Algebraic proof theory for LE-logics

Apostolos Tzimoulis
joint work with: G. Greco, P. Jipsen, F. Liang, A. Palmigiano

TACL Nice, 20 June 2019

Starting point

N. Galatos, \& P. Jipsen. (2013). "Residuated frames with applications to decidability". Transactions of the American
Mathematical Society , 365 (3), 1219-1249.

- algebras: to present frames for arbitrary residuated lattices,
- proof theory: cut elimination, FMP, FEP,
- restricted to the signatures: $\cdot, \, /$.

Starting point

N. Galatos, \& P. Jipsen. (2013). "Residuated frames with applications to decidability". Transactions of the American
Mathematical Society , 365 (3), 1219-1249.

- algebras: to present frames for arbitrary residuated lattices,
- proof theory: cut elimination, FMP, FEP,
- restricted to the signatures: $\cdot, \backslash, /$.

Aim: generalize this approach to the lattices with normal expansions.

LE-logics

The logics algebraically captured by varieties of normal lattice expansions.

$$
\phi::=p|\perp| \top|\phi \wedge \phi| \phi \vee \phi|f(\bar{\phi})| g(\bar{\phi})
$$

where $p \in \operatorname{AtProp}, f \in \mathcal{F}, g \in \mathcal{G}$.

Normality

- Every $f \in \mathcal{F}$ is finitely join-preserving in positive coordinates and finitely meet-reversing in negative coordinates.
- Every $g \in \mathcal{G}$ is finitely meet-preserving in positive coordinates and finitely join-reversing in negative coordinates.

Examples: substructural, Lambek, Lambek-Grishin, Orthologic...

LE-frames

Definition

An \mathcal{L}-frame is a tuple $\mathbb{F}=\left(\mathbb{W}, \mathcal{R}_{\mathcal{F}}, \mathcal{R}_{\mathcal{G}}\right)$ such that $\mathbb{W}=(W, U, N)$ is a polarity, $\mathcal{R}_{\mathcal{F}}=\left\{R_{f} \mid f \in \mathcal{F}\right\}$, and $\mathcal{R}_{\mathcal{G}}=\left\{R_{g} \mid g \in \mathcal{G}\right\}$ such that for each $f \in \mathcal{F}$ and $g \in \mathcal{G}$, the symbols R_{f} and R_{g} respectively denote $\left(n_{f}+1\right)$-ary and $\left(n_{g}+1\right)$-ary relations on \mathbb{W},

$$
\begin{equation*}
R_{f} \subseteq U \times W^{\epsilon_{f}} \text { and } R_{g} \subseteq W \times U^{\epsilon_{g}} \tag{1}
\end{equation*}
$$

In addition, we assume that the following sets are Galois-stable (from now on abbreviated as stable) for all $w_{0} \in W, u_{0} \in U$, $\bar{w} \in W^{\epsilon_{f}}$, and $\bar{u} \in U^{\epsilon_{g}}$:

$$
\begin{align*}
& R_{f}^{(0)}[\bar{w}] \text { and } R_{f}^{(i)}\left[u_{0}, \bar{w}^{i}\right] \tag{2}\\
& R_{g}^{(0)}[\bar{u}] \text { and } R_{g}^{(i)}\left[w_{0}, \bar{u}^{i}\right] \tag{3}
\end{align*}
$$

Complex Algebras

The complex algebra of an LE-frame \mathbb{F} is the algebra

$$
\mathbb{F}^{+}=\left(\mathbb{L},\left\{f_{R_{f}} \mid f \in \mathcal{F}\right\},\left\{g_{R_{g}} \mid g \in \mathcal{G}\right\}\right),
$$

where $\mathbb{L}:=\left(\gamma_{N}[\mathcal{P}(W)], \vee, \wedge, \top, \perp\right)$ is the lattice associated with the polarity \mathbb{W}, and for all $f \in \mathcal{F}$ and all $g \in \mathcal{G}$,

1. $f_{R_{f}}: \mathbb{L}^{n_{f}} \rightarrow \mathbb{L}$ is defined by the assignment $f_{R_{f}}(\bar{X})=\left(R_{f}^{(0)}\left[\bar{X}^{\epsilon_{f}}\right]\right)^{\downarrow}$
2. $g_{R_{g}}: \mathbb{L}^{n_{g}} \rightarrow \mathbb{L}$ is defined by the assignment $g_{R_{g}}(\bar{X})=R_{g}^{(0)}\left[\bar{X}^{\epsilon_{g}^{g}}\right]$

Theorem

If \mathbb{F} is an $L E$-frame, then \mathbb{F}^{+}is an $L E$-algebra.

Display Calculi

- Natural generalization of Gentzen's sequent calculi;
- sequents $X \vdash Y$, where X and Y are structures:
- formulas are atomic structures
- built-up: structural connectives (generalizing meta-linguistic comma in sequents $\left.\phi_{1}, \ldots, \phi_{n} \vdash \psi_{1}, \ldots, \psi_{m}\right)$
- generation trees (generalizing sets, multisets, sequences)
- Display property:

$$
\frac{\frac{Y \vdash X>Z}{X ; Y \vdash Z}}{\frac{Y ; X \vdash Z}{X \vdash Y>Z}}
$$

display rules semantically justified by adjunction/residuation

- Canonical proof of cut elimination (via metatheorem)

The language of display calculus for LE-algebras

- Formulae

$$
A::=p|\perp| \top|A \wedge A| A \vee A|f(\bar{A})| g(\bar{A})
$$

- Structures

$$
\left\{\begin{array}{l}
X_{f}::=A \mid \mathrm{F} \bar{X} \\
X_{g}::=A \mid \mathrm{G} \bar{X}
\end{array}\right.
$$

Rules for the basic logic

$$
\begin{array}{ccc}
p \vdash p \quad \perp \vdash X \quad X \vdash \mathrm{~T} & \frac{X \vdash A}{} \quad X \vdash Y(\mathrm{Cut}) \\
\frac{A_{1} \vdash X}{A_{1} \wedge A_{2} \vdash X} & \frac{A_{2} \vdash X}{A_{1} \wedge A_{2} \vdash X} & \frac{X \vdash A_{1}}{X \vdash A_{1} \vee A_{2}} \quad \frac{X \vdash A_{2}}{X \vdash A_{1} \vee A_{2}} \\
\frac{X \vdash A_{1} \quad X \vdash A_{2}}{X \vdash A_{1} \wedge A_{2}} & \frac{A_{1} \vdash X \quad A_{2} \vdash X}{A_{1} \vee A_{2} \vdash X}
\end{array}
$$

Introduction rules for $f \in \mathcal{F}$ and $g \in \mathcal{G}$

$$
\begin{aligned}
& f_{L} \frac{F\left(A_{1}, \ldots, A_{n_{f}}\right) \vdash X}{f\left(A_{1}, \ldots, A_{n_{f}}\right) \vdash X} \quad \frac{X \vdash G\left(A_{1}, \ldots, A_{n_{g}}\right)}{X \vdash g\left(A_{1}, \ldots, A_{n_{g}}\right)} g_{R} \\
& f_{R} \frac{\left(X_{i} \vdash A_{i} \quad A_{j} \vdash X_{j} \quad \mid \quad \varepsilon_{f}(i)=1 \quad \varepsilon_{f}(j)=\partial\right)}{F\left(X_{1}, \ldots, X_{n_{f}}\right) \vdash f\left(A_{1}, \ldots, A_{n_{f}}\right)} \\
& g_{L} \frac{\left(A_{i} \vdash X_{i} \quad X_{j} \vdash A_{j} \quad \mid \quad \varepsilon_{g}(i)=1 \quad \varepsilon_{g}(j)=\partial\right)}{g\left(A_{1}, \ldots, A_{n_{g}}\right) \vdash G\left(X_{1}, \ldots, X_{n_{g}}\right)}
\end{aligned}
$$

Display postulates for $f \in \mathcal{F}$ and $g \in \mathcal{G}$

- If $\varepsilon_{f}(i)=\varepsilon_{g}(h)=1$
$\xlongequal[X_{i} \vdash F_{i}^{\sharp}\left(X_{1}, \ldots, Y, \ldots, X_{n_{f}}\right)]{F\left(X_{1}, \ldots, X_{i}, \ldots, X_{n_{f}}\right) \vdash Y} \xlongequal[G_{h}^{b}\left(X_{1}, \ldots, Y, \ldots, X_{n_{g}}\right) \vdash X_{h}]{Y \vdash G\left(X_{1} \ldots, X_{h}, \ldots X_{n_{g}}\right)}$
- If $\varepsilon_{f}(i)=\varepsilon_{g}(h)=\partial$

$$
\frac{F\left(X_{1}, \ldots, X_{i}, \ldots, X_{n_{f}}\right) \vdash Y}{F_{i}^{\sharp}\left(X_{1}, \ldots, Y, \ldots, X_{n_{f}}\right) \vdash X_{i}} \xlongequal{Y \vdash G\left(X_{1}, \ldots, X_{h}, \ldots, X_{n_{g}}\right)}
$$

Which logics are properly displayable?

Complete characterization:

1. the logics of any basic normal (D)LE;
2. axiomatic extensions of these with analytic inductive inequalities: $\quad \rightsquigarrow$ unified correspondence

Fact: cut-elim., subfm. prop., sound-\&-completeness, conservativity guaranteed by metatheorem + ALBA-technology.

Analytic Rules

- An analytic rule contains only structural connectives and each structural variable appears only once in the conclusion.

$$
\begin{gathered}
\frac{X ; Y \vdash Z}{Y ; X \vdash Z} \quad \frac{W \vdash X>(Y ; Z)}{W \vdash(X>Y) ; Z} \\
\frac{X \vdash Y}{\mathrm{I} \vdash(X>Z) ;(W>Y)}
\end{gathered}
$$

Functional D-frames

Let D be a display calculus for a LE-logic \mathcal{L}. A functional D-frame is a structure $\mathbb{F}_{\mathrm{D}}:=\left(W, U, N, \mathcal{R}_{\mathcal{F}}, \mathcal{R}_{\mathcal{G}}\right)$, where

1. $W:=\operatorname{Str}_{\mathcal{F}}$ and $U:=\operatorname{Str}_{\mathcal{G}}$;
2. For every $f \in \mathcal{F}$ and $\bar{x} \in W^{\epsilon_{f}}, R_{f}(y, \bar{x})$ iff $\mathrm{F}_{f}(\bar{x}) N y$;
3. For every $g \in \mathcal{G}$ and $\bar{y} \in U^{\epsilon_{g}}, R_{g}(x, \bar{y})$ iff $x N \mathrm{G}_{g}(\bar{y})$;
4. If

$$
\frac{x_{1} \vdash y_{1}, \ldots, x_{n} \vdash y_{n}}{x \vdash y}
$$

is a rule in D (including zero-ary rules), then

$$
\frac{x_{1} N y_{1}, \ldots, x_{n} N y_{n}}{x N y}
$$

holds in \mathbb{F}_{D}.

The complex lattice of functional D-frames

Let h : AtProp $\rightarrow\left(\mathbb{F}_{D}\right)^{+}$. For every $S \in \operatorname{Str}_{\mathcal{F}}$ and $T \in \operatorname{Str}_{\mathcal{G}}$ we define $h\{S\} \subseteq W$ and $h\{T\} \subseteq U$ by simultaneous recursion as follows:

- $h\left\{\mathrm{~F}_{f}(\bar{S})\right\}:=\mathrm{F}_{f}[\overline{h\{S\}}]=\left\{\mathrm{F}_{f}(\bar{x})\right.$ for some $\left.\bar{x} \in \overline{h\{S\}}\right\} ;$
- $h\left\{\mathrm{G}_{g}(\bar{T})\right\}:=\mathrm{G}_{g}[\overline{h\{T\}}]=\left\{\mathrm{G}_{g}(\bar{y})\right.$ for some $\left.\bar{y} \in \overline{h\{T\}}\right\}$.

Theorem
For every $S \in \operatorname{Str}_{\mathcal{F}}$ and $T \in \operatorname{Str}_{\mathcal{F}}$ it holds that

$$
\gamma_{N}(h\{S\})=h(S) \quad h\{T\}^{\downarrow}=h(T) .
$$

Corollary
The following are equivalent:

1. $h(S) \subseteq h(T)$;
2. $s N t$ for every $s \in h\{S\}$ and $t \in h\{T\}$.

General Strategy for semantic cut-elimination

$\vdash_{\text {d.LE }} X \vdash Y$

$\vdash_{\text {cfD.LE }} X \vdash Y$

General Strategy for semantic cut-elimination

$$
\vdash_{\text {D.LE }} X \vdash Y \longrightarrow \vdash_{\text {cfD.LE }} X \vdash Y
$$

General Strategy for semantic cut-elimination

$$
\begin{aligned}
& \vdash_{\text {D.LE }} X \vdash Y \longrightarrow \vdash_{\mathrm{cfD} . \mathrm{LE}} X \vdash Y \\
& \mathbb{F}_{\mathrm{cfD} . \mathrm{LE}} \uparrow X N Y
\end{aligned}
$$

General Strategy for semantic cut-elimination

General Strategy for semantic cut-elimination

General Strategy for semantic cut-elimination

An application: finite model property

Can we use functional D-frames to obtain finite model property?

An application: finite model property

Can we use functional D-frames to obtain finite model property?

- Let $(X \vdash Y)^{\leftarrow}$ be the set of all sequents involved in an exhaustive proof search for $X \vdash Y$.

An application: finite model property

Can we use functional D-frames to obtain finite model property?

- Let $(X \vdash Y)^{\leftarrow}$ be the set of all sequents involved in an exhaustive proof search for $X \vdash Y$.
- for any $S \in W$ and $T \in U$,

$$
S N_{s} T \quad \text { iff } \quad \vdash_{D} S \vdash T \text { or } S \vdash T \notin(X \vdash Y)^{\leftarrow} ;
$$

An application: finite model property

Can we use functional D-frames to obtain finite model property?

- Let $(X \vdash Y)^{\leftarrow}$ be the set of all sequents involved in an exhaustive proof search for $X \vdash Y$.
- for any $S \in W$ and $T \in U$,

$$
S N_{s} T \quad \text { iff } \quad \vdash_{D} S \vdash T \text { or } S \vdash T \notin(X \vdash Y)^{\leftarrow} ;
$$

- If $(X \vdash Y)^{\leftarrow}$ is finite or there are finite structures up to provable equivalence, the corresponding lattice is finite.

Conclusions

- Provided proof-theoretic semantics for a wide class of logics
- Obtained semantic proof of cut-elimination
- Some results in finite model property
- More to come in FMP, FEP, decidability....

Thank you for your attention!

