Some theorems concerning Grzegorczyk contact lattices

Rafał Gruszczyński and Andrzej Pietruszczak

Department of Logic Nicolaus Copernicus University in Toruń Poland

> TACL Nice 2019

Outline

Grzegorczyk contact lattices

Grzegorczyk points and their properties

Existence of GCLs

Set theoretical representation theorems for GCLs

The characterization of finite GCLs

Outline

Grzegorczyk contact lattices

Grzegorczyk points and their properties

Existence of GCLs

Set theoretical representation theorems for GCLs

The characterization of finite GCLs

A pair $\mathfrak{L} = \langle R, \leqslant \rangle$ is a Grzegorczyk lattice iff it is a lattice with zero element and satisfies the following strong polarization condition:

$$x \leq y \to \exists_{z \in R} (z \leq x \land z \perp y \land \forall_{u \in R} (u \leq x \land u \perp y) \to u \leq z)$$
(P)

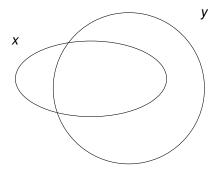
where $x \perp y : \longleftrightarrow x \sqcap y = 0$ (with \sqcap being the standard meet operation).

Grzegorczyk lattices – definition

All Grzegorczyk lattices have the relative complement operation in $R \times R$:

$$x - y := \max\{z \in R \mid z \leq x \land z \perp y\}, \qquad (df -)$$

which is well-defined thanks to (P).

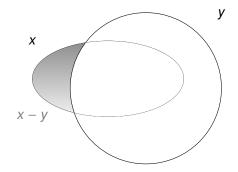


Grzegorczyk lattices – definition

All Grzegorczyk lattices have the relative complement operation in $R \times R$:

$$x - y := \max\{z \in R \mid z \leq x \land z \perp y\}, \qquad (df -)$$

which is well-defined thanks to (P).



Grzegorczyk lattices – definition

- From model theoretical point of view, the class of Grzegorczyk lattices coincides with the class of generalized Boolean algebras.
- A family of finite subsets of N is an example of a Grzegorczyk lattice.

A pre-contact lattice is a triple $\mathfrak{C} = \langle R, \leq, \mathbf{C} \rangle$, where $\langle R, \leq \rangle$ is a Grzegorczyk lattice and $\mathbf{C} \subseteq R \times R$ (called pre-contact) satisfies:

 $0 \not C x \qquad (C0)$ $x \neq 0 \rightarrow x \ C x \qquad (C1)$ $x \ C y \rightarrow y \ C x \qquad (C2)$ $x \ C y \wedge y \leqslant z \rightarrow x \ C z . \qquad (C3)$

Pre-contact lattices – motivations

Figure: In both pairs regions are external to each other. Regions x and y are separated, but regions v and z are not—they are externally tangent to each other. The relation \perp does not differentiate between these two situations.

Pre-contact lattices

In a standard way we define two further auxiliary relations, overlap and non-tangential part:

$$x \bigcirc y : \longleftrightarrow x \sqcap y \neq 0$$
 (df \bigcirc)

$$x \ll y : \longleftrightarrow \forall_{z \in R} (z \perp y \to z \ \mathcal{C} \ x). \tag{df} \ll)$$

Figure: Geometrical interpretation of non-tangential inclusion: x is non-tangentially included in y, while v touches the complement of z.

A canonical interpretation of a pre-contact lattice is obtained by taking a Grzegorczyk lattice whose regions are regular open sets of some topological space, and defining:

$$x \mathbf{C} y : \longleftrightarrow \operatorname{Cl} x \cap \operatorname{Cl} y \neq \emptyset.$$
 (df **C**)

In consequence:

$$x \ll y \longleftrightarrow \operatorname{Cl} x \subseteq y$$
.

A pre-point (or representative of a point) is any nonempty set *Q* or regions satisfying the following three conditions:

$$\forall_{x,y\in Q} (x = y \lor x \ll y \lor y \ll x)$$
 (r1)

$$\forall_{x \in Q} \exists_{y \in Q} \ y \ll x \tag{r2}$$

$$\forall_{x,y\in R} (\forall_{u\in Q} (u \odot x \land u \odot y) \to x \mathbf{C} y).$$
 (r3)

Let **Q** be the set of all pre-points of a given pre-contact lattice.

Pre-points in pre-contact lattices

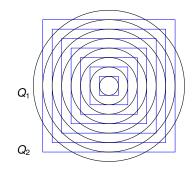


Figure: Q_1 and Q_2 represent the same point

Grzegorczyk axioms for pre-contact lattices postulate existence of pre-points:

$$x \circ y \to \exists_{Q \in \mathbf{Q}} \exists_{z \in Q} \ z \leqslant x \sqcap y \tag{G}_{O}$$

$$x \ \mathbf{C} \ y \land x \perp y \to \exists_{Q \in \mathbf{Q}} \forall_{z \in Q} (z \odot x \land z \odot y) \tag{G}_{\perp}$$

Intuitively, these can be geometrically interpreted as follows:

 (G_{\odot}) there is a pre-point in every non-zero region,

 (G_{\perp}) there are pre-points at the loci of contact of regions.

Grzegorczyk contact lattice is any pre-contact lattice which satisfies the two axioms above.

Theorem Axioms:

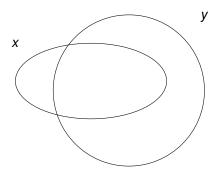
$$x \mathbf{C} (y \sqcup z) \to x \mathbf{C} y \lor x \mathbf{C} z,$$
(C4)
$$\forall_{z \in R} (z \mathbf{C} x \to z \mathbf{C} y) \to x \leqslant y.$$
(C5)

are true in any GCL (which justifies the name contact lattices).

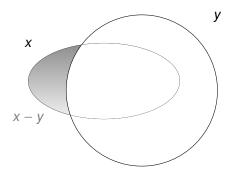
$$x \mathbf{C} (y \sqcup z) \to x \mathbf{C} y \lor x \mathbf{C} z \tag{C4}$$

- If x C (y ⊔ z), then by the Grzegorczyk axiom's there is a pre-point Q such that (a) ∀_{u∈Q} u ○ x and (b) ∀_{u∈Q} u ○ y ⊔ z.
- ▶ Divide *Q* into: $Q_y := \{u \in Q \mid u \cap y\}$ and $Q_z := \{u \in Q \mid u \cap z\}$. Assume there is $q \in Q \setminus Q_y$ (i.e. $q \perp y$).
- Pick an arbitrary $u \in Q$. We have that $q \leq u$ or $u \leq q$.
- In the first case, $q \cap z$ and the more so $u \cap z$.
- ▶ In the second case, $u = q \sqcap u$ and so $u \perp y$, so $u \bigcirc z$.
- Therefore Q ⊆ Q_z and from this, (a) and properties of pre-points we have that x C z.

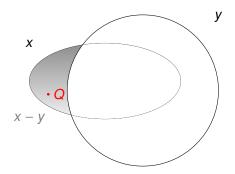
$$\forall_{z \in R} \left(z \ \mathbf{C} \ x \to z \ \mathbf{C} \ y \right) \to x \leqslant y \tag{C5}$$



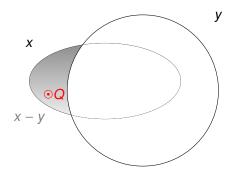
$$\forall_{z \in R} \left(z \ \mathbf{C} \ x \to z \ \mathbf{C} \ y \right) \to x \leqslant y \tag{C5}$$



$$\forall_{z \in R} \left(z \ \mathbf{C} \ x \to z \ \mathbf{C} \ y \right) \to x \leqslant y \tag{C5}$$



$$\forall_{z \in R} \left(z \ \mathbf{C} \ x \to z \ \mathbf{C} \ y \right) \to x \leqslant y \tag{C5}$$



Outline

Grzegorczyk contact lattices

Grzegorczyk points and their properties

Existence of GCLs

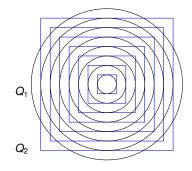
Set theoretical representation theorems for GCLs

The characterization of finite GCLs

Points are (proper) filters generated by pre-points:

$$\mathfrak{p} \in \mathbf{Pt} : \longleftrightarrow \exists_{Q \in \mathbf{Q}} \mathfrak{p} = \left\{ x \in R \, \big| \, \exists_{y \in Q} \, y \leqslant x \right\}. \tag{df Pt}$$

Points will be denoted by small Greek letters 'p', 'q', 'r', 's'.

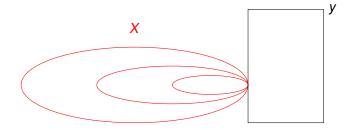


Definition (of round filters and ends)

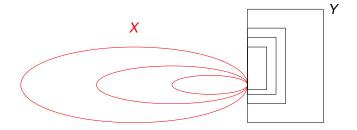
- A filter ℱ of GCL is a round (contracting, concordant) filter iff for every x ∈ ℱ there is y ∈ ℱ such that y ≪ x.
- \mathscr{F} is an end iff it is a maximal round filter.

Theorem Every Grzegorczyk point is an end (but not vice versa).

$$y \infty X : \longleftrightarrow \forall_{x \in X} y \mathbf{C} x$$
 $(df \infty)$



$$X \propto Y : \longleftrightarrow \forall_{x \in X} x \propto Y$$
 (df' ∞)



Lemma

If a round filter ${\mathscr F}$ satisfies the following condition:

$$x \infty \mathscr{F} \land x \ll y \to y \in \mathscr{F}$$
 (*)

then \mathscr{F} is an end.

- Suppose that a round filter \mathscr{F} satisfies (*) and let \mathscr{F}' be any round filter such that $\mathscr{F} \subseteq \mathscr{F}'$.
- Notice that $\mathscr{F} \propto \mathscr{F}'$.
- Assume that $x \in \mathscr{F}'$. Then for some $x_0 \in \mathscr{F}'$ both $x_0 \ll x$ and $x_0 \propto \mathscr{F}$.

• Hence
$$x \in \mathscr{F}$$
, by (*).

Lemma For any GCL:

$$x \ll y \longleftrightarrow \forall_{\mathfrak{p} \in \mathbf{Pt}} (y \in \mathfrak{p} \lor \exists_{z \in \mathfrak{p}} z \perp x).$$

- ► (→) Let $x \ll y$. Assume for a contradiction that for some point $\mathfrak{p} \in \mathbf{Pt}$ we have (a) $y \notin \mathfrak{p}$ and $\forall_{z \in \mathfrak{p}} z \bigcirc x$.
- ► Hence (b) $\forall_{z \in p} z \notin y$, and therefore (c) $\forall_{z \in p} z y \ C x$ (since $z y \perp y$ and $x \ll y$).
- The point \mathfrak{p} is generated by some $\mathbf{Q} \ni Q_{\mathfrak{p}} \subseteq \mathfrak{p}$.
- ► Thanks to (b) we have (d): $\forall_{u,v \in Q_p} u \bigcirc v y$. Indeed, by (r1), either $v \leq u$ or $u \leq v$.
- ▶ In the first case: $v y \le v \le u$.
- ▶ In the second case: $u y \le v y$ and $u y \le u$; so $v y \bigcirc u$.
- Since Q_p ≠ Ø, we pick a member v₀ thereof. Thus, by (r3), (a) and (d), we have v₀ − y C x, which contradicts (c).

Lemma For any GCL:

$$x \ll y \longleftrightarrow \forall_{\mathfrak{p}\in \mathbf{Pt}} (y \in \mathfrak{p} \lor \exists_{z \in \mathfrak{p}} z \perp x).$$

- ▶ (←) Suppose that $x \ll y$, i.e., there is $u_0 \in R$ such that (a) $u_0 \perp y$ and (b) $u_0 C x$.
- ► Then, by (b), there is $p_0 \in \mathbf{Pt}$ such that (c): $\forall_{z \in p_0} (z \bigcirc u_0 \land z \bigcirc x).$
- ▶ Thus $y \notin p$, by (a) and (c).

Theorem

Every Grzegorczyk point is an end.

Proof.

It is easy to see that every point is a round filter. By the previous lemma every point satisfies (*):

$$x \infty \mathcal{F} \land x \ll y \to y \in \mathcal{F}.$$

So every $\mathfrak{p} \in \mathbf{Pt}$ is an end.

Theorem

Not every end is a Grzegorczyk point.

Proof.

Take $S := \{(n, +\infty) \mid n \in \mathbb{N}\}$, a family of open infinite segments in \mathbb{R} . We consider the contracting filter \mathscr{F}_S generated by S and its contracting maximal extension \mathscr{F}_S^* . Notice that \mathscr{F}_S^* does not satisfy:

$$x \mathbf{C} y \longleftrightarrow \forall_{z \in \mathfrak{p}} (z \circ x \land z \circ y),$$

so it is not a member of **Pt**. To see that, we define two open subsets of \mathbb{R} :

$$U := \operatorname{Int} \operatorname{Cl} \bigcup_{n \in \mathbb{N}} (4n, +\infty) \text{ and } V := \operatorname{Int} \operatorname{Cl} \bigcup_{n \in \mathbb{N}} (4n + 2, +\infty).$$

We have $V \propto \mathscr{F}^*_{\mathcal{S}} \propto U$, yet Cl $V \cap$ Cl $U = \emptyset$, i.e., $V \not \subset U$.

Outline

Grzegorczyk contact lattices

Grzegorczyk points and their properties

Existence of GCLs

Set theoretical representation theorems for GCLs

The characterization of finite GCLs

Existence of GCLs

$$\forall_{x,y\in Q} (x = y \lor x \ll y \lor y \ll x)$$
 (r1)

$$\forall_{x \in \mathbf{Q}} \exists_{y \in \mathbf{Q}} \ y \ll x \tag{r2}$$

$$\forall_{x,y \in R} (\forall_{u \in Q} (u \odot x \land u \odot y) \to x \mathbf{C} y)$$
(r3)

Lemma

For any pre-contact lattice in which $C = \bigcirc$: if $a \in At$, then $\{a\} \in Q$.

- ► For any atom *a* the singleton {*a*} trivially satisfies (r1).
- (r2) is satisfied since $\mathbf{C} = \bigcirc$ entails $\ll = \leqslant$.
- For (r3): If $a \odot x$ and $a \odot y$, then $a \le x$ and $a \le y$. Hence $x \odot y$, i.e., $x \mathbb{C} y$.

Fact

Every atomic Grzegorczyk lattice in which $\mathbf{C} = \bigcirc$ is a GCL.

- First, if $x \bigcirc y$, then $x \sqcap y \in R^+$ and there is $a \in At$ such that $a \le x \sqcap y$. But $\{a\} \in \mathbf{Q}$.
- Second, since C = ○, the condition 'x C y ∧ x ⊥ y' is false for all x, y ∈ R. Hence (G_⊥) also holds.

Outline

Grzegorczyk contact lattices

Grzegorczyk points and their properties

Existence of GCLs

Set theoretical representation theorems for GCLs

The characterization of finite GCLs

Representation theorems for GCLs

Definition

- A representation of a GCL (6) is an isomorphism ι from (6) into a GCL whose domain is contained in P(Pt) (the power set of the set of Grzegorczyk points of (6).
- A representation *ι* is reduced if the image *ι*[*R*] separates points of Pt: for any p ≠ q ∈ Pt there is a region *x* such that p ∈ *ι*(*x*) but q ∉ *ι*(*x*).
- A representation ι is perfect if for all $x \in R$ and $\mathfrak{p} \in \mathbf{Pt}$:

$$x \in \mathfrak{p} \longleftrightarrow \mathfrak{p} \in \iota(x)$$
.

Definition For any region *x* we define:

$$Irl(x) \coloneqq \{ \mathfrak{p} \in \mathbf{Pt} \mid x \in \mathfrak{p} \}$$

the set of internal points of *x*.

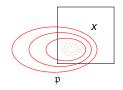


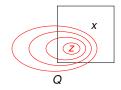
Figure: An internal point of the region x

Fact

Every non-zero region has a point.

Proof.

Reflexivity of \bigcirc gives $x \bigcirc x$, so by (G_{\bigcirc}) there is $Q \in \mathbf{Q}$ and $z \in Q$ such that $z \leq x$:



Lemma

The operation IrI: $R \rightarrow \mathcal{P}(Pt)$ has the following properties:

$$Irl(x) = \emptyset \longleftrightarrow x = 0$$

$$x \odot y \longleftrightarrow Irl(x) \cap Irl(y) \neq \emptyset$$

$$Irl(x \sqcap y) = Irl(x) \cap Irl(y)$$

$$x \leqslant y \longleftrightarrow Irl(x) \subseteq Irl(y)$$

$$x = y \longleftrightarrow Irl(x) = Irl(y)$$

Definition For any region x we define:

$$\mathsf{Adh}(x) \coloneqq \{\mathfrak{p} \in \mathsf{Pt} \mid x \infty \mathfrak{p}\}$$

the set of adherent points of *x*.

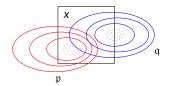


Figure: Both points p and q are adherent to the region x, but q is not internal point of x

Basic properties of **Adh**: $R \rightarrow \mathcal{P}(\mathbf{Pt})$ operation:

$$Irl(x) \subseteq Adh(x)$$

$$\mathfrak{p} \in Adh x : \longleftrightarrow \forall_{y \in \mathfrak{p}} y \odot x \longleftrightarrow x \infty \mathfrak{p}$$

$$Adh(x \sqcup y) = Adh(x) \cup Adh(y)$$

$$x = y \longleftrightarrow Adh(x) = Adh(y)$$

$$x C y \longleftrightarrow Adh(x) \cap Adh(y) \neq \emptyset$$

Definition

Let $\mathfrak{G}_1 = \langle R_1, \leq_1, \mathbf{C}_1 \rangle$ and $\mathfrak{G}_2 = \langle R_2, \leq_2, \mathbf{C}_2 \rangle$ be relational structures with binary relations. A strong homomorphism from \mathfrak{R}_1 into \mathfrak{R}_2 is a map $h: R_1 \to R_2$ such that for all $x, y \in R_1$:

$$x \leq_1 y \longleftrightarrow h(x) \leq_2 h(y),$$

 $x \mathbf{C}_1 y \longleftrightarrow h(x) \mathbf{C}_2 h(y).$

Lemma

If \mathfrak{G}_1 is a GCL and e is an embedding from \mathfrak{G}_1 into \mathfrak{G}_2 , then $\langle e[R_1], \leq_2|_{e[R_1]}, \mathbf{C}_2|_{e[R_1]} \rangle$ is also a GCL.

The operation IrI is one-to-one, so in the family IrI[R] we can introduce the following binary relation:

$$X \mathbb{C} Y : \longleftrightarrow \mathbb{A}dh \circ IrI^{-1}(X) \cap \mathbb{A}dh \circ IrI^{-1}(Y) \neq \emptyset.$$
 (df \mathbb{C})

It means that for any $x, y \in R$ we have:

$$Irl(x) \ \mathbf{C} \ Irl(y) \longleftrightarrow \mathbf{Adh}(x) \cap \mathbf{Adh}(y) \neq \emptyset$$
$$\longleftrightarrow x \ \mathbf{C} \ y \ .$$

Thus, for a Grzegorczyk contact lattice \mathfrak{G} , we can put $\mathfrak{G}_1 := \langle \mathbf{Irl}[R], \subseteq, \mathbf{C} \rangle$, about which holds the following:

Theorem

- 1. The operation Irl is an isomorphism of \mathfrak{G} onto \mathfrak{G}_1 .
- **2**. \mathfrak{G}_1 is a G-structure.
- 3. The operation IrI is a reduced and perfect representation of \mathfrak{G} .
- 4. If \mathfrak{G} has the unity 1, then \mathfrak{G}_1 has the unity **Pt** and Irl(1) = Pt.
- 5. \mathfrak{G} is complete iff \mathfrak{G}_1 is complete.

Outline

Grzegorczyk contact lattices

Grzegorczyk points and their properties

Existence of GCLs

Set theoretical representation theorems for GCLs

The characterization of finite GCLs

Theorem

A GCL $\langle R, \leq, \mathbf{C} \rangle$ is finite iff $\langle R, \leq \rangle$ is a finite Grzegorczyk lattice and $\mathbf{C} = \bigcirc$.

Theorem

A GCL $\langle R, \leq, \mathbf{C} \rangle$ is finite iff it is complete and the set of its Grzegorczyk points coincides with the set of ultrafilters of $\langle R, \leq \rangle$.

We have already proved the following:

Lemma

For any pre-contact lattice in which $C = \bigcirc$: if $a \in At$, then $\{a\} \in Q$.

And we can prove this:

Lemma

If a is an atom of a GCL, then $a \ll a$, and $\{a\} \in \mathbf{Q}$.

Proof.

It follows from Grzegorczyk's axioms that every region has non-tangential part. So there is *x* such that $x \ll a$. Thus $x \leqslant a$ and x = a.

Corollary

In any GCL:

- 1. For all $a \in At$ and $x \in R$:
 - a) a \mathcal{C} x iff $a \perp x$
 - b) a **C** x iff $a \bigcirc x$ iff $a \leqslant x$ iff $a \ll x$
 - c) if $x \neq a$, then a $\mathcal{C} x a$.
- 2. For all atoms $a \neq b$: $a \not C b$.

Proof.

For every atom $a \ll a$, so if $x \in R$ and $x \perp a$, the definition of \ll entails that $x \not C a$. For the other implication: if $x \bigcirc a$, then $x \not C a$.

Theorem

A GCL $\langle R, \leq, \mathbf{C} \rangle$ is finite iff $\langle R, \leq \rangle$ is a finite Grzegorczyk lattice and $\mathbf{C} = \bigcirc$.

Proof.

(→) If GCL is finite, then for any $x \in R$, x is the supremum of some set $\{a_1, \ldots, a_n\}$ of atoms. Thus if x C y, $a_1 \sqcup \ldots \sqcup a_n C y$ and the condition (C4) entails that for some $i \leq n$, $a_i C y$, i.e. $a_i \leq y$. Thus $x \odot y$.

(\leftarrow) By assumption $\langle R, \leq \rangle$ is atomic, and earlier we proved that every atomic Grzegorczyk lattice in which **C** = \bigcirc is a GCL.

Theorem

For every complete Grzegorczyk contact lattice (5 the following conditions are equivalent:

- 1. 6 is finite
- 2. Pt is finite
- 3. Ult ⊆ Pt
- **4. Ult = Pt.**

Proof.

 $(1 \leftrightarrow 2)$ If \mathfrak{G} is not finite, it must have an infinite anti-chain A. Every region $x \in A$ has some point \mathfrak{p}_x , and if $x \neq y$, then $\mathfrak{p}_x \neq \mathfrak{p}_y$.

 $(1 \rightarrow 3)$ If \mathfrak{G} is finite, then every ultrafilter \mathscr{U} is generated by an atom, and so it must be a point.

 $(3 \rightarrow 4)$ If $\mathfrak{p} \in \mathbf{Pt}$, then it is a filter, so there is an ultrafilter $\mathscr{U} \supseteq \mathfrak{p}$. But \mathscr{U} is a point by an assumption, so $\mathfrak{p} = \mathscr{U}$.

Theorem

For every complete Grzegorczyk contact lattice \mathfrak{G} the following conditions are equivalent:

- 1. 6 is finite
- 2. Pt is finite
- 3. Ult ⊆ Pt
- **4. Ult = Pt.**

Proof.

 $(4 \rightarrow 2)$ If **UIt** = **Pt**, then every ultrafilter of \mathfrak{G} is generated by a chain. So every ultrafilter is principal, and therefore \mathfrak{G} is finite (since every infinite and complete GCL has a free ultrafilter).

Theorem

A GCL $\langle R, \leq, \mathbf{C} \rangle$ is finite iff it is complete and the set of its Grzegorczyk points coincides with the set of ultrafilters of $\langle R, \leq \rangle$.

Corollary

If a GCL is finite, then the set of its Grzegorczyk points coincides with the set of ends.

Thank you