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Overview

1. Typelogical grammars

2. The need of structural reasoning

3. Main problem: dealing with exceptions

4. The multi-type approach comes in handy

5. The broad picture
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Typelogical grammars
[Moot & Retoré]: book, [Moortgat 10]: Stanford Encyclopedia of Philosophy

Goal: develop a compositional and modular account of
grammatical form and meaning in natural languages:

formal grammar is presented as a logic.

The basic judgement

x1 : A1, . . . , xn : An ` x : A

reads: the (structured configuration of) linguistic expressions x1 of
type A1, . . . , xn of type An can be categorized as a well-formed
expression x of type A .

I Form: residuated families of type-forming operations (logical
level) + different means to control the grammatical resource
management (structural level);

I Meaning: standard computational (via Curry-Howard),
algebraic, relational, and categorial semantics.
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Parsing as deduction
[Ajdukiewicz 35, Bar-Hillel 64]: AB-grammars, [Lambek 58]: string of words, [Lambek 61]:
bracketed strings (phrases)

I Parts of speech (noun, verb...) logical formulas - types.
I Grammaticality judgement logical deduction - computation.

np · (np\s) · (((np\s)\(np\s))/np) · (np/n) · n ` s
time flies like an arrow

Lexicon
I transitive verb ‘love’: (np\s)/np

I kids · (love · games)
I conjunction words ‘and/but’: chameleon word (X\X)/X

I X = s : (kids like sweets)s but (parents prefer liquor)s
I X = np\s: kids (like sweets)np\s but (hate vegetables)np\s

I relative pronoun ‘that’: (n\n)/(s/np), i.e. it looks for a noun n
to its left and an incomplete sentence to its right (s/np: it
misses a np, the gap at the right)
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Associativity
√

key

n

that

(n\n)/(s/np)

alice

np

found

(np\s)/np [ ` np]1

found · ` np\s
/E

alice · (found · ) ` s
\E

(alice · found) · ` s
A

alice · found ` s/np
/I1

that · (alice · found) ` n\n
/E

key · (that · (alice · found)) ` n
\E

((that λx1.((found x1) alice)) key)
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Mixed Commutativity
√

key

n

that

(n\n)/(s/np)

alice

np

found

(np\s)/np [ ` np]1

found · ` np\s
/E

there

(np\s)\(np\s)
(found · ) · there ` np\s

\E

alice · ((found · ) · there) ` s
\E

alice · ((found · there) · ) ` s
MC

(alice · (found · there)) · ` s
A

alice · (found · there) ` s/np
/I1

that · (alice · (found · there)) ` n\n
/E

key · (that · (alice · (found · there))) ` n
\E

((that λx1.((there (found x1)) alice)) key)
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Associativity ×

games

n

that

(n\n)/(s/np)

kids

np

love

(np\s)/np
super mario

np

love · super mario ` np\s
/E

kids · (love · super mario) ` s
\E

but

(s\s)/s

parents

np

hate

(np\s)/np [ ` np]1

hate · ` np\s
/E

parents · (hate · ) ` s
\E

but · (parents · (hate · )) ` s\s
/E

(kids · (love · super mario)) · (but · (parents · (hate · ))) ` s
\E

(kids · (love · super mario)) · (but · ((parents · hate) · )) ` s
A

(kids · (love · super mario)) · ((but · (parents · hate)) · ) ` s
A

((kids · (love · super mario)) · (but · (parents · hate))) · ` s
A

(kids · (love · super mario)) · (but · (parents · hate)) ` s/np
/I1

that · ((kids · (love · super mario)) · (but · (parents · hate))) ` n\n
/E

games · (that · ((kids · (love · super mario)) · (but · (parents · hate)))) ` n
\E

((that λx1.((but ((hate x1) parents)) ((love super mario) kids))) games)
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Licensing rules in a controlled form - 1/2
[Moortgat 96, Kurtonina & Moortgat 97], [Morrill 17]

key

n

that

(n\n)/(s/♦2np)

[ ` ♦2np]1

alice

np

found

(np\s)/np
[ ` 2np]2

〈 〉 ` np
2E

found · 〈 〉 ` np\s
/E

alice · (found · 〈 〉) ` s
\E

(alice · found) · 〈 〉 ` s
cA

(alice · found) · ` s
♦E2

alice · found ` s/♦2np
/I1

that · (alice · found) ` n\n
/E

key · (that · (alice · found)) ` n
\E

λx.((key x) ∧ ((found x) alice))
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Licensing rules in a controlled form - 2/2

key

n

that

(n\n)/(s/♦2np)

[ ` ♦2np]1

alice

np

found

(np\s)/np
[ ` 2np]2

〈 〉 ` np
2E

found · 〈 〉 ` np\s
/E

there

(np\s)\(np\s)
(found · 〈 〉) · there ` np\s

\E

alice · ((found · 〈 〉) · there) ` s
\E

alice · ((found · there) · 〈 〉) ` s
cMC

(alice · (found · there)) · 〈 〉 ` s
cA

(alice · (found · there)) · ` s
♦E2

alice · (found · there) ` s/♦2np
/I1

that · (alice · (found · there)) ` n\n
/E

key · (that · (alice · (found · there))) ` n
\E

λx.((key x) ∧ ((there (found x)) alice))
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Blocking rules in a controlled form

[ ` }2np]3

kids

np

love

(np\s)/np

[ ` 2np]4

h i ` np
2E

love · h i ` np\s
/E

kids · (love · h i) ` s
\E

(kids · love) · h i ` s
cA

(kids · love) · ` s
}E4

kids · love ` s/}2np
/I3

but

((s/}2np)\2(s/np))/(s/}2np)

[ ` }2np]1

parents

np

hate

(np\s)/np

[ ` 2np]2

h i ` np
2E

hate · h i ` np\s
/E

parents · (hate · h i) ` s
\E

(parents · hate) · h i ` s
cA

(parents · hate) · ` s
}E2

parents · hate ` s/}2np
/I1

but · (parents · hate) ` (s/}2np)\2(s/np)
/E

(kids · love) · (but · (parents · hate)) ` 2(s/np)
\E

h(kids · love) · (but · (parents · hate))i ` s/np
2E

h(kids · love) · (but · (parents · hate))i · super mario ` s
/E

(((but �y1.((hate y1) parents)) �y2.((love y2) kids)) super mario)

Text

.

.

.

Text
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Starting point: display calculi

I Natural generalization of Gentzen’s sequent calculi;
I sequents X ` Y , where X and Y are structures:

- formulas are atomic structures
- built-up: structural connectives (generalizing meta-linguistic

comma in sequents A1, . . . ,An ` B1, . . . ,Bm)
- generation trees (generalizing sets, multisets, sequences)

I Display property:

Y ` X \̌ Z
X ⊗̂Y ` Z
Y ⊗̂X ` Z

X ` Y \̌ Z

X ` ¬̌Y
Y ` ∼̌X

display rules semantically justified by adjunction/residuation

I Canonical proof of cut elimination (via metatheorem)
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Proper display calculi
[Wansing 98]: proper, [Belnap 82, 89]: display logic, [Mints 72, Dunn 73, 75]: structural
connectives

Definition
A proper DC verifies each of the following conditions:

1. structures can disappear, formulas are forever;

2. tree-traceable formula-occurrences, via suitably defined
congruence relation (same shape, position, non-proliferation);

3. principal = displayed

4. rules are closed under uniform substitution of congruent
parameters (Properness!);

5. reduction strategy exists when cut formulas are principal.

Theorem (Canonical!)
Cut elim. and subformula property hold for any proper DC.

12 / 30



Which logics are properly displayable?
[Ciabattoni et al. 15, Greco et al. 16]

Complete characterization:

1. the logics of any basic normal (D)LE;

2. axiomatic extensions of these with analytic inductive
inequalities:  unified correspondence

+φ

∧,∨
+f ,−g

+p −p

∧,∨
+g,−f

≤ −ψ

∧,∨
−g,+f

+p +p

∧,∨
−f ,+g

Fact: cut-elim., subfm. prop., sound-&-completeness,
conservativity guaranteed by metatheorem + ALBA-technology.
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Examples

The definition of analytic inductive inequalities is uniform in each
signature.

I Analytic inductive axioms

(A → (B ∨ C))→ ((A → B) ∨ C)

(^A → �B)→ �(A → B)

I Sahlqvist but non-analytic axioms

A → ^�A

(�A → ^B)→ (A → B)
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The excluded middle is derivable using Grishin’s rule:

A ` A
A ∧̂ > ` A
A ∧̂ > ` ⊥ ∨̌A
> ` A →̌ (⊥ ∨̌A)

Gri
> ` (A →̌⊥) ∨̌A

...
> ` ¬A ∨ A
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For many... but not for all.

I The characterization theorem sets hard boundaries to the
scope of proper display calculi.

I Interesting logics are left out:
I First order logic
I Non normal modal logics
I Conditional logics
I Dynamic epistemic logic
I Inquisitive logic
I Semi De Morgan logic
I Bi-lattice logic
I Rough algebras
I . . .

Can we extend the scope of proper display calculi?

Yes: proper display calculi proper multi-type calculi
(read: multi-sorted calculi)
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Multi-type ( multi-sorted) proper display calculi
[Greco et al. 14...]

Definition
A proper mDC verifies each of the following conditions:

1. structures can disappear, formulas are forever;

2. tree-traceable formula-occurrences, via suitably defined
congruence relation (same shape, position, non-proliferation)

3. principal = displayed

4. rules are closed under uniform substitution of congruent
parameters within each type (Properness!);

5. reduction strategy exists when cut formulas are principal.

6. type-uniformity of derivable sequents;

7. strongly uniform cuts in each/some type(s).

Theorem (Canonical!)
Cut elim. and subformula property hold for any proper mDC.
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Language expansion: structural control operators 1/2

I Display rules (adjunction)

X ` �̌Y
adj

ˆ̂ X ` Y

I Logical rules (arity and tonicity)

ˆ̂ A ` X
^L
^A ` X

X ` A ^R
ˆ̂ X ` ^A

A ` X
�̌ L
�A ` �̌X

X ` �̌A �R
X ` �A
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Language expansion: structural control operators 2/2

I Display rules (adjunction)

X ` �̌ Γ
adj

ˆ̂ X ` Γ

I Logical rules (arity and tonicity)

ˆ̂ α ` X
^L
^α ` X

Γ ` α
^R

ˆ̂ Γ ` ^α

A ` X
�̌ L
�A ` �̌X

Γ ` �̌A �R
Γ ` �A
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Axiomatic extensions via analytic structural rules - 1/2

I Structural rules

X ⊗̂ (Y ⊗̂Z) `W
A

(X ⊗̂Y) ⊗̂Z `W
(X ⊗̂Z) ⊗̂Y `W

MC
(X ⊗̂Y) ⊗̂Z `W

I Controlled structural rules

X ⊗̂ (Y ⊗̂ ˆ̂ Z) `W
cA

(X ⊗̂Y) ⊗̂ ˆ̂ Z `W

(X ⊗̂ ˆ̂ Z) ⊗̂Y `W
cMC

(X ⊗̂Y) ⊗̂ ˆ̂ Z `W

20 / 30



Axiomatic extensions via analytic structural rules - 2/2

I Structural rules

X ⊗̂ (Y ⊗̂Z) `W
A

(X ⊗̂Y) ⊗̂Z `W
(X ⊗̂Z) ⊗̂Y `W

MC
(X ⊗̂Y) ⊗̂Z `W

I Controlled structural rules

X ⊗̂ (Y ⊗̂ ˆ̂ Γ) `W
cA

(X ⊗̂Y) ⊗̂ ˆ̂ Γ `W

(X ⊗̂ ˆ̂ Γ) ⊗̂Y `W
cMC

(X ⊗̂Y) ⊗̂ ˆ̂ Γ `W
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Licensing rules: the case of Linear Logic

[Belnap 92]: not a proper display calculus:

A ` X
!A ` X

Y ` A
Y ` !A

A ` Z
?A ` Z

X ` A
X ` ?A

Y and Z not arbitrary but exponentially restricted.

!!A a` !A

!A ` A

A ` B implies !A ` !B

!> a` 1

!(A&B) a` !A ⊗ !B analytic?
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Linear logic: algebraic analysis
!!a = !a !> = 1
!a ≤ a !(a&b) = !a ⊗ !b
a ≤ b implies !a ≤ !b

! : L→ L interior operator. Then ! = ^�, where

K! L

`

^

�

Fact: Range(!) ::= K! has natural BA/HA-structure.

Upshot: natural semantics for the following multi-type language:

Kernel 3 α ::=�A | t | f | α ∨ α | α ∧ α | α→ α

Linear 3 A ::= p | ^α | 1 | ⊥ | A ⊗ A | A M A | A ( A |

> | 0 | A & A | A ⊕ A
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Reverse-engineering linear logic

Problem: the following axioms are non-analytic.

!> a` 1  ^�> a` 1
!(A & B) a` !A ⊗ !B  ^�(A & B) a` ^�A ⊗ ^�B

Solution: � surjective and finitely meet-preserving⇒ axioms
above semantically equivalent to the following analytic identities:

^t = 1 ^(α ∧ β) = ^α ⊗ ^β

corresponding to the following analytic rules:

ˆ̂ t̂ ` X
co-nec

1̂ ` X

ˆ̂ Γ ⊗̂ ˆ̂ ∆ ` X
(co-)reg

ˆ̂ (Γ ∧̂∆) ` X
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Deriving !(A & B) ` !A ⊗ !B

A ` A
A & B ` A

�(A & B) ` �̌A
�(A & B) ` �A

ˆ̂ �(A & B) ` ^�A

B ` B
A & B ` B

�(A & B) ` �̌B
�(A & B) ` �B

ˆ̂ �(A & B) ` ^�B
ˆ̂ �(A & B) ⊗̂ ˆ̂ �(A & B) ` ^�A ⊗ ^�B

reg
ˆ̂ (�(A & B) ∧̂�(A & B)) ` ^�A ⊗ ^�B
�(A & B) ∧̂�(A & B) ` �̌ (^�A ⊗ ^�B)

CK
�(A & B) ` �̌ (^�A ⊗ ^�B)

ˆ̂ �(A & B) ` ^�A ⊗ ^�B
^�(A & B) ` ^�A ⊗ ^�B

!(A & B) ` !A ⊗ !B
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General strategy

I Define a multi-modal logic where linguistic composition is
relativized to specific resource management modes via a
language expansion.

I The extra expressivity is obtained in a controlled fashion via
the addition of interaction postulates.

I It can be used to licence or to block the access to different
regimes of resource management.

Ingredients:

I the sort of general elements that inhabit the more restrictive
regime;

I the sorts of special elements that witness the licence of a
more liberal regime;

I the sort(s) of blocking elements that provide the room to
block structural transformations.
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Heterogeneous structural control algebras
For each i ∈ I, H := (G,Li ,Ri ,B) is a structure such that

I G := (G,≤G ,F ,G) is closed under adjoints/residuals;

I (Li ,≤Li ) and (Ri ,≤Ri ) are partial orders

Li G Ri
^i

`

�i

�i

`

_i

where the composition

^i�i defines an interior operator on G
�i_i defines a closure operator on G
�i^i defines identity on Li

_i�i defines identity on Ri
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Heterogeneous structural control algebras
For each i ∈ I, H := (G,Li ,Ri ,B) is a structure such that
I G := (G,≤G ,F ,G) is closed under adjoints/residuals;
I (Li ,≤Li ) and (Ri ,≤Ri ) are a partial orders;
I B is an isomorphic copy of G

Li G Ri

B

a, `

^i

`

�i

�i

`

_i

_,� �,^

moreover,
I for each f ∈ F (resp. g ∈ G) with domain Gn, there exists a

map FB 3 fB : B × Gn−1 → G (resp. g ∈ G),
I FB ∪ GB is closed under adjoints/residuals.
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Beyond analiticity: towards a general theory

I Several examples of logics which are single-type not analytic
but multi-type analytic.

I Patterns are emerging. Main guideline: discovering and
exploiting hidden adjunctions / representation theorems.

I Can we make this practice into a uniform theory?

I What can we infer from interaction postulates?
I E.g. Li and Ri can be systematically endowed with a

compatible signature.
I What about the properties of the defined operations?
I What about the relation between Li and Ri?
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Thank you ^�
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