Frege's Basic Law V via Partial Orders

Giovanni M. Martino

Vita-Salute San Raffaele University, Milan giovanni.martino3@outlook.it

TACL 2019, Nice

June 21, 2019

Frege's Basic Law V via Partial Orders

A standard second-order structure is a sequence:

$$\mathfrak{S} = \langle \mathcal{A}, \mathcal{A}^*, \mathfrak{c}^*, \mathcal{R}^* \rangle,$$

wherein:

•
$$A^* = \langle A_n | n \in N \rangle;$$

• $c^* = \{c_i | i \in N\} \subseteq A;$

• $R = \langle R_i^n | i, n \in N \rangle$ and $A_n \subseteq \wp(A^n), R_i^n \in A_n$.

Roughly speaking, a second-order structure consists of a universe A of individuals, a second-order universe for *n*-ary relations, for $n \ge \emptyset$ and individual constants.

Remark. In the case that $A_n = \mathcal{P}(A^n)$, i.e. A_n contains all *n*-ary relations, we call \mathfrak{S} full.

・ロト ・四ト ・ヨト ・ヨト

A standard second-order structure is a sequence:

$$\mathfrak{S} = \langle \mathcal{A}, \mathcal{A}^*, \mathfrak{c}^*, \mathcal{R}^* \rangle,$$

wherein:

•
$$\mathcal{A}^* = \langle \mathcal{A}_n | n \in N \rangle;$$

• $c^* = \{c_i | i \in N\} \subseteq \mathcal{A};$
• $R = \langle R_i^n | i, n \in N \rangle$ and $\mathcal{A}_n \subseteq \wp(\mathcal{A}^n), R_i^n \in \mathcal{A}_n.$

Roughly speaking, a second-order structure consists of a universe A of individuals, a second-order universe for *n*-ary relations, for $n \ge \emptyset$ and individual constants.

Remark. In the case that $A_n = \mathcal{P}(A^n)$, i.e. A_n contains all *n*-ary relations, we call \mathfrak{S} full.

< □ > < @ > < 图 > < 图 > < .

A standard second-order structure is a sequence:

$$\mathfrak{S} = \langle \mathcal{A}, \mathcal{A}^*, \mathfrak{c}^*, \mathcal{R}^* \rangle,$$

wherein:

•
$$\mathcal{A}^* = \langle \mathcal{A}_n | n \in N \rangle;$$

• $c^* = \{c_i | i \in N\} \subseteq \mathcal{A};$
• $R = \langle R_i^n | i, n \in N \rangle$ and $\mathcal{A}_n \subseteq \wp(\mathcal{A}^n), R_i^n \in \mathcal{A}_n.$

Roughly speaking, a second-order structure consists of a universe A of individuals, a second-order universe for *n*-ary relations, for $n \ge \emptyset$ and individual constants.

Remark. In the case that $A_n = \mathcal{P}(A^n)$, i.e. A_n contains all *n*-ary relations, we call \mathfrak{S} full.

A standard second-order structure is a sequence:

$$\mathfrak{S} = \langle \mathcal{A}, \mathcal{A}^*, \mathfrak{c}^*, \mathcal{R}^* \rangle,$$

wherein:

•
$$A^* = \langle A_n | n \in N \rangle;$$

• $c^* = \{c_i | i \in N\} \subseteq A;$
• $R = \langle R_i^n | i, n \in N \rangle$ and $A_n \subseteq \wp(A^n), R_i^n \in A_n.$

Roughly speaking, a second-order structure consists of a universe A of individuals, a second-order universe for *n*-ary relations, for $n \ge \emptyset$ and individual constants.

Remark. In the case that $A_n = \mathcal{O}(\mathcal{A}^n)$, i.e. A_n contains all *n*-ary relations, we call \mathfrak{S} full.

< ロ > < 部 > < 注 > < 注 > … 注

BLV

BLV: $\forall F \forall G[\epsilon Fx = \epsilon Gx \longleftrightarrow \forall x(Fx \leftrightarrow Gx)].$

Basic law V axiomatizes the behavior of a type-lowering operator (ϵ), from the second-order entities to first-order individuals. ϵ is called *extension operator*. Indeed, BLV postulates that this operator is an injective fuction.

 ϵ takes a second-order entitie F as argument and returns an object ϵF .

Remark. ϵFx as $\{x : Fx\}$.

イロト イヨト イヨト イヨト

BLV: $\forall F \forall G[\epsilon Fx = \epsilon Gx \longleftrightarrow \forall x(Fx \leftrightarrow Gx)].$

Basic law V axiomatizes the behavior of a type-lowering operator (ϵ), from the second-order entities to first-order individuals. ϵ is called *extension operator*. Indeed, BLV postulates that this operator is an injective fuction.

 ϵ takes a second-order entitie F as argument and returns an object ϵF . Remark. ϵFx as $\{x : Fx\}$.

BLV: $\forall F \forall G[\epsilon Fx = \epsilon Gx \longleftrightarrow \forall x(Fx \leftrightarrow Gx)].$

Basic law V axiomatizes the behavior of a type-lowering operator (ϵ), from the second-order entities to first-order individuals. ϵ is called *extension operator*. Indeed, BLV postulates that this operator is an injective fuction.

 ϵ takes a second-order entitie F as argument and returns an object ϵF .

Remark. ϵFx as $\{x : Fx\}$.

BLV : $\forall F \forall G[\epsilon Fx = \epsilon Gx \longleftrightarrow \forall x(Fx \leftrightarrow Gx)].$

Basic law V axiomatizes the behavior of a type-lowering operator (ϵ), from the second-order entities to first-order individuals. ϵ is called *extension operator*. Indeed, BLV postulates that this operator is an injective fuction.

 ϵ takes a second-order entitie F as argument and returns an object ϵF .

Remark. ϵFx as $\{x : Fx\}$.

ヘロア 人間 アメヨア 人間アー

Standard model

Models for BLV have the following form:

$$\mathcal{M} = (\mathcal{M}, S_{\mathrm{I}}(\mathcal{M}), S_{\mathrm{2}}(\mathcal{M}), \dots, \pi),$$

wherein:

- $M \neq \emptyset$ serves for the interpretation of the first-order individuals;
- $S_n(\mathcal{M}) \subseteq \mathcal{P}(\mathcal{M}^n)$ serves for the interpretation of second-order *n*-ary predicates;
- $\pi: S_{I}(\mathcal{M}) \to \mathcal{M}$ is an injection.

My aim is to characterise ${\mathcal M}$ as a poset.

Background

Standard model

Models for BLV have the following form:

$$\mathcal{M} = (\mathcal{M}, S_{\mathrm{I}}(\mathcal{M}), S_{\mathrm{2}}(\mathcal{M}), \dots, \pi),$$

wherein:

- $\mathcal{M} \neq \emptyset$ serves for the interpretation of the first-order individuals;
- $S_n(\mathcal{M}) \subseteq \mathcal{O}(\mathcal{M}^n)$ serves for the interpretation of second-order *n*-ary predicates;
- $\pi: S_{\text{I}}(\mathcal{M}) \to \mathcal{M}$ is an injection.

My aim is to characterise $\mathcal M$ as a poset.

Standard model

Models for BLV have the following form:

$$\mathcal{M} = (\mathcal{M}, S_{\mathrm{I}}(\mathcal{M}), S_{\mathrm{2}}(\mathcal{M}), \dots, \pi),$$

wherein:

- $\mathcal{M} \neq \emptyset$ serves for the interpretation of the first-order individuals;
- $S_n(\mathcal{M}) \subseteq \mathcal{P}(\mathcal{M}^n)$ serves for the interpretation of second-order *n*-ary predicates;
- $\pi: S_{I}(\mathcal{M}) \to \mathcal{M}$ is an injection.

My aim is to characterise \mathcal{M} as a poset.

- Standard SOL with $A_n = \mathcal{O}(A_n)$;
- A sort of first order variables, *x*, *y*, *z*, . . . and a sort of second-order variables, *F*, *G*, *H*, . . . ;
- Unary function symbol ϵ .

Let $\vartheta(x)$ be a metavariable for any second-order variable with at most one free variable, \mathcal{M}_{I} the first-order domain and $\mathcal{M}_{2} = \mathcal{O}(\mathcal{M}_{I})$ the second-order domain.

- $\mathcal{E}(\vartheta(x)) \subseteq M_{\mathrm{I}};$
- *Remark.* $\mathcal{E}(\vartheta)$ is the set that is specified by ϑ .
- $\mathcal{A}(\vartheta(x)) := M_{\mathrm{I}} \mathcal{E}(\vartheta(x))$, with $\mathcal{E} \cap \mathcal{A} = \emptyset$ and $\mathcal{E} \cup \mathcal{A} = M_{\mathrm{I}}$;
- ϵ is interpreted by the function $\pi: M_2 \to M_1$;
- $\mathfrak{A} \models \forall F^n(Fx) \text{ if } \mathfrak{A} \models F^n x \text{ for all } F^n \in \mathcal{M}_2 \text{ and } \mathfrak{A} \models \exists X(Xx) \text{ if } \mathfrak{A} \models X^n x \text{ for some } X^n \in \mathcal{M}_2.$

ヘロア 人間 アメヨア 人間アー

Let $\vartheta(x)$ be a metavariable for any second-order variable with at most one free variable, \mathcal{M}_{I} the first-order domain and $\mathcal{M}_{2} = \mathcal{O}(\mathcal{M}_{I})$ the second-order domain.

• $\mathcal{E}(\vartheta(x)) \subseteq M_{\mathrm{I}};$

• *Remark*. $\mathcal{E}(\vartheta)$ is the set that is specified by ϑ .

- $\mathcal{A}(\vartheta(x)) := M_{\mathrm{I}} \mathcal{E}(\vartheta(x))$, with $\mathcal{E} \cap \mathcal{A} = \emptyset$ and $\mathcal{E} \cup \mathcal{A} = M_{\mathrm{I}}$;
- ϵ is interpreted by the function $\pi: M_2 \to M_1$;
- $\mathfrak{A} \models \forall F^n(Fx) \text{ if } \mathfrak{A} \models F^n x \text{ for all } F^n \in \mathcal{M}_2 \text{ and } \mathfrak{A} \models \exists X(Xx) \text{ if } \mathfrak{A} \models X^n x \text{ for some } X^n \in \mathcal{M}_2.$

ヘロア 人間 アメヨア 人間アー

Let $\vartheta(x)$ be a metavariable for any second-order variable with at most one free variable, \mathcal{M}_{I} the first-order domain and $\mathcal{M}_{2} = \mathcal{O}(\mathcal{M}_{I})$ the second-order domain.

- $\mathcal{E}(\vartheta(x)) \subseteq M_{\mathrm{I}};$
- *Remark*. $\mathcal{E}(\vartheta)$ is the set that is specified by ϑ .
- $\mathcal{A}(\vartheta(x)) := M_{\mathrm{I}} \mathcal{E}(\vartheta(x))$, with $\mathcal{E} \cap \mathcal{A} = \emptyset$ and $\mathcal{E} \cup \mathcal{A} = M_{\mathrm{I}}$;
- ϵ is interpreted by the function $\pi: M_2 o M_1$;
- $\mathfrak{A} \models \forall F^n(Fx) \text{ if } \mathfrak{A} \models F^n x \text{ for all } F^n \in \mathcal{M}_2 \text{ and } \mathfrak{A} \models \exists X(Xx) \text{ if } \mathfrak{A} \models X^n x \text{ for some } X^n \in \mathcal{M}_2.$

・ロト ・四ト ・ヨト ・ヨト

Let $\vartheta(x)$ be a metavariable for any second-order variable with at most one free variable, \mathcal{M}_{I} the first-order domain and $\mathcal{M}_{2} = \mathscr{D}(\mathcal{M}_{I})$ the second-order domain.

- $\mathcal{E}(\vartheta(x)) \subseteq M_{\mathrm{I}};$
- Remark. $\mathcal{E}(\vartheta)$ is the set that is specified by ϑ .
- $\mathcal{A}(\vartheta(x)) := \mathcal{M}_{\mathrm{I}} \mathcal{E}(\vartheta(x))$, with $\mathcal{E} \cap \mathcal{A} = \emptyset$ and $\mathcal{E} \cup \mathcal{A} = \mathcal{M}_{\mathrm{I}}$;
- ϵ is interpreted by the function $\pi: M_2 \to M_{ ext{\tiny I}};$
- $\mathfrak{A} \models \forall F^n(Fx) \text{ if } \mathfrak{A} \models F^n x \text{ for all } F^n \in M_2 \text{ and } \mathfrak{A} \models \exists X(Xx) \text{ if } \mathfrak{A} \models X^n x \text{ for some } X^n \in M_2.$

< 日 > < 同 > < 回 > < 回 > < 回 > <

Let $\vartheta(x)$ be a metavariable for any second-order variable with at most one free variable, \mathcal{M}_{I} the first-order domain and $\mathcal{M}_{2} = \mathscr{D}(\mathcal{M}_{I})$ the second-order domain.

- $\mathcal{E}(\vartheta(x)) \subseteq M_{I};$
- Remark. $\mathcal{E}(\vartheta)$ is the set that is specified by ϑ .
- $\mathcal{A}(\vartheta(x)) := \mathcal{M}_{I} \mathcal{E}(\vartheta(x))$, with $\mathcal{E} \cap \mathcal{A} = \emptyset$ and $\mathcal{E} \cup \mathcal{A} = \mathcal{M}_{I}$;
- ϵ is interpreted by the function $\pi: M_2 \to M_1$;
- $\mathfrak{A} \models \forall F^n(Fx) \text{ if } \mathfrak{A} \models F^n x \text{ for all } F^n \in \mathcal{M}_2 \text{ and } \mathfrak{A} \models \exists X(Xx) \text{ if } \mathfrak{A} \models X^n x \text{ for some } X^n \in \mathcal{M}_2.$

< 日 > < 同 > < 回 > < 回 > < 回 > <

Let $\vartheta(x)$ be a metavariable for any second-order variable with at most one free variable, \mathcal{M}_{I} the first-order domain and $\mathcal{M}_{2} = \mathscr{D}(\mathcal{M}_{I})$ the second-order domain.

- $\mathcal{E}(\vartheta(x)) \subseteq M_{I};$
- *Remark*. $\mathcal{E}(\vartheta)$ is the set that is specified by ϑ .
- $\mathcal{A}(\vartheta(x)) := \mathcal{M}_{I} \mathcal{E}(\vartheta(x))$, with $\mathcal{E} \cap \mathcal{A} = \emptyset$ and $\mathcal{E} \cup \mathcal{A} = \mathcal{M}_{I}$;
- ϵ is interpreted by the function $\pi: M_{\scriptscriptstyle 2} \to M_{\scriptscriptstyle I};$
- $\mathfrak{A} \models \forall F^n(Fx) \text{ if } \mathfrak{A} \models F^n x \text{ for all } F^n \in \mathcal{M}_2 \text{ and } \mathfrak{A} \models \exists X(Xx) \text{ if } \mathfrak{A} \models X^n x \text{ for some } X^n \in \mathcal{M}_2.$

< 日 > < 同 > < 回 > < 回 > < 回 > <

Definition (Hierarchy of Interpretations)

- \mathcal{S}_{\emptyset} : $\mathcal{M}_{I} = \emptyset$, namely, $(\mathcal{E}) = \emptyset$;
- S_{n+1} : $\mathfrak{A} \models \vartheta$, for any $x \in \mathcal{E}(\vartheta)$;
- $S_{\sigma}: \bigcup_{\lambda < \sigma} \mathcal{E}_{\lambda}.$

Remark. Only at the limit stage of this hierarchy, $\mathcal{E}(\vartheta)$ will be fixed, namely, $\mathcal{E}(\vartheta)$ is in M_2 .

Definition (Hierarchy of Interpretations)

- S_{\emptyset} : $M_{I} = \emptyset$, namely, $(\mathcal{E}) = \emptyset$;
- S_{n+1} : $\mathfrak{A} \models \vartheta$, for any $x \in \mathcal{E}(\vartheta)$;
- $S_{\sigma}: \bigcup_{\lambda < \sigma} \mathcal{E}_{\lambda}.$

Remark. Only at the limit stage of this hierarchy, $\mathcal{E}(\vartheta)$ will be fixed, namely, $\mathcal{E}(\vartheta)$ is in M_2 .

Definition (Hierarchy of Interpretations)

S₀: M₁ = Ø, namely, (E) = Ø;
S_{n+1}: 𝔅 ⊨ ϑ, for any x ∈ E(ϑ);
S_σ: ⋃ E_λ.

Remark. Only at the limit stage of this hierarchy, $\mathcal{E}(\vartheta)$ will be fixed, namely, $\mathcal{E}(\vartheta)$ is in M_2 .

Definition (Hierarchy of Interpretations)

- *S*_∅: *M*₁ = ∅, namely, (*E*) = ∅;
 *S*_{n+1}: 𝔅 ⊨ ϑ, for any *x* ∈ *E*(ϑ);
- $S_{\sigma}: \bigcup_{\lambda < \sigma} \mathcal{E}_{\lambda}.$

Remark. Only at the limit stage of this hierarchy, $\mathcal{E}(\vartheta)$ will be fixed, namely, $\mathcal{E}(\vartheta)$ is in \mathcal{M}_2 .

イロト イヨト イヨト イヨト

Definition (Hierarchy of Interpretations)

S_∅: M_I = ∅, namely, (E) = ∅;
S_{n+I}: 𝔄 ⊨ ϑ, for any x ∈ E(ϑ);
S_σ: ⋃_{λ<σ} E_λ.

Remark. Only at the limit stage of this hierarchy, $\mathcal{E}(\vartheta)$ will be fixed, namely, $\mathcal{E}(\vartheta)$ is in M_2 .

Poset

Definition (Poset)

Let $\mathcal{M} = \langle \mathcal{D}, \subseteq \rangle$ be a poset where $\mathcal{D} = \mathcal{D}(\omega)$ and \subseteq is a relation, reflexive, antisymmetric, and transitive over \mathcal{D} .

By poset properties is possibile to define a function ϕ over ${\mathcal M}$ such that:

Definition (*Monotonicity*)

Let ϕ an unary-function and \mathcal{D} a domain, if $\forall x, y$ such that $x \leq y$ then $\phi(x) \leq \phi(y)$, where ϕ is ordered preserving, ϕ is called *monotone*.

Poset

Definition (Poset)

Let $\mathcal{M} = \langle \mathcal{D}, \subseteq \rangle$ be a poset where $\mathcal{D} = \mathcal{D}(\omega)$ and \subseteq is a relation, reflexive, antisymmetric, and transitive over \mathcal{D} .

By poset properties is possibile to define a function ϕ over $\mathcal M$ such that:

Definition (*Monotonicity*)

Let ϕ an unary-function and \mathcal{D} a domain, if $\forall x, y$ such that $x \leq y$ then $\phi(x) \leq \phi(y)$, where ϕ is ordered preserving, ϕ is called *monotone*.

ヘロト 人間 トイヨト イヨト

Poset

Definition (Poset)

Let $\mathcal{M} = \langle \mathcal{D}, \subseteq \rangle$ be a poset where $\mathcal{D} = \mathcal{P}(\omega)$ and \subseteq is a relation, reflexive, antisymmetric, and transitive over \mathcal{D} .

By poset properties is possibile to define a function ϕ over \mathcal{M} such that:

Definition (*Monotonicity*)

Let ϕ an unary-function and \mathcal{D} a domain, if $\forall x, y$ such that $x \leq y$ then $\phi(x) \leq \phi(y)$, where ϕ is ordered preserving, ϕ is called *monotone*.

Monotonicity

Lemma

The Hierarchy of interpretation is a non decreasing sequence.

Proof

By transfinite induction on lpha:

•
$$\alpha = \emptyset$$
: $(\mathcal{E}) = \emptyset$;

- $\alpha = n + \iota$: $(\mathcal{E}_{n+\iota})$ extends the interpretation of (\mathcal{E}_n) : if $(\mathcal{E}_n) \leq (\mathcal{E}_{n+\iota})$, by monotonicity, then $(\mathcal{E}_n) \leq \phi((\mathcal{E}_{n+\iota}))$.
- $\alpha = \sigma$ with σ limit, I have $\mathcal{E}_{\sigma} = \mathcal{E}_{\sigma+1}$; by monotonicity, $(\mathcal{E}_{\sigma}) = \phi(\mathcal{E}_{\sigma+1})$, i.e. $\mathcal{E}_{\sigma} = \bigcup_{\lambda < \sigma} \mathcal{E}_{\lambda} = (\mathcal{E}_{\sigma+1})$. According to definition 1, $\phi(\mathcal{E}_{\sigma+1}) = \phi(\mathcal{E}_{\sigma})$.

(日)

Monotonicity

Lemma

The Hierarchy of interpretation is a non decreasing sequence.

Proof.

By transfinite induction on α :

•
$$\alpha = \emptyset: (\mathcal{E}) = \emptyset;$$

- $\alpha = n + I$: (\mathcal{E}_{n+1}) extends the interpretation of (\mathcal{E}_n) : if $(\mathcal{E}_n) \leq (\mathcal{E}_{n+1})$, by monotonicity, then $(\mathcal{E}_n) \leq \phi((\mathcal{E}_{n+1}))$.
- $\alpha = \sigma$ with σ limit, I have $\mathcal{E}_{\sigma} = \mathcal{E}_{\sigma+1}$; by monotonicity, $(\mathcal{E}_{\sigma}) = \phi(\mathcal{E}_{\sigma+1})$, i.e. $\mathcal{E}_{\sigma} = \bigcup_{\lambda < \sigma} \mathcal{E}_{\lambda} = (\mathcal{E}_{\sigma+1})$. According to definition 1, $\phi(\mathcal{E}_{\sigma+1}) = \phi(\mathcal{E}_{\sigma})$.

SOL and poset

Least fixed point

Theorem

 ϕ has least fixed point.

(日)

SOL and poset

Least fixed point

Theorem

 ϕ has least fixed point.

Proof.

Every monotone mapping $\nu: \mathcal{D} \to \mathcal{D}$ on an partially-ordered set has a unique least fixed point, i.e. for some $x \in D$, $\nu(x) = x$. Since ϕ is a monotone function from $\mathcal{D}(\omega) \to \mathcal{D}(\omega)$ and that $\mathcal{D}(\omega)$ is a chain-complete poset, i.e. every chain in \mathcal{D} has least upper bound, ϕ has least fixed point.

<ロ> < 回 > < 回 > < 回 > < 回 > < 回

Posets and BLV

- At the least fixed point level, there will not be new interpretation of ϑ(x), namely, his extension will be fixed in M₂ and the application of the extension operator ε to it delivers an ordered first-order individual.
- Existence of a least element in \mathcal{M} ;
- Existence of an upper bound in \mathcal{M} .

◆ロ → ◆母 → ◆ 母 → ◆ 母 →

Posets and BLV

- At the least fixed point level, there will not be new interpretation of ϑ(x), namely, his extension will be fixed in M₂ and the application of the extension operator ε to it delivers an ordered first-order individual.
- Existence of a least element in \mathcal{M} ;
- Existence of an upper bound in \mathcal{M} .

◆ロ → ◆母 → ◆ 母 → ◆ 母 →

Posets and BLV

- At the least fixed point level, there will not be new interpretation of ϑ(x), namely, his extension will be fixed in M₂ and the application of the extension operator ε to it delivers an ordered first-order individual.
- Existence of a least element in \mathcal{M} ;
- Existence of an upper bound in \mathcal{M} .

(日)

Theorem

$\mathcal{E}(x \neq x)$ is in the least fixed point of ϕ .

Proof.

The proof is given by contradiction. Let me assume that $\mathcal{E}(x \neq x)$ is not in the least fixed point of ϕ . Then, according to definition 1 and lemma 4, $\mathcal{E}(x \neq x)$ has no fixed extension, his extension increases. However, under $\mathcal{E}(x \neq x)$ no objects ever falls, so $\mathcal{E}(x \neq x)$ is alway empty. Thus, at the least fixed point level I have that $\phi(\mathcal{E}_{\sigma+1}(x \neq x)) = (\mathcal{E}_{\sigma}(x \neq x))$, namely, ϵ delivers from M_2 the individual $\epsilon(x \neq x)$ to M_1 .

Theorem

 $\mathcal{E}(x \neq x)$ is in the least fixed point of ϕ .

Proof.

The proof is given by contradiction. Let me assume that $\mathcal{E}(x \neq x)$ is not in the least fixed point of ϕ . Then, according to definition 1 and lemma 4, $\mathcal{E}(x \neq x)$ has no fixed extension, his extension increases. However, under $\mathcal{E}(x \neq x)$ no objects ever falls, so $\mathcal{E}(x \neq x)$ is alway empty. Thus, at the least fixed point level I have that $\phi(\mathcal{E}_{\sigma+1}(x \neq x)) = (\mathcal{E}_{\sigma}(x \neq x))$, namely, ϵ delivers from M_2 the individual $\epsilon(x \neq x)$ to M_1 .

Least element

Claim

\emptyset is the least element of \mathcal{M} , \perp .

Proof.

The object $(x \neq x)$ does not contain elements.

Claim

 $\{\bot\}$ is the simplest non empty poset. Moreover, $\{\bot\}$ is both discrete and flat.

Least element

Claim

 \emptyset is the least element of \mathcal{M} , \perp .

Proof.

The object $(x \neq x)$ does not contain elements.

Claim

 $\{\bot\}$ is the simplest non empty poset. Moreover, $\{\bot\}$ is both discrete and flat.

(日)

Least element

Claim

 \emptyset is the least element of \mathcal{M} , \perp .

Proof.

The object $(x \neq x)$ does not contain elements.

Claim

 $\{\bot\}$ is the simplest non empty poset. Moreover, $\{\bot\}$ is both discrete and flat.

Upper bound?

Theorem

 $\mathcal{E}(x = x)$ is not in the least fixed point of ϕ .

Proof.

The proof is given by contradiction. Let me assume that $\mathcal{E}(x = x)$ is in the least fixed point of ϕ . Thus, there must be a corresponding VR-term $\epsilon(x = x) \in M_1$. Since that it is true, then $\epsilon(x = x)$ is a new VR-term in M_1 for which the concept x = x has not yet been evaluated. But if $\mathcal{E}(x = x)$ was in the least fixed point of ϕ , $\mathcal{E}(x = x)$ should have specified all instances of T_{ω} . However, $\epsilon(x = x)$ is not in such set. Thus, $\mathcal{E}(x = x)$ is not in the least point of ϕ and it is in the non ordered portion of M_1 .

イロト イヨト イヨト イヨト

Upper bound?

Theorem

 $\mathcal{E}(x = x)$ is not in the least fixed point of ϕ .

Proof.

The proof is given by contradiction. Let me assume that $\mathcal{E}(x = x)$ is in the least fixed point of ϕ . Thus, there must be a corresponding VR-term $\epsilon(x = x) \in M_{I}$. Since that it is true, then $\epsilon(x = x)$ is a new VR-term in M_{I} for which the concept x = x has not yet been evaluated. But if $\mathcal{E}(x = x)$ was in the least fixed point of ϕ , $\mathcal{E}(x = x)$ should have specified all instances of \mathcal{T}_{ω} . However, $\epsilon(x = x)$ is not in such set. Thus, $\mathcal{E}(x = x)$ is not in the least point of ϕ and it is in the non ordered portion of M_{I} .

イロト イヨト イヨト イヨト

Figure: The first-order domain

・ロト ・ 日 ・ ・ 田 ・

Well and non well-ordered

- There are instances that works not in agreement with ϕ and then other first-order individuals that works in a non well-ordered way.
- There are first-order individuals ordered by the function ϕ and then they work in an iterative way because they are well ordered by ϕ and well founded by $\{\emptyset\}$.

◆ロ → ◆母 → ◆ 母 → ◆ 母 →

Definition (Product Order)

Given two poset M and N, the product order is a partial ordering on the cartesian product $M \times N$.

Thus, given two pairs (m_1, n_1) and $(m_1, n_1) + 1$ in a $\omega \times \omega$ sequence, $(m_1, n_1) \subseteq (m_1, n_1) + 1 \Leftrightarrow m_1 \subseteq m_1 + 1 \land n_1 \subseteq n_1 + 1$.

Generally, given a set \mathcal{M} , a product order on the Cartesian Product $\prod_{\mathcal{M}} \{1, 0\}$ is the

inclusion ordering of subsets of \mathcal{M} .

Definition (Pairing function)

Let f(m, n) and g(m, n) be some pairing function. I define: $f_0(m, n) = 2 \times f(m, n)$ and $g(m, n) = 4 \times f(m, n) + 1$.

(日)

Definition (Product Order)

Given two poset M and N, the product order is a partial ordering on the cartesian product $M \times N$.

Thus, given two pairs (m_{I}, n_{I}) and $(m_{I}, n_{I}) + I$ in a $\omega \times \omega$ sequence, $(m_{I}, n_{I}) \subseteq (m_{I}, n_{I}) + I \Leftrightarrow m_{I} \subseteq m_{I} + I \land n_{I} \subseteq n_{I} + I$.

Generally, given a set \mathcal{M} , a product order on the Cartesian Product $\prod_{\mathcal{M}} \{1, 0\}$ is the

Definition (Pairing function)

Let f(m, n) and g(m, n) be some pairing function. I define: $f_0(m, n) = 2 \times f(m, n)$ and $g(m, n) = 4 \times f(m, n) + 1$.

イロト イヨト イヨト イヨト

Definition (Product Order)

Given two poset M and N, the product order is a partial ordering on the cartesian product $M \times N$.

Thus, given two pairs (m_1, n_1) and $(m_1, n_1) + 1$ in a $\omega \times \omega$ sequence, $(m_1, n_1) \subseteq (m_1, n_1) + 1 \Leftrightarrow m_1 \subseteq m_1 + 1 \land n_1 \subseteq n_1 + 1$.

Generally, given a set \mathcal{M} , a product order on the Cartesian Product $\prod_{\mathcal{M}} \{I, o\}$ is the inclusion ordering of subsets of \mathcal{M} .

Definition (Pairing function)

Let f(m, n) and g(m, n) be some pairing function. I define: $f_0(m, n) = 2 \times f(m, n)$ and $g(m, n) = 4 \times f(m, n) + 1$.

イロト イヨト イヨト イヨト

Definition (Product Order)

Given two poset M and N, the product order is a partial ordering on the cartesian product $M \times N$.

Thus, given two pairs (m_1, n_1) and $(m_1, n_1) + 1$ in a $\omega \times \omega$ sequence, $(m_1, n_1) \subseteq (m_1, n_1) + 1 \Leftrightarrow m_1 \subseteq m_1 + 1 \land n_1 \subseteq n_1 + 1$.

Generally, given a set \mathcal{M} , a product order on the Cartesian Product $\prod_{\mathcal{M}} \{1, 0\}$ is the inclusion ordering of subsets of \mathcal{M} .

Definition (Pairing function)

Let f(m, n) and g(m, n) be some pairing function. I define: $f_o(m, n) = 2 \times f(m, n)$ and $g(m, n) = 4 \times f(m, n) + 1$.

(日)

Denotations

Model

Corollary (\mathfrak{A})

The former structure is a smallest model for the theory: the triple be $\langle \mathcal{M}, \omega, \pi \rangle$ be a model \mathfrak{A} wherein, $\mathcal{M} = \langle \mathcal{D}, \subseteq \rangle$ is the above mentioned poset; ω is the cardinality of \mathfrak{A} and π is an interpretation for the extension operator.

• $\mathcal M$ is well ordered by $\{x
eq x\}$ that denotes the least element \perp of $\mathcal M$

• Symmetrically, $\{\omega \times \omega\}$ denotes the upper bound \top , $\mathcal{M} \in \mathcal{M} \land \forall x \in \mathcal{M}[x \leq \mathcal{M}]$ with $\mathcal{M} = \top$.

イロト イヨト イヨト イヨト

Denotations

Model

Corollary (\mathfrak{A})

The former structure is a smallest model for the theory: the triple be $\langle \mathcal{M}, \omega, \pi \rangle$ be a model \mathfrak{A} wherein, $\mathcal{M} = \langle \mathcal{D}, \subseteq \rangle$ is the above mentioned poset; ω is the cardinality of \mathfrak{A} and π is an interpretation for the extension operator.

• $\mathcal M$ is well ordered by $\{x
eq x\}$ that denotes the least element \perp of $\mathcal M$

• Symmetrically, $\{\omega \times \omega\}$ denotes the upper bound \top , $\mathcal{M} \in \mathcal{M} \land \forall x \in \mathcal{M}[x \leq \mathcal{M}]$ with $\mathcal{M} = \top$.

イロト イヨト イヨト イヨト

Denotations

Model

Corollary (\mathfrak{A})

The former structure is a smallest model for the theory: the triple be $\langle \mathcal{M}, \omega, \pi \rangle$ be a model \mathfrak{A} wherein, $\mathcal{M} = \langle \mathcal{D}, \subseteq \rangle$ is the above mentioned poset; ω is the cardinality of \mathfrak{A} and π is an interpretation for the extension operator.

- \mathcal{M} is well ordered by $\{x \neq x\}$ that denotes the least element \perp of \mathcal{M}
- Symmetrically, $\{\omega \times \omega\}$ denotes the upper bound \top , $\mathcal{M} \in \mathcal{M} \land \forall x \in \mathcal{M}[x \leq M]$ with $\mathcal{M} = \top$.

◆ロ → ◆檀 → ◆ 臣 → ◆ 臣 →

Thank You!

Frege's Basic Law V via Partial Orders

ヘロト ヘロト ヘヨト ヘヨト

BURGESS J. P., Fixing Frege, Princeton: Princeton University Press, 2005.

- FERREIRA F., and WEHMEIER K. F., On the consistency of the Δ_1^1 -CA fragment of Frege's Grundgesetze, Journal of Philosophical Logic, 31 (2002) 4, pp. 301-311.
- FerreIRA, Zig Zag and Frege Arithmetic, http://webpages.fc.ul.pt/~fjferreira/Zigzag.pdf
- FREGE, G., *Grundgesetze der Arithmetik. Begriffschriftlich abgeleitet*, vol. I-II, Jena: H. Pohle, 1893-1903 (trans. by P. A. Ebert and M. Rossberg, *The Basic Laws of Arithmetic*, Oxford: Oxford University Press, 2013).
- HECK, R. K., *The consistency of predicative fragments of Frege's* Grundgesetze der Arithmetik, History and Philosophical Logic, 17 (1996) 4, pp. 209-220 (originally published under the name "Richard G. Heck, Jr").

- MOSCHOVAKIS, Y., *Notes on Set Theory*, New York: Springer, 2006 (2nd edition).
- UZQUIANO, G., JANÉ, I., *Well and Non-Well-Founded Extesnsions*, Journal of Philosophical Logic, 33 (2004), pp. 437-465.