Proof theory and semantics for structural control

Giuseppe Greco
- University of Utrecht -
(work in progress with M. Moortgat, A. Tzimoulis)

20 July

- TACL 2019 -

Overview

1. Typelogical grammars
2. The need of structural reasoning
3. Main problem: dealing with exceptions
4. The multi-type approach comes in handy
5. The broad picture

Typelogical grammars

[Moot \& Retoré]: book, [Moortgat 10]: Stanford Encyclopedia of Philosophy Goal: develop a compositional and modular account of grammatical form and meaning in natural languages:
formal grammar is presented as a logic.
The basic judgement

$$
x_{1}: A_{1}, \ldots, x_{n}: A_{n} \vdash x: A
$$

reads: the (structured configuration of) linguistic expressions x_{1} of type A_{1}, \ldots, x_{n} of type A_{n} can be categorized as a well-formed expression x of type A.

Typelogical grammars

[Moot \& Retoré]: book, [Moortgat 10]: Stanford Encyclopedia of Philosophy
Goal: develop a compositional and modular account of grammatical form and meaning in natural languages:
formal grammar is presented as a logic.
The basic judgement

$$
x_{1}: A_{1}, \ldots, x_{n}: A_{n} \vdash x: A
$$

reads: the (structured configuration of) linguistic expressions x_{1} of type A_{1}, \ldots, x_{n} of type A_{n} can be categorized as a well-formed expression x of type A.

- Form: residuated families of type-forming operations (logical level) + different means to control the grammatical resource management (structural level);
- Meaning: standard computational (via Curry-Howard), algebraic, relational, and categorial semantics.

Parsing as deduction

[Ajdukiewicz 35, Bar-Hillel 64]: AB-grammars, [Lambek 58]: string of words, [Lambek 61]: bracketed strings (phrases)

- Parts of speech (noun, verb...) $\leadsto \rightsquigarrow$ logical formulas - types.
- Grammaticality judgement $\leadsto \leadsto$ logical deduction - computation.

Parsing as deduction

[Ajdukiewicz 35, Bar-Hillel 64]: AB-grammars, [Lambek 58]: string of words, [Lambek 61]: bracketed strings (phrases)

- Parts of speech (noun, verb...) $\leadsto \rightsquigarrow$ logical formulas - types.
- Grammaticality judgement $\leadsto \leadsto$ logical deduction - computation.

$$
\begin{aligned}
& n p \cdot(n p \backslash s) \cdot(((n p \backslash s) \backslash(n p \backslash s)) / n p) \cdot(n p / n) \cdot n+s \\
& \text { time flies like an arrow }
\end{aligned}
$$

Parsing as deduction

[Ajdukiewicz 35, Bar-Hillel 64]: AB-grammars, [Lambek 58]: string of words, [Lambek 61]: bracketed strings (phrases)

- Parts of speech (noun, verb...) $\leadsto \rightarrow$ logical formulas - types.
- Grammaticality judgement $\leadsto \leadsto$ logical deduction - computation.

$$
\begin{aligned}
& n p \cdot(n p \backslash s) \cdot(((n p \backslash s) \backslash(n p \backslash s)) / n p) \cdot(n p / n) \cdot n+s \\
& \text { time flies like an arrow }
\end{aligned}
$$

Lexicon

- transitive verb 'love': $(n p \backslash s) / n p$
- kids • (love • games)
- conjunction words 'and/but': chameleon word $(X \backslash X) / X$
- $X=s$: (kids like sweets) ${ }_{s}$ but (parents prefer liquor) ${ }_{s}$
- $X=n p \backslash s$: kids (like sweets) ${ }_{n p \backslash s}$ but (hate vegetables) ${ }_{n p \backslash s}$
- relative pronoun 'that': $(n \backslash n) /(s / n p)$, i.e. it looks for a noun n to its left and an incomplete sentence to its right ($s / n p$: it misses a $n p$, the gap at the right)

Associativity

Mixed Commutativity

Associativity \times

Licensing rules in a controlled form - $1 / 2$

[Moortgat 96, Kurtonina \& Moortgat 97], [Morrill 17]

Licensing rules in a controlled form - $2 / 2$

Blocking rules in a controlled form

$$
\begin{aligned}
& \underline{[ぃ \vdash \diamond \square n p]^{3} \quad \overline{(\text { kids } \cdot \text { love }) \cdot\langle ь\rangle \vdash s} c A} \\
& \frac{(\text { kids } \cdot \text { love }) \cdot _\vdash s}{\text { kids • love } \vdash s / \diamond \square n p} / I^{3} \diamond E^{4} \\
& \begin{array}{cc}
\frac{\text { but }}{((s / \diamond \square n p) \backslash \square(s / n p)) /(s / \diamond \square n p)} & \text { • } \\
\hline \text { but • (parents } \cdot \text { hate }) \vdash(s / \diamond \square n p) \backslash \square(s / n p)
\end{array} \\
& \frac{(\text { kids • love }) \cdot(\text { but • (parents • hate })) \vdash \square(s / n p)}{\langle(\text { kids • love }) \cdot(\text { but • (parents • hate }))\rangle \vdash s / n p} \square E \\
& \overline{\langle(\text { kids } \cdot \text { love }) \cdot(\text { but } \cdot(\text { parents } \cdot \text { hate }))\rangle \cdot \text { super_mario } \vdash s} / E
\end{aligned}
$$

Starting point: display calculi

- Natural generalization of Gentzen's sequent calculi;
- sequents $X \vdash Y$, where X and Y are structures:
- formulas are atomic structures
- built-up: structural connectives (generalizing meta-linguistic comma in sequents $A_{1}, \ldots, A_{n} \vdash B_{1}, \ldots, B_{m}$)
- generation trees (generalizing sets, multisets, sequences)
- Display property:

$$
\frac{\frac{Y+X \check{Y} Z}{X \hat{\otimes} Y+Z}}{\frac{Y \hat{\otimes} X+Z}{X+Y \check{Y} Z}} \quad \frac{X+\check{\sim} Y}{Y+\approx X}
$$

display rules semantically justified by adjunction/residuation

- Canonical proof of cut elimination (via metatheorem)

Proper display calculi

[Wansing 98]: proper, [Belnap 82, 89]: display logic, [Mints 72, Dunn 73, 75]: structural connectives

Definition

A proper DC verifies each of the following conditions:

1. structures can disappear, formulas are forever;
2. tree-traceable formula-occurrences, via suitably defined congruence relation (same shape, position, non-proliferation);
3. principal = displayed
4. rules are closed under uniform substitution of congruent parameters (Properness!);
5. reduction strategy exists when cut formulas are principal.

Theorem (Canonical!)

Cut elim. and subformula property hold for any proper DC.

Which logics are properly displayable?

[Ciabattoni et al. 15, Greco et al. 16]
Complete characterization:

1. the logics of any basic normal (D)LE;
2. axiomatic extensions of these with analytic inductive inequalities: $\quad \rightsquigarrow$ unified correspondence

Fact: cut-elim., subfm. prop., sound-\&-completeness, conservativity guaranteed by metatheorem + ALBA-technology.

Examples

The definition of analytic inductive inequalities is uniform in each signature.

- Analytic inductive axioms

$$
\begin{aligned}
& (A \rightarrow(B \vee C)) \rightarrow((A \rightarrow B) \vee C) \\
& (\diamond A \rightarrow \square B) \rightarrow \square(A \rightarrow B)
\end{aligned}
$$

- Sahlqvist but non-analytic axioms

$$
A \rightarrow \diamond \square A
$$

$$
(\square A \rightarrow \diamond B) \rightarrow(A \rightarrow B)
$$

The excluded middle is derivable using Grishin's rule:

$$
\begin{aligned}
& \top \vdash \neg A \vee A
\end{aligned}
$$

For many... but not for all.

- The characterization theorem sets hard boundaries to the scope of proper display calculi.
- Interesting logics are left out:
- First order logic
- Non normal modal logics
- Conditional logics
- Dynamic epistemic logic
- Inquisitive logic
- Semi De Morgan logic
- Bi-lattice logic
- Rough algebras
- ...

Can we extend the scope of proper display calculi?
Yes: proper display calculi $\leadsto \rightarrow$ proper multi-type calculi
(read: multi-sorted calculi)

Multi-type ($n \rightarrow$ multi-sorted) proper display calculi

 [Greco et al. 14...]
Definition

A proper mDC verifies each of the following conditions:

1. structures can disappear, formulas are forever;
2. tree-traceable formula-occurrences, via suitably defined congruence relation (same shape, position, non-proliferation)
3. principal = displayed
4. rules are closed under uniform substitution of congruent parameters within each type (Properness!);
5. reduction strategy exists when cut formulas are principal.
6. type-uniformity of derivable sequents;
7. strongly uniform cuts in each/some type(s).

Theorem (Canonical!)

Cut elim. and subformula property hold for any proper mDC.

Language expansion: structural control operators $1 / 2$

- Display rules (adjunction)

$$
\operatorname{adj} \frac{X+\text { г̌ } Y}{\hat{\delta} X+Y}
$$

- Logical rules (arity and tonicity)

$$
\begin{aligned}
& \diamond_{L} \frac{\hat{\diamond A} A+X}{\diamond A+X} \quad \frac{X+A}{\hat{\diamond} X+\diamond A} \diamond_{R}
\end{aligned}
$$

Language expansion: structural control operators $2 / 2$

- Display rules (adjunction)

$$
\operatorname{adj} \frac{X \vdash \check{\operatorname{ren}} \Gamma}{\hat{\delta} X \vdash \Gamma}
$$

- Logical rules (arity and tonicity)

$$
\begin{aligned}
& \diamond_{L} \frac{\hat{\delta} \alpha+X}{\diamond \alpha+X} \quad \frac{\Gamma \vdash \alpha}{\hat{\delta} \Gamma+\diamond \alpha} \diamond_{R}
\end{aligned}
$$

Axiomatic extensions via analytic structural rules - 1/2

- Structural rules

$$
A \frac{X \hat{\otimes}(Y \hat{\otimes} Z)+W}{(X \hat{\otimes} Y) \hat{\otimes} Z+W} \quad M C \frac{(X \hat{\otimes} Z) \hat{\otimes} Y+W}{(X \hat{\otimes} Y) \hat{\otimes} Z+W}
$$

- Controlled structural rules

$$
c A \frac{X \hat{\otimes}(Y \hat{\otimes} \hat{\delta} Z)+W}{(X \hat{\otimes} Y) \hat{\otimes} \hat{\delta} Z+W} \quad c M c \frac{(X \hat{\otimes} \hat{\delta} Z) \hat{\otimes} Y+W}{(X \hat{\otimes} Y) \hat{\otimes} \hat{\delta} Z+W}
$$

Axiomatic extensions via analytic structural rules - 2/2

- Structural rules

$$
A \frac{X \hat{\otimes}(Y \hat{\otimes} Z)+W}{(X \hat{\otimes} Y) \hat{\otimes} Z+W} \quad M C \frac{(X \hat{\otimes} Z) \hat{\otimes} Y+W}{(X \hat{\otimes} Y) \hat{\otimes} Z+W}
$$

- Controlled structural rules

$$
c A \frac{X \hat{\otimes}(Y \hat{\otimes} \hat{\delta} \Gamma)+W}{(X \hat{\otimes} Y) \hat{\otimes} \hat{\delta} \Gamma+W} \quad c M c \frac{(X \hat{\otimes} \hat{\delta} \Gamma) \hat{\otimes} Y+W}{(X \hat{\otimes} Y) \hat{\otimes} \hat{\delta} \Gamma+W}
$$

Licensing rules: the case of Linear Logic

[Belnap 92]: not a proper display calculus:

$$
\begin{array}{ll}
\frac{A+X}{!A+X} & \frac{Y+A}{Y+!A} \\
\frac{A+Z}{? A+Z} & \frac{X+A}{X+? A}
\end{array}
$$

Y and Z not arbitrary but exponentially restricted.

$$
\begin{aligned}
& !!A \dashv \vdash A \\
& !A \vdash A \\
& A \vdash B \text { implies }!A \vdash!B \\
& !T \dashv 1 \\
& !(A \& B) \nvdash!A \otimes!B \quad \text { analytic? }
\end{aligned}
$$

Linear logic: algebraic analysis

$$
\begin{array}{ll}
!!a=!a & !\top=1 \\
!a \leq a & !(a \& b)=!a \otimes!b \\
a \leq b \text { implies }!a \leq!b &
\end{array}
$$

$!: \mathbb{L} \rightarrow \mathbb{L}$ interior operator. Then ! $=\diamond \llbracket$, where

Fact: Range(!) ::= $\mathbb{K}!$ has natural BA/HA-structure.
Upshot: natural semantics for the following multi-type language:

$$
\begin{aligned}
\text { Kernel } \ni \alpha::= & \boxed{\text { Linear }} \ni \mathrm{A}: \mathrm{t}|\mathrm{f}| \alpha \vee \alpha|\alpha \wedge \alpha| \alpha \rightarrow \alpha \\
& \mathrm{p}|\diamond \alpha| 1|\perp| A \otimes A|A \ngtr A| A \multimap A \mid \\
& \mathrm{\top}|0| A \& A \mid A \oplus A
\end{aligned}
$$

Reverse-engineering linear logic

Problem: the following axioms are non-analytic.

$$
\begin{array}{lll}
!\top \dashv 1 & \leadsto & \diamond \square \top \dashv 1 \\
!(A \& B) \dashv!A \otimes!B & \leadsto & \diamond \square(A \& B) \sharp \diamond \square A \otimes \diamond \square B
\end{array}
$$

Solution: ■ surjective and finitely meet-preserving \Rightarrow axioms above semantically equivalent to the following analytic identities:

$$
\diamond t=1 \quad \diamond(\alpha \wedge \beta)=\diamond \alpha \otimes \diamond \beta
$$

corresponding to the following analytic rules:

$$
\text { co-nec } \frac{\hat{\delta} \hat{t}+X}{\hat{1}+X} \frac{\hat{\diamond} \Gamma \hat{\otimes} \hat{\diamond} \Delta \vdash X}{\hat{\delta}(\Gamma \hat{\wedge} \Delta)+X} \text { (co-)reg }
$$

Deriving ! $(A \& B) \vdash!A \otimes!B$

$$
\begin{aligned}
& \begin{array}{c}
\hat{\diamond}(A \& B) \hat{\otimes} \hat{\diamond}(A \& B)+\diamond \square A \otimes \diamond \square B \\
\hat{\delta}(\square(A \& B) \hat{\wedge}(A \& B))+\diamond \square A \otimes \diamond \square B
\end{array} \\
& \square(A \& B) \hat{\wedge} \square(A \& B) \vdash \check{\text { ■ }}(\diamond \square A \otimes \diamond \square B) \\
& ■(A \& B) \vdash \text { と }(\diamond \square A \otimes \diamond \square B) \\
& \frac{\hat{\diamond ■(A \& B) \vdash \diamond ■ A \otimes \diamond ■ B}}{\frac{\diamond \square(A \& B)+\diamond \square A \otimes \diamond \square B}{!(A \& B) \vdash!A \otimes!B}}
\end{aligned}
$$

General strategy

- Define a multi-modal logic where linguistic composition is relativized to specific resource management modes via a language expansion.
- The extra expressivity is obtained in a controlled fashion via the addition of interaction postulates.
- It can be used to licence or to block the access to different regimes of resource management.

General strategy

- Define a multi-modal logic where linguistic composition is relativized to specific resource management modes via a language expansion.
- The extra expressivity is obtained in a controlled fashion via the addition of interaction postulates.
- It can be used to licence or to block the access to different regimes of resource management.

Ingredients:

- the sort of general elements that inhabit the more restrictive regime;
- the sorts of special elements that witness the licence of a more liberal regime;
- the sort(s) of blocking elements that provide the room to block structural transformations.

Heterogeneous structural control algebras

For each $i \in I, \mathbb{H}:=\left(\mathbb{G}, \mathbb{L}_{i}, \mathbb{R}_{i}, \mathbb{B}\right)$ is a structure such that

- $\mathbb{G}:=\left(G, \leq_{G}, \mathcal{F}, \mathcal{G}\right)$ is closed under adjoints/residuals;

Heterogeneous structural control algebras

For each $i \in I, \mathbb{H}:=\left(\mathbb{G}, \mathbb{L}_{i}, \mathbb{R}_{i}, \mathbb{B}\right)$ is a structure such that

- $\mathbb{G}:=\left(G, \leq_{G}, \mathcal{F}, \mathcal{G}\right)$ is closed under adjoints/residuals;
- $\left(L_{i}, \leq_{L_{i}}\right)$ and $\left(R_{i}, \leq_{R_{i}}\right)$ are partial orders

Heterogeneous structural control algebras

For each $i \in I, \mathbb{H}:=\left(\mathbb{G}, \mathbb{L}_{i}, \mathbb{R}_{i}, \mathbb{B}\right)$ is a structure such that

- $\mathbb{G}:=\left(G, \leq_{G}, \mathcal{F}, \mathcal{G}\right)$ is closed under adjoints/residuals;
- $\left(L_{i}, \leq_{L_{i}}\right)$ and $\left(R_{i}, \leq_{R_{i}}\right)$ are partial orders

where the composition
$\diamond_{i} \oplus_{i}$ defines an interior operator on \mathbb{G}
$\square_{i}{ }_{i}$ defines a closure operator on \mathbb{G}
$\square_{i} \diamond_{i}$ defines identity on \mathbb{L}_{i}
$\bullet_{i} \square_{i}$ defines identity on \mathbb{R}_{i}

Heterogeneous structural control algebras

For each $i \in I, \mathbb{H}:=\left(\mathbb{G}, \mathbb{L}_{i}, \mathbb{R}_{i}, \mathbb{B}\right)$ is a structure such that

- $\mathbb{G}:=\left(G, \leq_{G}, \mathcal{F}, \mathcal{G}\right)$ is closed under adjoints/residuals;
- $\left(L_{i}, \leq_{L_{i}}\right)$ and ($R_{i}, \leq_{R_{i}}$) are a partial orders;
- \mathbb{B} is an isomorphic copy of \mathbb{G}

Heterogeneous structural control algebras

For each $i \in I, \mathbb{H}:=\left(\mathbb{G}, \mathbb{L}_{i}, \mathbb{R}_{i}, \mathbb{B}\right)$ is a structure such that

- $\mathbb{G}:=\left(G, \leq_{G}, \mathcal{F}, \mathcal{G}\right)$ is closed under adjoints/residuals;
- $\left(L_{i}, \leq_{L_{i}}\right)$ and ($R_{i}, \leq_{R_{i}}$) are a partial orders;
- \mathbb{B} is an isomorphic copy of \mathbb{G}

moreover,
- for each $f \in \mathcal{F}$ (resp. $g \in \mathcal{G}$) with domain \mathbb{G}^{n}, there exists a $\operatorname{map} \mathcal{F}_{B} \ni f_{B}: \mathbb{B} \times \mathbb{G}^{n-1} \rightarrow \mathbb{G}($ resp. $g \in \mathcal{G})$,
- $\mathcal{F}_{B} \cup \mathcal{G}_{B}$ is closed under adjoints/residuals.

Beyond analiticity: towards a general theory

- Several examples of logics which are single-type not analytic but multi-type analytic.
- Patterns are emerging. Main guideline: discovering and exploiting hidden adjunctions / representation theorems.
- Can we make this practice into a uniform theory?
- What can we infer from interaction postulates?
- E.g. \mathbb{L}_{i} and \mathbb{R}_{i} can be systematically endowed with a compatible signature.
- What about the properties of the defined operations?
- What about the relation between \mathbb{L}_{i} and \mathbb{R}_{i} ?

Thank you \diamond ■

