, I) be a disjoint filter-ideal pair. Then (F, I) can be expanded to a filter ideal pair (\mathcal{F}, I) such that for all $\forall xA(x) \notin \mathcal{F}$ there exists some $A(x_n) \notin \mathcal{F}$ for some *n*.

Co-intuitionistic logic: Local counterexamples

- We let M := (W, ≤), where each element of W is a classical first-order model
- $u \le w$ implies that $R \subseteq D_u \times D_w$ is a co-homomorphic relation and $R^{-1}D_w = D_u$
- u ⊨ ∃xA(x) if and only if there is some w such that u ≤ w and some d ∈ D_w, w ⊨ A(d)
- $w \models \forall x A(x)$ if and only if for all $d \in D_w$, $w \models A(d)$.

Categorically

A model is a functor from a poset W to the category of f.o. models and co-homomorphic relations. The meaning of a formula (with one free variable) is a subobject of the model in this category of functors. Canonical model: A story in multi-type part 2

- \blacktriangleright \mathbbm{A} is the algebra of the logic excluding infinite free variables
- I is a prime ideal of A
- If $\forall x A \in \mathcal{I}$ then $A(t) \in \mathcal{I}$ for some term t

Define $t \equiv s$ if and only if $t = s \notin I$:

- Let $D = \text{Trm} / \equiv$
- Let $R^{D}(\overline{t})$ iff $R(\overline{t}) \notin I$
- Let $M_I = (D, R^D, f^D, c^D)$

Define $M = (W, \leq)$

- $W = \{M_I \mid I \text{ is a prime ideal of some } \mathbb{A}\}$
- $M_I \leq M_{\mathcal{J}}$ if and only if $I \subseteq \mathcal{J}$

Distributive lattices

- We let M := (W, ≤₁, ≤₂), where each element of W is a classical first-order model
- $u \leq_1 w$ implies that $f : D_w \to D_u$ is a homomorphism of models.
- ▶ $u \leq_2 w$ implies that $R \subseteq D_u \times D_w$ is a co-homomorphic relation.
- ▶ $u \models \exists x A(x)$ if and only if there is some *w* such that $u \leq_2 w$ and some $d \in D_w$, $w \models A(d)$
- ▶ $w \models \forall xA(x)$ if and only if for all $w \in W$ such that $u \leq_1 w$ and for all $d \in D_u$, $u \models A(d)$.

Question

Are two separate relations needed?

Non-distributive logic

- No prime filters/ideals
- Logic as given should not "locally" provide witnesses and counterexamples

Witnesses and counterexamples

Let *F* be a filter of an lattice and *I* an ideal of \mathbb{A} , the lattice of the first-order logic excluding infinite free variables.

- 1. If $\exists x A(x) \notin I$ then *I* can be expanded to an ideal *I'* such that $A(x_n) \notin I'$
- 2. If $\forall xA(x) \notin F$ then *F* can be expanded to an ideal *F*' such that $A(x_n) \notin I'$

Non-distributive semantics

Let $\mathbb{P} = (\mathcal{M}, C, \mathcal{N}, S)$, where \mathcal{M} is a set of first-order \mathcal{L} -models, the *models*, C is a set of first-order \mathcal{L} -models, the *countermodels*, $\mathcal{N} \subseteq \mathcal{M} \times C$ and $S : \bigcup \mathcal{M} \times \bigcup C$ is a similarity relation between points of models and countermodels. Subobjects:

• Let
$$X : \mathcal{M} \to \wp(\bigcup \mathcal{M}^n)$$
 and $Y : \mathcal{C} \to \wp(\bigcup \mathcal{C}^n)$

►
$$X(M) \subseteq M^n$$
 and $X(C) \subseteq C^n$
 $X^{\uparrow}(C) = \{\overline{b} \in C^n \mid \forall M \in \mathcal{M} \forall \overline{a} \in M^n ((\overline{a}S \, \overline{b} \& \overline{a} \in X(M)) \Rightarrow M\mathcal{N}C)\}$
 $Y^{\downarrow}(M) = \{\overline{a} \in M^n \mid \forall C \in C \forall \overline{b} \in C^n ((\overline{a}S \, \overline{b} \& \overline{b} \in Y(C)) \Rightarrow M\mathcal{N}C)\}.$

- $(\cdot)^{\uparrow}$ and $(\cdot)^{\downarrow}$ form a Galois connection.
- A subojbect is a Galois-closed pair.

Interpretation:

 $M \Vdash \forall xA(\overline{a}) \quad \text{iff for all } C \in C, \overline{a}S\overline{b} \text{ and } b \in C(C \succ A(b,\overline{b}) \Rightarrow MNC)$ $M \succ \exists xA(\overline{b}) \quad \text{iff for all } M \in \mathcal{M}, \overline{a}S\overline{b} \text{ and } a \in M(M \Vdash A(a,\overline{a}) \Rightarrow MNC)$

Canonical model: A story of algebra and co-algebra

- A is the algebra of the logic excluding infinite free variables
- $\blacktriangleright \mathcal{F}$ is a filter \mathbb{A}
- I is an ideal \mathbb{A}

Define $t \equiv s$ if and only if $t = s \in \mathcal{F}$:

- Let $D = \text{Trm} / \equiv$
- Let $R^{D}(\overline{t})$ iff $R(\overline{t}) \in \mathcal{F}$

• Let
$$M_{\mathcal{F}} = (D, R^D, f^D, c^D)$$

Define $\neg t \equiv s$ if and only if $A(t) \in \mathcal{I}$ while $A(s) \notin \mathcal{I}$:

• Let
$$D_{\mathcal{F}} = \text{Trm} / \equiv$$

- Let $R^{D}(\overline{t})$ iff $R(\overline{t}) \notin I$
- Let $C_I = (D, R^D, f^D, c^D)$

Define $\mathbb{P} = (\mathcal{M}, \mathcal{C}, \mathcal{N}, S)$

- $M_{\mathcal{F}} \mathcal{N} C_I$ if and only if $M_{\mathcal{F}} \cap C_I \neq \emptyset$
- aSb if and only if $[a] \cap [b] \neq \emptyset$

Final thoughts

- Define (reasonable?) algebraic semantics for predicate logics encompassing already well-studied logics.
- Designe modular and general proof-systems for predicate logics.
- Provide understanding for semantics for non-classical logics.
- What is the categorical framework for non-distributive predicate logics?