Computing the validity degree in Łukasiewicz logic

Zuzana Haniková

Institute of Computer Science, Czech Academy of Sciences

Topology, Algebra, and Categories in Logic, Nice, June 2019

同 と く ヨ と く ヨ と

Outline

Setting: propositional (infinite-valued) Łukasiewicz logic.

Array of complexity results for decision problems.

Algebraic method: the standard MV-algebra.

Validity degree is an optimization problem.

Complete in FP^{NP} under metric reductions:

- upper bound (oracle computation);
- lower bound (metric reduction).

Language: $\{\oplus, \neg\}$. [0, 1]_L = \langle [0, 1], \oplus , $\neg\rangle$, with

$$x \oplus y = \min(1, x + y)$$
$$\neg x = 1 - x$$

Denote f_{φ} the function defined by the term φ in $[0, 1]_{L}$.

◆□ > ◆□ > ◆目 > ◆目 > ○目 ○ のへで

Language: $\{\oplus, \neg\}$. $[0, 1]_{L} = \langle [0, 1], \oplus, \neg \rangle$, with

$$x \oplus y = \min(1, x + y)$$

 $\neg x = 1 - x$

Denote f_{φ} the function defined by the term φ in $[0, 1]_{L}$.

Define:

• $x \odot y$ is $\neg(\neg x \oplus \neg y)$; • $x \to y$ is $\neg x \oplus y$; • $x \lor y$ is $(x \to y) \to y$; • $x \equiv y$ is $(x \to y) \odot (y \to x)$. Moreover, x^n is $\underline{x \odot \cdots \odot x}$; analogously for nx.

n times

同 ト イヨ ト イヨ ト ・ ヨ ・ ・ ク ヘ ()・

Language: $\{\oplus, \neg\}$. [0, 1]_t = \langle [0, 1], $\oplus, \neg \rangle$, with

$$x \oplus y = \min(1, x + y)$$

 $\neg x = 1 - x$

Denote f_{φ} the function defined by the term φ in $[0, 1]_{L}$.

Define:

• $x \odot y$ is $\neg(\neg x \oplus \neg y)$; • $x \to y$ is $\neg x \oplus y$; • $x \lor y$ is $(x \to y) \to y$; • $x \equiv y$ is $(x \to y) \odot (y \to x)$. Moreover, x^n is $\underbrace{x \odot \cdots \odot x}_{n \text{ times}}$; analogously for nx.

The algebra $[0, 1]_{L}$ captures theorems and provability from finite theories in propositional Łukasiewicz logic.

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ● 今 Q ()~

Language: $\{\oplus, \neg\}$. $[0, 1]_{L} = \langle [0, 1], \oplus, \neg \rangle$, with

$$x \oplus y = \min(1, x + y)$$

 $\neg x = 1 - x$

Denote f_{φ} the function defined by the term φ in $[0, 1]_{L}$.

Define:

• $x \odot y$ is $\neg(\neg x \oplus \neg y)$; • $x \to y$ is $\neg x \oplus y$; • $x \lor y$ is $(x \to y) \to y$; • $x \equiv y$ is $(x \to y) \odot (y \to x)$. Moreover, x^n is $\underbrace{x \odot \cdots \odot x}_{n \text{ times}}$; analogously for nx.

The algebra $[0, 1]_{L}$ captures theorems and provability from finite theories in propositional Łukasiewicz logic.

In particular, $[0, 1]_{L}$ provides a semantic method of investigating computational properties of propositional infinite-valued Lukasiewicz logic. $\sum_{k=1}^{n} \sum_{k=1}^{n} \sum_{k=1}^{n}$

McNaughton functions

A function $f: [0, 1]^n \rightarrow [0, 1]$ is a McNaughton function if

- f is continuous
- *f* is piecewise linear: there are finitely many linear polynomials {*p_i*}_{*i*∈*I*}, with *p_i*(*x̄*) = ∑ⁿ_{*j*=1}*a_{ij} x_j* + *b_i*, such that for any *x̄* ∈ [0, 1]ⁿ there is an *i* ∈ *I* with *f*(*x̄*) = *p_i*(*x̄*)
- the polynomials p_i have integer coefficients \bar{a}_i , b_i .

Theorem [McNaughton 1951]

Term-definable functions of $[0, 1]_{t}$ coincide with McNaughton functions.

→ □ → → ミ → モ → - ミ → へ⊙

Tautologies in standard MV-algebra

Consider MV-term $\varphi(x_1, \ldots, x_n)$.

 f_{φ} introduces a polyhedral complex *C* on its domain (i.e., $\bigcup C = [0, 1]^n$) s.t. restriction of f_{φ} to each (*n*-dimensional) cell of *C* is a linear polynomial.

| ◆ □ ▶ ◆ ミ ▶ ◆ ミ ▶ ● ミ ● の < (~

Tautologies in standard MV-algebra

Consider MV-term $\varphi(x_1, \ldots, x_n)$.

 f_{φ} introduces a polyhedral complex *C* on its domain (i.e., $\bigcup C = [0, 1]^n$) s.t. restriction of f_{φ} to each (*n*-dimensional) cell of *C* is a linear polynomial.

Minimum (maximum) of f_{φ} on $[0, 1]^n$ is attained at a vertex of a cell in C.

Vertices of cells of C occur as solutions of systems of linear equations, with integer coefficient bounded by $\sharp \varphi$ (the number of occurrences of variables in φ).

All vertices of *n*-dimensional cells of *C* are rational vectors $(p_1/q_1, ..., p_n/q_n)$ with

$$q_i \leq (\frac{\sharp \varphi}{n})^n$$

Tautologies in standard MV-algebra

Consider MV-term $\varphi(x_1, \ldots, x_n)$.

 f_{φ} introduces a polyhedral complex *C* on its domain (i.e., $\bigcup C = [0, 1]^n$) s.t. restriction of f_{φ} to each (*n*-dimensional) cell of *C* is a linear polynomial.

Minimum (maximum) of f_{φ} on $[0, 1]^n$ is attained at a vertex of a cell in C.

Vertices of cells of C occur as solutions of systems of linear equations, with integer coefficient bounded by $\sharp \varphi$ (the number of occurrences of variables in φ).

All vertices of *n*-dimensional cells of *C* are rational vectors $(p_1/q_1, ..., p_n/q_n)$ with

$$q_i \leq (rac{\sharp arphi}{n})^n$$

Tautologous terms of the standard MV-algebra are in coNP. [Mundici 1987; Aguzzoli and Ciabattoni 2000; Aguzzoli 2006]

Language: MV, expanded with constants for rationals in [0, 1]. $[0, 1]_{L}^{Q} = \langle [0, 1], \oplus, \neg, \{r \mid r \in Q \cap [0, 1]\} \rangle.$

▲御▶ ▲臣▶ ★臣▶ ―臣 …のへで

Language: MV, expanded with constants for rationals in [0, 1].

 $\llbracket [0,1]^Q_{\mathtt{L}} = \langle \llbracket 0,1
brack, \lnot, \lnot, \{r \mid r \in Q \cap \llbracket 0,1
brack \}
angle.$

The algebra $[0, 1]_{L}^{Q}$ captures theorems and provability from finite theories in Rational Pavelka logic (RPL), a conservative expansion of Łukasicz logic.

Language: MV, expanded with constants for rationals in [0, 1]. $[0, 1]_{L}^{Q} = \langle [0, 1], \oplus, \neg, \{r \mid r \in Q \cap [0, 1]\} \rangle.$

The algebra $[0, 1]_{L}^{Q}$ captures theorems and provability from finite theories in Rational Pavelka logic (RPL), a conservative expansion of Łukasicz logic.

Let φ be an RMV-term and T a set thereof. The validity degree of φ under T is

 $\|\varphi\|_{\mathcal{T}} = \inf\{v(\varphi) \mid v \text{ model of } \mathcal{T}\}.$

Corresponding syntactic notion is $|\varphi|_T = \sup\{r \mid T \vdash_{\mathsf{RPL}} r \to \varphi\}.$

Language: MV, expanded with constants for rationals in [0, 1]. $[0, 1]_{L}^{Q} = \langle [0, 1], \oplus, \neg, \{r \mid r \in Q \cap [0, 1]\} \rangle.$

The algebra $[0, 1]_{L}^{Q}$ captures theorems and provability from finite theories in Rational Pavelka logic (RPL), a conservative expansion of Łukasicz logic.

Let φ be an RMV-term and T a set thereof. The validity degree of φ under T is

 $\|\varphi\|_{\mathcal{T}} = \inf\{v(\varphi) \mid v \text{ model of } \mathcal{T}\}.$

Corresponding syntactic notion is $|\varphi|_T = \sup\{r \mid T \vdash_{\mathsf{RPL}} r \to \varphi\}.$

Pavelka completeness:

 $|\varphi|\tau = \|\varphi\|\tau$

For T finite, write τ instead of T.

- $|\varphi|_{\tau} = 1$ implies φ is provable from τ ;
- $|\varphi|_{\tau}$ is rational.

[Hájek 1998]

▲ 同 ▶ ▲ 目 ▶ ▲ 目 ▶ → 目 → の Q (>

Rationals (bar 0 and 1) are not MV-term definable.

|▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ � � �

Rationals (bar 0 and 1) are not MV-term definable.

On the other hand, each rational *a* is implicitly definable in $[0, 1]_{L}$: there is an MV-term $\varphi(x_1, ..., x_n)$ and $i \leq n$ s.t.

- φ satisfiable in $[0, 1]_{t}$, and
- $v(\varphi) = 1$ implies $v(x_i) = a$ for each assignment v.

Rationals (bar 0 and 1) are not MV-term definable.

On the other hand, each rational *a* is implicitly definable in $[0, 1]_{L}$: there is an MV-term $\varphi(x_1, ..., x_n)$ and $i \leq n$ s.t.

- φ satisfiable in $[0, 1]_{L}$, and
- $v(\varphi) = 1$ implies $v(x_i) = a$ for each assignment v.

Example: $x \equiv (\neg x)^{n-1}$ implicitly defines 1/n.

Rationals (bar 0 and 1) are not MV-term definable.

On the other hand, each rational *a* is implicitly definable in $[0, 1]_{L}$: there is an MV-term $\varphi(x_1, ..., x_n)$ and $i \leq n$ s.t.

- φ satisfiable in $[0, 1]_{L}$, and
- $v(\varphi) = 1$ implies $v(x_i) = a$ for each assignment v.

Example: $x \equiv (\neg x)^{n-1}$ implicitly defines 1/n.

Moreover, each rational p/q (with p and q written in binary) has a poly-size implicit definition, adding (linear number of) new variables.

Example: let $n_m n_{m-1} \dots n_0$ be the binary notation for n-1. Then $y_0 \equiv \neg x$; $y_1 \equiv y_0^2$; $y_2 \equiv y_1^2$; \dots ; $x \equiv \prod_{n_i=1} y_i$ implicitly defines 1/n in variable x.

Rationals (bar 0 and 1) are not MV-term definable.

On the other hand, each rational *a* is implicitly definable in $[0, 1]_{L}$: there is an MV-term $\varphi(x_1, ..., x_n)$ and $i \leq n$ s.t.

- φ satisfiable in $[0, 1]_{L}$, and
- $v(\varphi) = 1$ implies $v(x_i) = a$ for each assignment v.

Example: $x \equiv (\neg x)^{n-1}$ implicitly defines 1/n.

Moreover, each rational p/q (with p and q written in binary) has a poly-size implicit definition, adding (linear number of) new variables.

Example: let $n_m n_{m-1} \dots n_0$ be the binary notation for n-1. Then $y_0 \equiv \neg x$; $y_1 \equiv y_0^2$; $y_2 \equiv y_1^2$; ...; $x \equiv \prod_{n_i=1} y_i$ implicitly defines 1/n in variable x.

Lemma:
$$\|\varphi\|_{\tau} = \|\varphi^{\star}\|_{\tau^{\star} \odot \delta_{\tau \odot \varphi}}.$$

[Hájek 1998]

Two optimization problems in $[0, 1]_{t}$

MAX value
 Instance: (R)MV-term φ.
 Output: MAX(φ) (maximal value of f_φ in [0, 1]_L).

GenSAT: for φ , c, d (with c, $d \in N$), is $f_{\varphi}(\bar{a}) \ge c/d$ for some $\bar{a} \in [0, 1]^n$? This is NP-complete. [Mundici, Olivetti 1998]

Two optimization problems in $[0, 1]_{t}$

• MAX value Instance: (R)MV-term φ . Output: MAX(φ) (maximal value of f_{φ} in [0, 1]_L).

```
GenSAT: for \varphi, c, d (with c, d \in N), is f_{\varphi}(\bar{a}) \ge c/d for some \bar{a} \in [0, 1]^n?
This is NP-complete.
[Mundici, Olivetti 1998]
```

Validity Degree

```
Instance: (R)MV-terms \tau and \varphi.
Output: \|\varphi\|_{\tau} (minimal value of f_{\varphi} on the 1-set of f_{\tau}) in [0, 1]_{L}.
```

where the 1-set of f_{τ} is $\{\bar{a} \in \mathbb{R}^n \mid f_{\tau}(\bar{a}) = 1\}$.

Finite consequence in RMV: for τ , φ , is it the case that $\tau \models_{RMV} r \rightarrow \varphi$? This is coNP-complete. [Hájek 2006]

Two optimization problems in $[0, 1]_{t}$

• MAX value Instance: (R)MV-term φ . Output: MAX(φ) (maximal value of f_{φ} in [0, 1]_L).

```
GenSAT: for \varphi, c, d (with c, d \in N), is f_{\varphi}(\bar{a}) \ge c/d for some \bar{a} \in [0, 1]^n?
This is NP-complete.
[Mundici, Olivetti 1998]
```

Validity Degree

```
Instance: (R)MV-terms \tau and \varphi.
Output: \|\varphi\|_{\tau} (minimal value of f_{\varphi} on the 1-set of f_{\tau}) in [0, 1]_{L}.
```

where the **1-set** of f_{τ} is $\{\bar{a} \in \mathbb{R}^n \mid f_{\tau}(\bar{a}) = 1\}$.

Finite consequence in RMV: for τ , φ , is it the case that $\tau \models_{RMV} r \rightarrow \varphi$? This is coNP-complete. [Hájek 2006]

Function problems such as these sometimes called "evaluation" on "cost", problems

Non-approximability of MAX value

Work in MV-language.

Theorem

Let $\delta < 1/2$ be a positive real. Suppose ALG is a poly-time algorithm computing, for MV-term φ , a real number ALG(φ) satisfying $|ALG(\varphi) - MAX(\varphi)| \le \delta$. Then P = NP.

(本間) (本語) (本語) (語)

Non-approximability of MAX value

Work in MV-language.

Theorem

Let $\delta < 1/2$ be a positive real. Suppose ALG is a poly-time algorithm computing, for MV-term φ , a real number ALG(φ) satisfying $|ALG(\varphi) - MAX(\varphi)| \le \delta$. Then P = NP.

Proof: solve Boolean SAT using ALG.

```
Instance: Boolean formula \varphi, given as \{\odot, \lor\}-combination of literals.
Then f_{\varphi} in [0, 1]_{\mathsf{L}} is a convex function.
```

```
-\varphi satisfiable in {0,1} implies \varphi satisfiable in [0,1]<sub>L</sub>.
```

```
-\varphi not satisfiable in \{0, 1\}: then f_{\varphi} is identically 0.
```

```
So \varphi \in \mathsf{SAT}(\{0,1\}) iff \mathsf{MAX}(\varphi) = 1 iff \mathsf{ALG}(\varphi) > 1/2.
```

[H., Savický 2016]

◆□ → ◆冊 → ◆目 → ▲目 → ○ ● ● ● ●

Work in MV-language (can be adapted to RMV-).

▲□ → ▲ 臣 → ▲ 臣 → ○ 風 ○

Work in MV-language (can be adapted to RMV-).

 $MAX(\varphi)$ is attained at a vertex of a polyhedral decomposition of the domain, with rational coordinates with denominators of (binary) length bounded by $n \log(\sharp \varphi/n)$.

Oracle: GenSAT (given φ and a rational $r \in [0, 1]$, is MAX(φ) $\geq r$?) This is NP-c.

▲帰▶ ▲ヨ▶ ▲ヨ▶ ヨー ショペ

Work in MV-language (can be adapted to RMV-).

 $MAX(\varphi)$ is attained at a vertex of a polyhedral decomposition of the domain, with rational coordinates with denominators of (binary) length bounded by $n\log(\sharp \varphi/n)$.

Oracle: GenSAT (given φ and a rational $r \in [0, 1]$, is MAX(φ) $\geq r$?) This is NP-c.

Binary search within rationals on [0, 1] with denominators up to $N = (\sharp \varphi/n)^{n^2}$. Minimal distance of any two such distinct numbers: $\left|\frac{p_1}{q_1} - \frac{p_2}{q_2}\right| \ge \frac{1}{N^2}$

Work in MV-language (can be adapted to RMV-).

 $MAX(\varphi)$ is attained at a vertex of a polyhedral decomposition of the domain, with rational coordinates with denominators of (binary) length bounded by $n \log(\sharp \varphi/n)$.

Oracle: GenSAT (given φ and a rational $r \in [0, 1]$, is MAX(φ) $\geq r$?) This is NP-c.

Binary search within rationals on [0, 1] with denominators up to $N = (\sharp \varphi/n)^{n^2}$. Minimal distance of any two such distinct numbers: $\left|\frac{p_1}{q_1} - \frac{p_2}{q_2}\right| \ge \frac{1}{N^2}$

If $\varphi \in SAT([0, 1]_L)$, we have $MAX(\varphi) = 1$. If not, let $a \coloneqq 0$ and $b \coloneqq 1$ and $k \coloneqq 0$. Repeat ++k; $MAX(\varphi) \ge (a+b)/2$? $\begin{cases}
Y \ a \ := (a+b)/2; \\
N \ b \ := (a+b)/2;
\end{cases}$ until $2^k > N^2$.

This yields interval $[m/2^k, (m+1)/2^k)$ for some *m*, of length $1/2^k$, with exactly one rational with denominator up to *N*.

Work in MV-language (can be adapted to RMV-).

 $MAX(\varphi)$ is attained at a vertex of a polyhedral decomposition of the domain, with rational coordinates with denominators of (binary) length bounded by $n\log(\sharp \varphi/n)$.

Oracle: GenSAT (given φ and a rational $r \in [0, 1]$, is MAX(φ) $\geq r$?) This is NP-c.

Binary search within rationals on [0, 1] with denominators up to $N = (\sharp \varphi/n)^{n^2}$. Minimal distance of any two such distinct numbers: $\left|\frac{p_1}{q_1} - \frac{p_2}{q_2}\right| \ge \frac{1}{N^2}$

If $\varphi \in SAT([0,1]_{L})$, we have $MAX(\varphi) = 1$. If not, let $a \coloneqq 0$ and $b \coloneqq 1$ and $k \coloneqq 0$. Repeat ++k; $MAX(\varphi) \ge (a+b)/2$? $\begin{cases}
Y \ a \ := (a+b)/2; \\
N \ b \ := (a+b)/2;
\end{cases}$ until $2^{k} > N^{2}$.

This yields interval $[m/2^k, (m+1)/2^k)$ for some *m*, of length $1/2^k$, with exactly one rational with denominator up to *N*.

Pick a value in $(m/2^k, (m+1)/2^k)$ and compute best rational approximations.

Work in MV-language (can be adapted to RMV-).

 $MAX(\varphi)$ is attained at a vertex of a polyhedral decomposition of the domain, with rational coordinates with denominators of (binary) length bounded by $n\log(\sharp \varphi/n)$.

Oracle: GenSAT (given φ and a rational $r \in [0, 1]$, is MAX(φ) $\geq r$?) This is NP-c.

Binary search within rationals on [0, 1] with denominators up to $N = (\sharp \varphi/n)^{n^2}$. Minimal distance of any two such distinct numbers: $\left|\frac{p_1}{q_1} - \frac{p_2}{q_2}\right| \ge \frac{1}{N^2}$

If $\varphi \in SAT([0,1]_{L})$, we have $MAX(\varphi) = 1$. If not, let $a \coloneqq 0$ and $b \coloneqq 1$ and $k \coloneqq 0$. Repeat ++k; $MAX(\varphi) \ge (a+b)/2$? $\begin{cases}
Y \ a \ := (a+b)/2; \\
N \ b \ := (a+b)/2;
\end{cases}$ until $2^{k} > N^{2}$.

This yields interval $[m/2^k, (m+1)/2^k)$ for some *m*, of length $1/2^k$, with exactly one rational with denominator up to *N*.

Pick a value in $(m/2^k, (m+1)/2^k)$ and compute best rational approximations.

MAX value is in FP^{NP}.

Computing the Validity Degree: oracle computation

Instance: (R)MV-terms τ and φ (with or without constants) Output: $\|\varphi\|_{\tau}$.

▲■▶ ▲ 臣▶ ▲ 臣▶ 三臣 … のへで

Computing the Validity Degree: oracle computation

Instance: (R)MV-terms τ and φ (with or without constants) Output: $\|\varphi\|_{\tau}$.

To obtain upper bound for binary search, get rid of constants. Recall $\|\varphi\|_{\tau} = \|\varphi^*\|_{\tau^* \odot \delta_{\tau \odot \varphi}}$ with MV-terms φ^* , τ^* and $\delta_{\tau \odot \varphi}$.

So $\|\varphi\|_{\tau}$ is a rational p/q, with $q \leq N = (\sharp\{\varphi^*, \tau^*, \delta_{\tau \odot \varphi}\}/n)^{n^2}$, where *n* is the number of variables in $\{\varphi^*, \tau^*, \delta_{\tau \odot \varphi}\}$ and the \sharp function is taken over these three terms.

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ● 今 Q ()~

Computing the Validity Degree: oracle computation

Instance: (R)MV-terms τ and φ (with or without constants) Output: $\|\varphi\|_{\tau}$.

To obtain upper bound for binary search, get rid of constants. Recall $\|\varphi\|_{\tau} = \|\varphi^{\star}\|_{\tau^{\star} \odot \delta_{\tau} \odot \varphi}$ with MV-terms φ^{\star} , τ^{\star} and $\delta_{\tau \odot \varphi}$.

So $\|\varphi\|_{\tau}$ is a rational p/q, with $q \leq N = (\sharp\{\varphi^*, \tau^*, \delta_{\tau \odot \varphi}\}/n)^{n^2}$, where *n* is the number of variables in $\{\varphi^*, \tau^*, \delta_{\tau \odot \varphi}\}$ and the \sharp function is taken over these three terms.

The minimum of f_{φ}^{\star} on the (compact) 1-region of $f_{\tau^{\star} \odot \delta_{\tau \odot \varphi}}$ is attained at a vertex of the common refinement of complexes of f_{φ} and $f_{\tau^{\star} \odot \delta_{\tau \odot \varphi}}$. Then use Aguzzoli's bounds on denominators.

```
Validity Degree in FP<sup>NP</sup>.
("Upper bound.")
```

Metric reductions, and a separation

Let $f, g: \Sigma^* \to N$. A metric reduction of f to g is a pair (h_1, h_2) of p-time functions (with $h_1: \Sigma^* \to \Sigma^*$ and $h_2: \Sigma^* \times N \to N$) such that $f(x) = h_2(x, g(h_1(x)))$ for each $x \in \Sigma^*$.

→ □ → → 三 → → 三 → つくぐ

Metric reductions, and a separation

Let $f, g: \Sigma^* \to N$. A metric reduction of f to g is a pair (h_1, h_2) of p-time functions (with $h_1: \Sigma^* \to \Sigma^*$ and $h_2: \Sigma^* \times N \to N$) such that $f(x) = h_2(x, g(h_1(x)))$ for each $x \in \Sigma^*$.

Let $z : N \to N$. $\mathsf{FP}^{\mathsf{NP}}[z(n)]$ is the class of functions computable in P-time with NP oracle with at most z(|x|) oracle calls for input x. (So $\mathsf{FP}^{\mathsf{NP}} = \mathsf{FP}^{\mathsf{NP}}[n^{O(1)}]$.)

▲冊→ ▲ヨ→ ▲ヨ→ ヨー わらや

Metric reductions, and a separation

Let $f, g: \Sigma^* \to N$. A metric reduction of f to g is a pair (h_1, h_2) of p-time functions (with $h_1: \Sigma^* \to \Sigma^*$ and $h_2: \Sigma^* \times N \to N$) such that $f(x) = h_2(x, g(h_1(x)))$ for each $x \in \Sigma^*$.

Let $z : N \to N$. $\mathsf{FP}^{\mathsf{NP}}[z(n)]$ is the class of functions computable in P-time with NP oracle with at most z(|x|) oracle calls for input x. (So $\mathsf{FP}^{\mathsf{NP}} = \mathsf{FP}^{\mathsf{NP}}[n^{O(1)}]$.)

Theorem [Krentel 1988]

Assume $P \neq NP$. Then $FP^{NP}[O(\log \log n)] \neq FP^{NP}[O(\log n)] \neq FP^{NP}[n^{O(1)}]$.

In particular, there are no metric reductions from FP^{NP} -complete problems to problems in $FP^{NP}[O(\log n)]$.

[Krentel: Complexity of optimization problems, 1988]

Weighted MaxSAT

Instance: Boolean CNF formula $C_1 \land \dots \land C_n$ (k variables) with weights w_1, \dots, w_n . Output: $\max_e \sum_i w_i e(C_i)$ (max sum of weights of true clauses over all assignments to φ).

Theorem [Krentel 1988]

Weighted MaxSAT is complete in FP^{NP} (under metric reductions).

★@> ★ E> ★ E> = E

Computing the Validity Degree: lower bound

Theorem

Validity Degree is FP^{NP}-complete (under metric reductions).

<□> < □> < □> < □> = □

Validity Degree is FP^{NP}-complete (under metric reductions).

Proof: reduce weighted MaxSAT to Validity Degree. Maximize $\sum_i w_i e(C_i)$ over all assignments e.

Validity Degree is FP^{NP}-complete (under metric reductions).

Proof: reduce weighted MaxSAT to Validity Degree. Maximize $\sum_i w_i e(C_i)$ over all assignments e.

It is easy to:

- switch min and max (using \neg);
- scale weights: take $w = \sum_i w_i$ and replace w_i with $w'_i = w_i/w$ (and de-scale again);

Validity Degree is FP^{NP} -complete (under metric reductions).

Proof: reduce weighted MaxSAT to Validity Degree. Maximize $\sum_i w_i e(C_i)$ over all assignments e.

It is easy to:

- switch min and max (using \neg);
- scale weights: take $w = \sum_i w_i$ and replace w_i with $w'_i = w_i/w$ (and de-scale again);

Build a theory T (or τ) to

- make assignments Boolean (adding $x_i \vee \neg x_i$ for each $i \in \{1, ..., k\}$)
- implicitly condition each w'_i with C_i under v:

Validity Degree is FP^{NP}-complete (under metric reductions).

Proof: reduce weighted MaxSAT to Validity Degree. Maximize $\sum_i w_i e(C_i)$ over all assignments e.

It is easy to:

- switch min and max (using \neg);
- scale weights: take $w = \sum_i w_i$ and replace w_i with $w'_i = w_i/w$ (and de-scale again);

Build a theory T (or τ) to

- make assignments Boolean (adding $x_i \lor \neg x_i$ for each $i \in \{1, ..., k\}$)
- implicitly condition each w'_i with C_i under v:
 - $b \equiv (\neg b)^{w-1}$ (implicitly defines 1/w);

Validity Degree is FP^{NP} -complete (under metric reductions).

Proof: reduce weighted MaxSAT to Validity Degree. Maximize $\sum_i w_i e(C_i)$ over all assignments e.

It is easy to:

- switch min and max (using \neg);
- scale weights: take $w = \sum_i w_i$ and replace w_i with $w'_i = w_i/w$ (and de-scale again);

Build a theory T (or τ) to

- make assignments Boolean (adding $x_i \vee \neg x_i$ for each $i \in \{1, ..., k\}$)

- implicitly condition each w'_i with C_i under v:

•
$$b \equiv (\neg b)^{w-1}$$
 (implicitly defines $1/w$);
• $y_i \rightarrow b$ and $wy_i \equiv C_i$ for each $i \in \{1, ..., n\}$; then
• $v(C_i) = 0$ implies $v(y_i) = 0$
• $v(C_i) = 1$ implies $v(y_i) \ge 1/w$
and so $v(y_i) = v(C_i)1/w$ for any model e of T ;
• $z_i \equiv w_i y_i$;
which yields $v(z_i) = v(C_i)w'_i$ for any model v of T and any i .

Validity Degree is FP^{NP} -complete (under metric reductions).

Proof: reduce weighted MaxSAT to Validity Degree. Maximize $\sum_i w_i e(C_i)$ over all assignments e.

It is easy to:

- switch min and max (using \neg);
- scale weights: take $w = \sum_i w_i$ and replace w_i with $w'_i = w_i/w$ (and de-scale again);

Build a theory T (or τ) to

– make assignments Boolean (adding $x_i \lor \neg x_i$ for each $i \in \{1, ..., k\}$)

- implicitly condition each w'_i with C_i under v:

•
$$b \equiv (\neg b)^{w-1}$$
 (implicitly defines $1/w$);
• $y_i \rightarrow b$ and $wy_i \equiv C_i$ for each $i \in \{1, ..., n\}$; then
• $v(C_i) = 0$ implies $v(y_i) = 0$
• $v(C_i) = 1$ implies $v(y_i) \ge 1/w$
and so $v(y_i) = v(C_i)1/w$ for any model e of T ;
• $z_i \equiv w_i y_i$;
which yields $v(z_i) = v(C_i)w'_i$ for any model v of T and any i .

Finally, let Φ be $\neg(z_1 \oplus z_2 \oplus \cdots \oplus z_n)$. Compute $m = \|\Phi\|_{T_{\Box}}$ and return $(1 - m)w_{\Xi}$

Algebraic semantics is (once again) the methodology of choice for complexity results in propositional Łukasiewicz logic.

- ◆ □ ▶ ◆ 三 ▶ → 三 = → ○ < ○

Algebraic semantics is (once again) the methodology of choice for complexity results in propositional Łukasiewicz logic.

The Validity Degree problem, native to many-valued logic, sits among other optimization problems in $\mathsf{FP}^{\mathsf{NP}}.$

Algebraic semantics is (once again) the methodology of choice for complexity results in propositional Łukasiewicz logic.

The Validity Degree problem, native to many-valued logic, sits among other optimization problems in $\mathsf{FP}^{\mathsf{NP}}.$

Metric reductions are natural (many-one) reductions for optimization problems. Between some pairs of problems, such reductions cannot exist unless P equals NP. In the sense of metric reductions,

Validity Degree ranks among "hardest" (i.e., complete) FP^{NP}-problems.