Frege's Basic Law V via Partial Orders

Giovanni M. Martino

Vita-Salute San Raffaele University, Milan
giovanni.martino3@outlook.it
TACL 2019, Nice
June 2I, 2019

SOL

A standard second-order structure is a sequence:

$$
\mathfrak{S}=\left\langle A, A^{*}, c^{*}, R^{*}\right\rangle,
$$

wherein:

SOL

A standard second-order structure is a sequence:

$$
\mathfrak{S}=\left\langle A, A^{*}, c^{*}, R^{*}\right\rangle,
$$

wherein:

- $A^{*}=\left\langle A_{n} \mid n \in N\right\rangle$;
- $c^{*}=\left\{c_{i} \mid i \in N\right\} \subseteq A$;
- $R=\left\langle R_{i}^{n} \mid i, n \in N\right\rangle$ and $A_{n} \subseteq \wp\left(A^{n}\right), R_{i}^{n} \in A_{n}$.

SOL

A standard second-order structure is a sequence:

$$
\mathfrak{S}=\left\langle A, A^{*}, c^{*}, R^{*}\right\rangle,
$$

wherein:

- $A^{*}=\left\langle A_{n} \mid n \in N\right\rangle$;
- $c^{*}=\left\{c_{i} \mid i \in N\right\} \subseteq A$;
- $R=\left\langle R_{i}^{n} \mid i, n \in N\right\rangle$ and $A_{n} \subseteq \wp\left(A^{n}\right), R_{i}^{n} \in A_{n}$.

Roughly speaking, a second-order structure consists of a universe A of individuals, a second-order universe for n-ary relations, for $n \geq \emptyset$ and individual constants.

SOL

A standard second-order structure is a sequence:

$$
\mathfrak{S}=\left\langle A, A^{*}, c^{*}, R^{*}\right\rangle
$$

wherein:

- $A^{*}=\left\langle A_{n} \mid n \in N\right\rangle$;
- $c^{*}=\left\{c_{i} \mid i \in N\right\} \subseteq A$;
- $R=\left\langle R_{i}^{n} \mid i, n \in N\right\rangle$ and $A_{n} \subseteq \wp\left(A^{n}\right), R_{i}^{n} \in A_{n}$.

Roughly speaking, a second-order structure consists of a universe A of individuals, a second-order universe for n-ary relations, for $n \geq \emptyset$ and individual constants.

Remark. In the case that $A_{n}=\wp\left(A^{n}\right)$, i.e. A_{n} contains all n-ary relations, we call \mathfrak{S} full.

BLV

$$
\text { BLV : } \forall F \forall G[\epsilon F x=\epsilon G x \longleftrightarrow \forall x(F x \leftrightarrow G x)] .
$$

$$
\begin{aligned}
& \text { Basic law } \mathrm{V} \text { axiomatizes the behavior of a type-lowering operator }(\epsilon) \text {, from the } \\
& \text { second-order entities to first-order individuals. } \epsilon \text { is called extension operator. } \\
& \text { Indeed, BLV postulates that this operator is an injective fuction. }
\end{aligned}
$$

BLV

$$
\text { BLV : } \quad \forall F \forall G[\epsilon F x=\epsilon G x \longleftrightarrow \forall x(F x \leftrightarrow G x)] .
$$

Basic law V axiomatizes the behavior of a type-lowering operator (ϵ), from the second-order entities to first-order individuals. ϵ is called extension operator. Indeed, BLV postulates that this operator is an injective fuction.

BLV

$$
\text { BLV : } \quad \forall F \forall G[\epsilon F x=\epsilon G x \longleftrightarrow \forall x(F x \leftrightarrow G x)] .
$$

Basic law V axiomatizes the behavior of a type-lowering operator (ϵ), from the second-order entities to first-order individuals. ϵ is called extension operator. Indeed, BLV postulates that this operator is an injective fuction. ϵ takes a second-order entitie F as argument and returns an object ϵF.

BLV

$$
\text { BLV : } \quad \forall F \forall G[\epsilon F x=\epsilon G x \longleftrightarrow \forall x(F x \leftrightarrow G x)] .
$$

Basic law V axiomatizes the behavior of a type-lowering operator (ϵ), from the second-order entities to first-order individuals. ϵ is called extension operator. Indeed, BLV postulates that this operator is an injective fuction. ϵ takes a second-order entitie F as argument and returns an object ϵF.

Remark. $\epsilon F x$ as $\{x: F x\}$.

Standard model

Models for BLV have the following form:

$$
\mathcal{M}=\left(M, S_{\mathrm{I}}(M), S_{2}(M), \ldots, \pi\right)
$$

wherein:

- $M \neq \emptyset$ serves for the interpretation of the first-order individuals; - $S_{n}(M) \subseteq \wp\left(M^{n}\right)$ serves for the interpretation of second-order n-ary predicates; - $\pi: S_{\mathrm{I}}(M) \rightarrow M$ is an injection. aim is to characterise \mathcal{M} as a poset.

Standard model

Models for BLV have the following form:

$$
\mathcal{M}=\left(M, S_{\mathrm{r}}(M), S_{2}(M), \ldots, \pi\right)
$$

wherein:

- $M \neq \emptyset$ serves for the interpretation of the first-order individuals;
- $S_{n}(M) \subseteq \wp\left(M^{n}\right)$ serves for the interpretation of second-order n-ary predicates;
- $\pi: S_{\mathrm{r}}(M) \rightarrow M$ is an injection.

Standard model

Models for BLV have the following form:

$$
\mathcal{M}=\left(M, S_{\mathrm{r}}(M), S_{2}(M), \ldots, \pi\right)
$$

wherein:

- $M \neq \emptyset$ serves for the interpretation of the first-order individuals;
- $S_{n}(M) \subseteq \wp\left(M^{n}\right)$ serves for the interpretation of second-order n-ary predicates;
- $\pi: S_{\mathrm{I}}(M) \rightarrow M$ is an injection.

My aim is to characterise \mathcal{M} as a poset.

Syntax

- Standard SOL with $A_{n}=\wp\left(A_{n}\right)$;
- A sort of first order variables, x, y, z, \ldots and a sort of second-order variables, F, G, H, \ldots;
- Unary function symbol ϵ.

Semantics

Let $\vartheta(x)$ be a metavariable for any second-order variable with at most one free variable, M_{1} the first-order domain and $M_{2}=\wp\left(M_{\mathrm{I}}\right)$ the second-order domain.

Semantics

Let $\vartheta(x)$ be a metavariable for any second-order variable with at most one free variable, M_{1} the first-order domain and $M_{2}=\wp\left(M_{\mathrm{I}}\right)$ the second-order domain.

- $\mathcal{E}(\vartheta(x)) \subseteq M_{\mathrm{I}}$;

Semantics

Let $\vartheta(x)$ be a metavariable for any second-order variable with at most one free variable, M_{1} the first-order domain and $M_{2}=\wp\left(M_{\mathrm{I}}\right)$ the second-order domain.

- $\mathcal{E}(\vartheta(x)) \subseteq M_{\mathrm{I}}$;
- Remark. $\mathcal{E}(\vartheta)$ is the set that is specified by ϑ.

Semantics

Let $\vartheta(x)$ be a metavariable for any second-order variable with at most one free variable, M_{I} the first-order domain and $M_{2}=\wp\left(M_{\mathrm{I}}\right)$ the second-order domain.

- $\mathcal{E}(\vartheta(x)) \subseteq M_{\mathrm{i}}$;
- Remark. $\mathcal{E}(\vartheta)$ is the set that is specified by ϑ.
- $\mathcal{A}(\vartheta(x)):=M_{\mathrm{r}}-\mathcal{E}(\vartheta(x))$, with $\mathcal{E} \cap \mathcal{A}=\emptyset$ and $\mathcal{E} \cup \mathcal{A}=M_{\mathrm{r}}$;

Semantics

Let $\vartheta(x)$ be a metavariable for any second-order variable with at most one free variable, M_{I} the first-order domain and $M_{2}=\wp\left(M_{\mathrm{I}}\right)$ the second-order domain.

- $\mathcal{E}(\vartheta(x)) \subseteq M_{\mathrm{i}}$;
- Remark. $\mathcal{E}(\vartheta)$ is the set that is specified by ϑ.
- $\mathcal{A}(\vartheta(x)):=M_{\mathrm{I}}-\mathcal{E}(\vartheta(x))$, with $\mathcal{E} \cap \mathcal{A}=\emptyset$ and $\mathcal{E} \cup \mathcal{A}=M_{\mathrm{I}}$;
- ϵ is interpreted by the function $\pi: M_{2} \rightarrow M_{1}$;

Semantics

Let $\vartheta(x)$ be a metavariable for any second-order variable with at most one free variable, M_{I} the first-order domain and $M_{2}=\wp\left(M_{\mathrm{I}}\right)$ the second-order domain.

- $\mathcal{E}(\vartheta(x)) \subseteq M_{\mathrm{i}}$;
- Remark. $\mathcal{E}(\vartheta)$ is the set that is specified by ϑ.
- $\mathcal{A}(\vartheta(x)):=M_{\mathrm{I}}-\mathcal{E}(\vartheta(x))$, with $\mathcal{E} \cap \mathcal{A}=\emptyset$ and $\mathcal{E} \cup \mathcal{A}=M_{\mathrm{I}}$;
- ϵ is interpreted by the function $\pi: M_{2} \rightarrow M_{\mathrm{I}}$;
- $\mathfrak{A} \models \forall F^{n}(F x)$ if $\mathfrak{A} \models F^{n} x$ for all $F^{n} \in M_{2}$ and $\mathfrak{A} \models \exists X(X x)$ if $\mathfrak{A} \models X^{n} x$ for some $X^{n} \in M_{2}$.

Hierarchy of interpretations

Definition (Hierarchy of Interpretations)

- $\mathcal{S}_{0}: M_{\mathrm{I}}=\emptyset$, namely, $(\mathcal{E})=\emptyset$;

Hierarchy of interpretations

Definition (Hierarchy of Interpretations)

- $\mathcal{S}_{\emptyset}: M_{\mathrm{I}}=\emptyset$, namely, $(\mathcal{E})=\emptyset ;$

Hierarchy of interpretations

Definition (Hierarchy of Interpretations)

- $\mathcal{S}_{\emptyset}: M_{\mathrm{I}}=\emptyset$, namely, $(\mathcal{E})=\emptyset ;$
- $\mathcal{S}_{n+1}: \mathfrak{A} \mid=\vartheta$, for any $x \in \mathcal{E}(\vartheta)$;

Hierarchy of interpretations

Definition (Hierarchy of Interpretations)

- $\mathcal{S}_{\emptyset}: M_{\mathrm{I}}=\emptyset$, namely, $(\mathcal{E})=\emptyset ;$
- $\mathcal{S}_{n+1}: \mathfrak{A}=\vartheta$, for any $x \in \mathcal{E}(\vartheta)$;
- $\mathcal{S}_{\sigma}: \bigcup_{\lambda<\sigma} \mathcal{E}_{\lambda}$.

Hierarchy of interpretations

Definition (Hierarchy of Interpretations)

- $\mathcal{S}_{\emptyset}: M_{\mathrm{I}}=\emptyset$, namely, $(\mathcal{E})=\emptyset ;$
- $\mathcal{S}_{n+1}: \mathfrak{A} \vDash \vartheta$, for any $x \in \mathcal{E}(\vartheta)$;
- $\mathcal{S}_{\sigma}: \bigcup_{\lambda<\sigma} \mathcal{E}_{\lambda}$.

Remark. Only at the limit stage of this hierarchy, $\mathcal{E}(\vartheta)$ will be fixed, namely, $\mathcal{E}(\vartheta)$ is in M_{2}.

Poset

Definition (Poset)

Let $\mathcal{M}=\langle\mathcal{D}, \subseteq\rangle$ be a poset where $\mathcal{D}=\wp(\omega)$ and \subseteq is a relation, reflexive, antisymmetric, and transitive over \mathcal{D}.

Poset

Definition (Poset)
Let $\mathcal{M}=\langle\mathcal{D}, \subseteq\rangle$ be a poset where $\mathcal{D}=\wp(\omega)$ and \subseteq is a relation, reflexive, antisymmetric, and transitive over \mathcal{D}.

By poset properties is possibile to define a function ϕ over \mathcal{M} such that:

Poset

Definition (Poset)
Let $\mathcal{M}=\langle\mathcal{D}, \subseteq\rangle$ be a poset where $\mathcal{D}=\wp(\omega)$ and \subseteq is a relation, reflexive, antisymmetric, and transitive over \mathcal{D}.

By poset properties is possibile to define a function ϕ over \mathcal{M} such that:

Definition (Monotonicity)

Let ϕ an unary-function and \mathcal{D} a domain, if $\forall x, y$ such that $x \leq y$ then $\phi(x) \leq \phi(y)$, where ϕ is ordered preserving, ϕ is called monotone.

Monotonicity

Lemma
The Hierarchy of interpretation is a non decreasing sequence.

Monotonicity

Lemma
The Hierarchy of interpretation is a non decreasing sequence.
Proof.
By transfinite induction on α :

- $\alpha=\emptyset:(\mathcal{E})=\emptyset$;
- $\alpha=n+\mathrm{I}:\left(\mathcal{E}_{n+\mathrm{I}}\right)$ extends the interpretation of $\left(\mathcal{E}_{n}\right)$: if $\left(\mathcal{E}_{n}\right) \leq\left(\mathcal{E}_{n+\mathrm{I}}\right)$, by monotonicity, then $\left(\mathcal{E}_{n}\right) \leq \phi\left(\left(\mathcal{E}_{n+\mathrm{I}}\right)\right)$.
- $\alpha=\sigma$ with σ limit, I have $\mathcal{E}_{\sigma}=\mathcal{E}_{\sigma+1}$; by monotonicity, $\left(\mathcal{E}_{\sigma}\right)=\phi\left(\mathcal{E}_{\sigma+\mathrm{I}}\right)$,
i.e. $\mathcal{E}_{\sigma}=\bigcup_{\lambda<\sigma} \mathcal{E}_{\lambda}=\left(\mathcal{E}_{\sigma+\mathrm{I}}\right)$. According to definition I, $\phi\left(\mathcal{E}_{\sigma+\mathrm{I}}\right)=\phi\left(\mathcal{E}_{\sigma}\right)$.

Least fixed point

Theorem
ϕ has least fixed point.

Every monotone mapping $\nu: \mathcal{D} \rightarrow \mathcal{D}$ on an partially-ordered set has a unique least fixed toint ie for some $x \in \mathcal{D}, v(x)=x$ Since ϕ is a monotone function fomm $P(\omega) \rightarrow S(\omega)$ and that $P(\omega)$ is a chain-complete poset, i.e. every chain in D has least upper bound, ϕ has least fixed point.

Least fixed point

Theorem
ϕ has least fixed point.
Proof.
Every monotone mapping $\nu: \mathcal{D} \rightarrow \mathcal{D}$ on an partially-ordered set bas a unique least fixed point, i.e. for some $x \in \mathcal{D}, \nu(x)=x$. Since ϕ is a monotone function from $\wp(\omega) \rightarrow \wp(\omega)$ and that $\wp(\omega)$ is a chain-complete poset, i.e. every chain in \mathcal{D} has least upper bound, ϕ bas least fixed point.

Posets and BLV

- At the least fixed point level, there will not be new interpretation of $\vartheta(x)$, namely, his extension will be fixed in M_{2} and the application of the extension operator ϵ to it delivers an ordered first-order individual.

Posets and BLV

- At the least fixed point level, there will not be new interpretation of $\vartheta(x)$, namely, his extension will be fixed in M_{2} and the application of the extension operator ϵ to it delivers an ordered first-order individual.
- Existence of a least element in \mathcal{M};
- Existence of an upper bound in \mathcal{M}

Posets and BLV

- At the least fixed point level, there will not be new interpretation of $\vartheta(x)$, namely, his extension will be fixed in M_{2} and the application of the extension operator ϵ to it delivers an ordered first-order individual.
- Existence of a least element in \mathcal{M};
- Existence of an upper bound in \mathcal{M}.

Theorem

$\mathcal{E}(x \neq x)$ is in the least fixed point of ϕ.

The proof is given by contradiction. Let me assume that $\mathcal{E}(x \neq x)$ is not in the least fixed point of ϕ. Then, according to definition I and lemma 4, $\mathcal{E}(x \neq x)$ has no fixed extension, bis extension increases. However, under $\mathcal{E}(x \neq x)$ no objects ever falls, so $\mathcal{E}(x \neq x)$ is alway empty. Thus, at the least fixed point level I have that

Theorem
$\mathcal{E}(x \neq x)$ is in the least fixed point of ϕ.
Proof.
The proof is given by contradiction. Let me assume that $\mathcal{E}(x \neq x)$ is not in the least fixed point of ϕ. Then, according to definition I and lemma $4, \mathcal{E}(x \neq x)$ bas no fixed extension, bis extension increases. However, under $\mathcal{E}(x \neq x)$ no objects ever falls, so $\mathcal{E}(x \neq x)$ is alway empty. Thus, at the least fixed point level I have that $\phi\left(\mathcal{E}_{\sigma+1}(x \neq x)\right)=\left(\mathcal{E}_{\sigma}(x \neq x)\right)$, namely, ϵ delivers from M_{2} the individual $\epsilon(x \neq x)$ to M_{I}.

Least element

Claim

\emptyset is the least element of \mathcal{M}, \perp.

The object $(x \neq x)$ does not contain elements.

$\{\perp\}$ is the simplest non empty poset. Moreover, $\{\perp\}$ is both discrete and flat.

Least element

Claim
\emptyset is the least element of \mathcal{M}, \perp.
Proof.
The object $(x \neq x)$ does not contain elements.

Least element

Claim
\emptyset is the least element of \mathcal{M}, \perp.
Proof.
The object $(x \neq x)$ does not contain elements.

Claim
$\{\perp\}$ is the simplest non empty poset. Moreover, $\{\perp\}$ is both discrete and flat.

Upper bound?

```
Theorem
\mathcal{E}}(x=x)\mathrm{ is not in the least fixed point of }\phi
```

The proof is given by contradiction. Let me assume that $\mathcal{E}(x=x)$ is in the least fixed point of ϕ. Thus, there must be a corresponding $V R$-term $\epsilon(x=x) \in M_{\mathrm{r}}$. Since that it is true, then $\in(x=x)$ is a new VR-term in M_{I} for which the concept $x=x$ bas not yet been evaluated. But if $\mathcal{E}(x=x)$ was in the least fixed point of
$\mathcal{E}(x=x)$ should bave specified all instances of \mathcal{T}_{ω}. However, $\epsilon(x=x)$ is not in such set. Thus, $\mathcal{E}(x=x)$ is not in the least point of ϕ and it is in the non ordered

Upper bound?

Theorem

$\mathcal{E}(x=x)$ is not in the least fixed point of ϕ.
Proof.
The proof is given by contradiction. Let me assume that $\mathcal{E}(x=x)$ is in the least fixed point of ϕ. Thus, there must be a corresponding $V R$-term $\epsilon(x=x) \in M_{\mathrm{r}}$. Since that it is true, then $\epsilon(x=x)$ is a new $V R$-term in M_{I} for which the concept $x=x$ bas not yet been evaluated. But if $\mathcal{E}(x=x)$ was in the least fixed point of ϕ, $\mathcal{E}(x=x)$ should have specified all instances of \mathcal{T}_{ω}. However, $\epsilon(x=x)$ is not in such set. Thus, $\mathcal{E}(x=x)$ is not in the least point of ϕ and it is in the non ordered portion of M_{1}.

Figure: The first-order domain

Well and non well-ordered

- There are instances that works not in agreement with ϕ and then other first-order individuals that works in a non well-ordered way.
- There are first-order individuals ordered by the function ϕ and then they work in an iterative way because they are well ordered by ϕ and well founded by $\{\emptyset\}$.

A characterisation of \mathcal{M}

Definition (Product Order)
Given two poset M and N, the product order is a partial ordering on the cartesian product $M \times N$.

A characterisation of \mathcal{M}

Definition (Product Order)
Given two poset M and N, the product order is a partial ordering on the cartesian product $M \times N$.

Thus, given two pairs $\left(m_{\mathrm{I}}, n_{\mathrm{I}}\right)$ and $\left(m_{\mathrm{I}}, n_{\mathrm{I}}\right)+\mathrm{I}$ in a $\omega \times \omega$ sequence, $\left(m_{\mathrm{I}}, n_{\mathrm{I}}\right) \subseteq\left(m_{\mathrm{I}}, n_{\mathrm{I}}\right)+\mathrm{I} \Leftrightarrow m_{\mathrm{I}} \subseteq m_{\mathrm{I}}+\mathrm{I} \wedge n_{\mathrm{I}} \subseteq n_{\mathrm{I}}+\mathrm{I}$.

A characterisation of \mathcal{M}

Definition (Product Order)

Given two poset M and N, the product order is a partial ordering on the cartesian product $M \times N$.

Thus, given two pairs $\left(m_{\mathrm{I}}, n_{\mathrm{I}}\right)$ and $\left(m_{\mathrm{I}}, n_{\mathrm{I}}\right)+\mathrm{r}$ in a $\omega \times \omega$ sequence, $\left(m_{\mathrm{I}}, n_{\mathrm{I}}\right) \subseteq\left(m_{\mathrm{I}}, n_{\mathrm{I}}\right)+\mathrm{I} \Leftrightarrow m_{\mathrm{I}} \subseteq m_{\mathrm{I}}+\mathrm{I} \wedge n_{\mathrm{I}} \subseteq n_{\mathrm{I}}+\mathrm{I}$.
Generally, given a set \mathcal{M}, a product order on the Cartesian Product $\prod\{\mathrm{I}, \mathrm{o}\}$ is the inclusion ordering of subsets of \mathcal{M}.

A characterisation of \mathcal{M}

Definition (Product Order)

Given two poset M and N, the product order is a partial ordering on the cartesian product $M \times N$.

Thus, given two pairs $\left(m_{\mathrm{I}}, n_{\mathrm{I}}\right)$ and $\left(m_{\mathrm{I}}, n_{\mathrm{I}}\right)+\mathrm{r}$ in a $\omega \times \omega$ sequence, $\left(m_{\mathrm{I}}, n_{\mathrm{I}}\right) \subseteq\left(m_{\mathrm{I}}, n_{\mathrm{I}}\right)+\mathrm{I} \Leftrightarrow m_{\mathrm{I}} \subseteq m_{\mathrm{I}}+\mathrm{I} \wedge n_{\mathrm{I}} \subseteq n_{\mathrm{I}}+\mathrm{I}$.
Generally, given a set \mathcal{M}, a product order on the Cartesian Product $\prod_{\mathcal{M}}\{\mathrm{I}, \mathrm{o}\}$ is the inclusion ordering of subsets of \mathcal{M}.

Definition (Pairing function)
Let $f(m, n)$ and $g(m, n)$ be some pairing function. I define:
$f_{0}(m, n)=2 \times f(m, n)$ and $g(m, n)=4 \times f(m, n)+\mathrm{I}$.

Model

Corollary (\mathfrak{A})

The former structure is a smallest model for the theory: the triple be $\langle\mathcal{M}, \omega, \pi\rangle$ be a model \mathfrak{A} wherein, $\mathcal{M}=\langle\mathcal{D}, \subseteq\rangle$ is the above mentioned poset; ω is the cardinality of \mathfrak{A} and π is an interpretation for the extension operator.

Model

Corollary (\mathfrak{A})

The former structure is a smallest model for the theory: the triple be $\langle\mathcal{M}, \omega, \pi\rangle$ be a model \mathfrak{A} wherein, $\mathcal{M}=\langle\mathcal{D}, \subseteq\rangle$ is the above mentioned poset; ω is the cardinality of \mathfrak{A} and π is an interpretation for the extension operator.

- \mathcal{M} is well ordered by $\{x \neq x\}$ that denotes the least element \perp of \mathcal{M}

Model

Corollary (\mathfrak{A})

The former structure is a smallest model for the theory: the triple be $\langle\mathcal{M}, \omega, \pi\rangle$ be a model \mathfrak{A} wherein, $\mathcal{M}=\langle\mathcal{D}, \subseteq\rangle$ is the above mentioned poset; ω is the cardinality of \mathfrak{A} and π is an interpretation for the extension operator.

- \mathcal{M} is well ordered by $\{x \neq x\}$ that denotes the least element \perp of \mathcal{M}
- Symmetrically, $\{\omega \times \omega\}$ denotes the upper bound T, $M \in \mathcal{M} \wedge \forall x \in \mathcal{M}[x \leq M]$ with $M=\mathrm{T}$.

Thank You!

Burgess J. P., Fixing Frege, Princeton: Princeton University Press, 2005.
Ferreira F., and Wehmeier K. F., On the consistency of the Δ_{1}^{1}-C A fragment of Frege's Grundgesetze, Journal of Philosophical Logic, 31 (2002) 4, pp. 301-3II.

Ferreira, Zig Zag and Frege Arithmetic, http://webpages.fc.ul.pt/~fjferreira/Zigzag.pdf

Frege, G., Grundgesetze der Arithmetik. Begriffschriftlich abgeleitet, vol. I-II, Jena: H. Pohle, 1893-1903 (trans. by P. A. Ebert and M. Rossberg, The Basic Laws of Arithmetic, Oxford: Oxford University Press, 2013).

- Неск, R. K., The consistency of predicative fragments of Frege's Grundgesetze der Arithmetik, History and Philosophical Logic, 17 (1996) 4, pp. 209-220 (originally published under the name "Richard G. Heck, Jr").
T. Moschovakis, Y., Notes on Set Theory, New York: Springer, 2006 (2nd edition).

囯 Uzquiano, G., Jané, I., Well and Non-Well-Founded Extesnsions, Journal of Philosophical Logic, 33 (2004), pp. 437-465.

