Computing the validity degree in Łukasiewicz logic

Zuzana Haniková
Institute of Computer Science, Czech Academy of Sciences

Topology, Algebra, and Categories in Logic, Nice, June 2019

Outline

Setting: propositional (infinite-valued) Łukasiewicz logic.
Array of complexity results for decision problems.
Algebraic method: the standard MV-algebra.
Validity degree is an optimization problem.
Complete in $\mathrm{FP}^{N P}$ under metric reductions:

- upper bound (oracle computation);
- lower bound (metric reduction).

Standard MV-algebra

Language: $\{\oplus, \neg\}$.
$[0,1]_{\star}=\langle[0,1], \oplus, \neg\rangle$, with

$$
\begin{aligned}
x \oplus y & =\min (1, x+y) \\
\neg x & =1-x
\end{aligned}
$$

Denote f_{φ} the function defined by the term φ in $[0,1]_{\mathrm{t}}$.

Standard MV-algebra

Language: $\{\oplus, \neg\}$.
$[0,1]_{ \pm}=\langle[0,1], \oplus, \neg\rangle$, with

$$
\begin{aligned}
x \oplus y & =\min (1, x+y) \\
\neg x & =1-x
\end{aligned}
$$

Denote f_{φ} the function defined by the term φ in $[0,1]_{\mathrm{t}}$.
Define:

- $x \odot y$ is $\neg(\neg x \oplus \neg y)$;
- $x \rightarrow y$ is $\neg x \oplus y$;
- $x \vee y$ is $(x \rightarrow y) \rightarrow y$;
- $x \equiv y$ is $(x \rightarrow y) \odot(y \rightarrow x)$.

Moreover, x^{n} is $\underbrace{x \odot \cdots \odot x}_{n \text { times }}$; analogously for $n x$.

Standard MV-algebra

Language: $\{\oplus, \neg\}$.
$[0,1]_{\llcorner }=\langle[0,1], \oplus, \neg\rangle$, with

$$
\begin{aligned}
x \oplus y & =\min (1, x+y) \\
\neg x & =1-x
\end{aligned}
$$

Denote f_{φ} the function defined by the term φ in $[0,1]_{\mathrm{t}}$.
Define:

- $x \odot y$ is $\neg(\neg x \oplus \neg y)$;
- $x \rightarrow y$ is $\neg x \oplus y$;
- $x \vee y$ is $(x \rightarrow y) \rightarrow y$;
- $x \equiv y$ is $(x \rightarrow y) \odot(y \rightarrow x)$.

Moreover, x^{n} is $\underbrace{x \odot \cdots \odot x}_{n \text { times }}$; analogously for $n x$.
The algebra $[0,1]_{\llcorner }$captures theorems and provability from finite theories in propositional Łukasiewicz logic.

Standard MV-algebra

Language: $\{\oplus, \neg\}$.
$[0,1]_{\llcorner }=\langle[0,1], \oplus, \neg\rangle$, with

$$
\begin{aligned}
x \oplus y & =\min (1, x+y) \\
\neg x & =1-x
\end{aligned}
$$

Denote f_{φ} the function defined by the term φ in $[0,1]_{\mathrm{t}}$.
Define:

- $x \odot y$ is $\neg(\neg x \oplus \neg y)$;
- $x \rightarrow y$ is $\neg x \oplus y$;
- $x \vee y$ is $(x \rightarrow y) \rightarrow y$;
- $x \equiv y$ is $(x \rightarrow y) \odot(y \rightarrow x)$.

Moreover, x^{n} is $\underbrace{x \odot \cdots \odot x}_{n \text { times }}$; analogously for $n x$.
The algebra $[0,1]_{\llcorner }$captures theorems and provability from finite theories in propositional Łukasiewicz logic.

In particular, $[0,1]_{Ł}$ provides a semantic method of investigating computational properties of propositional infinite-valued Łukasiewicz logic.

McNaughton functions

A function $f:[0,1]^{n} \rightarrow[0,1]$ is a McNaughton function if

- f is continuous
- f is piecewise linear: there are finitely many linear polynomials $\left\{p_{i}\right\}_{i \in 1}$, with $p_{i}(\bar{x})=\sum_{j=1}^{n} a_{i j} x_{j}+b_{i}$,
such that for any $\bar{x} \in[0,1]^{n}$ there is an $i \in I$ with $f(\bar{x})=p_{i}(\bar{x})$
- the polynomials p_{i} have integer coefficients $\overline{\bar{a}_{i}}, b_{i}$.

Theorem [McNaughton 1951]

Term-definable functions of $[0,1]_{ \pm}$coincide with McNaughton functions.

Tautologies in standard MV-algebra

Consider MV-term $\varphi\left(x_{1}, \ldots, x_{n}\right)$.
f_{φ} introduces a polyhedral complex C on its domain (i.e., $\bigcup C=[0,1]^{n}$) s.t. restriction of f_{φ} to each (n-dimensional) cell of C is a linear polynomial.

Tautologies in standard MV-algebra

Consider MV-term $\varphi\left(x_{1}, \ldots, x_{n}\right)$.
f_{φ} introduces a polyhedral complex C on its domain (i.e., $\cup C=[0,1]^{n}$)
s.t. restriction of f_{φ} to each (n-dimensional) cell of C is a linear polynomial.

Minimum (maximum) of f_{φ} on $[0,1]^{n}$ is attained at a vertex of a cell in C.
Vertices of cells of C occur as solutions of systems of linear equations, with integer coefficient bounded by $\sharp \varphi$ (the number of occurrences of variables in φ).

All vertices of n-dimensional cells of C are rational vectors ($p_{1} / q_{1}, \ldots, p_{n} / q_{n}$) with

$$
q_{i} \leq\left(\frac{\sharp \varphi}{n}\right)^{n}
$$

Tautologies in standard MV-algebra

Consider MV-term $\varphi\left(x_{1}, \ldots, x_{n}\right)$.
f_{φ} introduces a polyhedral complex C on its domain (i.e., $\bigcup C=[0,1]^{n}$)
s.t. restriction of f_{φ} to each (n-dimensional) cell of C is a linear polynomial.

Minimum (maximum) of f_{φ} on $[0,1]^{n}$ is attained at a vertex of a cell in C.

Vertices of cells of C occur as solutions of systems of linear equations, with integer coefficient bounded by $\sharp \varphi$ (the number of occurrences of variables in φ).

All vertices of n-dimensional cells of C are rational vectors $\left(p_{1} / q_{1}, \ldots, p_{n} / q_{n}\right)$ with

$$
q_{i} \leq\left(\frac{\sharp \varphi}{n}\right)^{n}
$$

Tautologous terms of the standard MV-algebra are in coNP.
[Mundici 1987; Aguzzoli and Ciabattoni 2000; Aguzzoli 2006]

Standard RMV-algebra and validity degree

Language: MV, expanded with constants for rationals in $[0,1]$.
$[0,1]_{t}^{Q}=\langle[0,1], \oplus, \neg,\{r \mid r \in Q \cap[0,1]\}\rangle$.

Standard RMV-algebra and validity degree

Language: MV, expanded with constants for rationals in $[0,1]$.
$[0,1]_{ \pm}^{Q}=\langle[0,1], \oplus, \neg,\{r \mid r \in Q \cap[0,1]\}\rangle$.
The algebra $[0,1]_{t}^{Q}$ captures theorems and provability from finite theories in Rational Pavelka logic (RPL), a conservative expansion of Łukasicz logic.

Standard RMV-algebra and validity degree

Language: MV, expanded with constants for rationals in $[0,1]$.
$[0,1]_{t}^{Q}=\langle[0,1], \oplus, \neg,\{r \mid r \in Q \cap[0,1]\}\rangle$.
The algebra $[0,1]_{t}^{Q}$ captures theorems and provability from finite theories in Rational Pavelka logic (RPL), a conservative expansion of tukasicz logic.

Let φ be an RMV-term and T a set thereof. The validity degree of φ under T is

$$
\|\varphi\|_{T}=\inf \{v(\varphi) \mid v \text { model of } T\} .
$$

Corresponding syntactic notion is $|\varphi|_{T}=\sup \left\{r \mid T \vdash_{\text {RPL }} r \rightarrow \varphi\right\}$.

Standard RMV-algebra and validity degree

Language: MV, expanded with constants for rationals in $[0,1]$.
$[0,1]_{t}^{Q}=\langle[0,1], \oplus, \neg,\{r \mid r \in Q \cap[0,1]\}\rangle$.
The algebra $[0,1]_{t}^{Q}$ captures theorems and provability from finite theories in Rational Pavelka logic (RPL), a conservative expansion of Łukasicz logic.

Let φ be an RMV-term and T a set thereof.
The validity degree of φ under T is

$$
\|\varphi\|_{T}=\inf \{v(\varphi) \mid v \text { model of } T\} .
$$

Corresponding syntactic notion is $|\varphi|_{T}=\sup \left\{r \mid T \vdash_{\text {RPL }} r \rightarrow \varphi\right\}$.
Pavelka completeness:

$$
|\varphi|_{T}=\|\varphi\|_{T}
$$

For T finite, write τ instead of T.

- $|\varphi|_{\tau}=1$ implies φ is provable from τ;
- $|\varphi|_{\tau}$ is rational.
[Hájek 1998]

Implicit definability of rationals in standard MV-algebra

Rationals (bar 0 and 1) are not MV-term definable.

Implicit definability of rationals in standard MV-algebra

Rationals (bar 0 and 1) are not MV-term definable.
On the other hand, each rational a is implicitly definable in $[0,1]_{\llcorner }$: there is an MV-term $\varphi\left(x_{1}, \ldots, x_{n}\right)$ and $i \leq n$ s.t.

- φ satisfiable in $[0,1]_{\mathrm{t}}$, and
- $v(\varphi)=1$ implies $v\left(x_{i}\right)=a$ for each assignment v.

Implicit definability of rationals in standard MV-algebra

Rationals (bar 0 and 1) are not MV-term definable.
On the other hand, each rational a is implicitly definable in $[0,1]_{\llcorner }$: there is an MV-term $\varphi\left(x_{1}, \ldots, x_{n}\right)$ and $i \leq n$ s.t.

- φ satisfiable in $[0,1]_{\mathrm{t}}$, and
- $v(\varphi)=1$ implies $v\left(x_{i}\right)=a$ for each assignment v.

Example: $x \equiv(\neg x)^{n-1}$ implicitly defines $1 / n$.

Implicit definability of rationals in standard MV-algebra

Rationals (bar 0 and 1) are not MV-term definable.
On the other hand, each rational a is implicitly definable in $[0,1]_{\mathrm{t}}$: there is an MV-term $\varphi\left(x_{1}, \ldots, x_{n}\right)$ and $i \leq n$ s.t.

- φ satisfiable in $[0,1]_{\mathrm{t}}$, and
- $v(\varphi)=1$ implies $v\left(x_{i}\right)=a$ for each assignment v.

Example: $x \equiv(\neg x)^{n-1}$ implicitly defines $1 / n$.

Moreover, each rational p / q (with p and q written in binary) has a poly-size implicit definition, adding (linear number of) new variables.

Example: let $n_{m} n_{m-1} \ldots n_{0}$ be the binary notation for $n-1$. Then $y_{0} \equiv \neg x ; y_{1} \equiv y_{0}^{2} ; y_{2} \equiv y_{1}^{2} ; \ldots ; x \equiv \Pi_{n_{i}=1} y_{i}$ implicitly defines $1 / n$ in variable x.

Implicit definability of rationals in standard MV-algebra

Rationals (bar 0 and 1) are not MV-term definable.
On the other hand, each rational a is implicitly definable in $[0,1]_{\mathrm{t}}$: there is an MV-term $\varphi\left(x_{1}, \ldots, x_{n}\right)$ and $i \leq n$ s.t.

- φ satisfiable in $[0,1]_{\mathrm{t}}$, and
- $v(\varphi)=1$ implies $v\left(x_{i}\right)=a$ for each assignment v.

Example: $x \equiv(\neg x)^{n-1}$ implicitly defines $1 / n$.

Moreover, each rational p / q (with p and q written in binary) has a poly-size implicit definition, adding (linear number of) new variables.

Example: let $n_{m} n_{m-1} \ldots n_{0}$ be the binary notation for $n-1$.
Then $y_{0} \equiv \neg x ; y_{1} \equiv y_{0}^{2} ; y_{2} \equiv y_{1}^{2} ; \ldots ; x \equiv \Pi_{n_{i}=1} y_{i}$ implicitly defines $1 / n$ in variable x.
Lemma: $\|\varphi\|_{\tau}=\left\|\varphi^{\star}\right\|_{\tau^{\star} \odot \delta_{\tau \odot \varphi}}$.
[Hájek 1998]

Two optimization problems in $[0,1]_{\mathrm{t}}$

- MAX value Instance: (R)MV-term φ. Output: $\operatorname{MAX}(\varphi)$ (maximal value of f_{φ} in $[0,1]_{\llcorner }$).

GenSAT: for φ, c, d (with $c, d \in N$), is $f_{\varphi}(\bar{a}) \geq c / d$ for some $\bar{a} \in[0,1]^{n}$? This is NP-complete. [Mundici, Olivetti 1998]

Two optimization problems in $[0,1]_{\mathrm{t}}$

- MAX value Instance: (R)MV-term φ.
Output: $\operatorname{MAX}(\varphi)$ (maximal value of f_{φ} in $[0,1]_{\mathrm{t}}$).
GenSAT: for φ, c, d (with $c, d \in N$), is $f_{\varphi}(\bar{a}) \geq c / d$ for some $\bar{a} \in[0,1]^{n}$?
This is NP-complete.
[Mundici, Olivetti 1998]
- Validity Degree

Instance: (R)MV-terms τ and φ.
Output: $\|\varphi\|_{\tau}$ (minimal value of f_{φ} on the 1 -set of f_{τ}) in $[0,1]_{\mathrm{t}}$.
where the 1-set of f_{τ} is $\left\{\bar{a} \in R^{n} \mid f_{\tau}(\bar{a})=1\right\}$.
Finite consequence in RMV: for τ, φ, is it the case that $\tau \not \models_{\mathrm{RMV}} r \rightarrow \varphi$?
This is coNP-complete.
[Hájek 2006]

Two optimization problems in $[0,1]_{\mathrm{t}}$

- MAX value

Instance: (R)MV-term φ.
Output: $\operatorname{MAX}(\varphi)$ (maximal value of f_{φ} in $[0,1]_{\mathrm{t}}$).
GenSAT: for φ, c, d (with $c, d \in N$), is $f_{\varphi}(\bar{a}) \geq c / d$ for some $\bar{a} \in[0,1]^{n}$?
This is NP-complete.
[Mundici, Olivetti 1998]

- Validity Degree

Instance: (R)MV-terms τ and φ.
Output: $\|\varphi\|_{\tau}$ (minimal value of f_{φ} on the 1-set of f_{τ}) in $[0,1]_{\mathrm{t}}$.
where the 1-set of f_{τ} is $\left\{\bar{a} \in R^{n} \mid f_{\tau}(\bar{a})=1\right\}$.
Finite consequence in RMV : for τ, φ, is it the case that $\tau \neq \mathrm{RMV} r \rightarrow \varphi$?
This is coNP-complete.
[Hájek 2006]

Non-approximability of MAX value

Work in MV-language.

Theorem

Let $\delta<1 / 2$ be a positive real. Suppose $A L G$ is a poly-time algorithm computing, for $M V$-term φ, a real number $A L G(\varphi)$ satisfying $|A L G(\varphi)-M A X(\varphi)| \leq \delta$. Then $P=N P$.

Non-approximability of MAX value

Work in MV-language.

Theorem

Let $\delta<1 / 2$ be a positive real. Suppose ALG is a poly-time algorithm computing, for $M V$-term φ, a real number $\operatorname{ALG}(\varphi)$ satisfying $|\operatorname{ALG}(\varphi)-M A X(\varphi)| \leq \delta$.
Then $P=N P$.

Proof: solve Boolean SAT using ALG.
Instance: Boolean formula φ, given as $\{\odot, \vee\}$-combination of literals.
Then f_{φ} in $[0,1]_{\star}$ is a convex function.
$-\varphi$ satisfiable in $\{0,1\}$ implies φ satisfiable in $[0,1]_{\mathrm{t}}$.
$-\varphi$ not satisfiable in $\{0,1\}$: then f_{φ} is identically 0 .
So $\varphi \in \operatorname{SAT}(\{0,1\})$ iff $\operatorname{MAX}(\varphi)=1$ iff $\operatorname{ALG}(\varphi)>1 / 2$.
[H., Savický 2016]

Computing MAX value: oracle computation

Work in MV-language (can be adapted to RMV-).

Computing MAX value: oracle computation

Work in MV-language (can be adapted to RMV-).
$\operatorname{MAX}(\varphi)$ is attained at a vertex of a polyhedral decomposition of the domain, with rationalcoordinates with denominators of (binary) length bounded by $n \log (\sharp \varphi / n)$.

Oracle: GenSAT (given φ and a rational $r \in[0,1]$, is $\operatorname{MAX}(\varphi) \geq r$?) This is NP-c.

Computing MAX value: oracle computation

Work in MV-language (can be adapted to RMV-).
$\operatorname{MAX}(\varphi)$ is attained at a vertex of a polyhedral decomposition of the domain, with rationalcoordinates with denominators of (binary) length bounded by $n \log (\sharp \varphi / n)$.

Oracle: GenSAT (given φ and a rational $r \in[0,1]$, is $\operatorname{MAX}(\varphi) \geq r$?) This is NP-c.

Binary search within rationals on $[0,1]$ with denominators up to $N=(\sharp \varphi / n)^{n^{2}}$.
Minimal distance of any two such distinct numbers: $\left|\frac{p_{1}}{q_{1}}-\frac{p_{2}}{q_{2}}\right| \geq \frac{1}{N^{2}}$

Computing MAX value: oracle computation

Work in MV-language (can be adapted to RMV-).
$\operatorname{MAX}(\varphi)$ is attained at a vertex of a polyhedral decomposition of the domain, with rationalcoordinates with denominators of (binary) length bounded by $n \log (\sharp \varphi / n)$.
Oracle: GenSAT (given φ and a rational $r \in[0,1]$, is $\operatorname{MAX}(\varphi) \geq r$?) This is NP-c.
Binary search within rationals on $[0,1]$ with denominators up to $N=(\sharp \varphi / n)^{n^{2}}$.
Minimal distance of any two such distinct numbers: $\left|\frac{p_{1}}{q_{1}}-\frac{p_{2}}{q_{2}}\right| \geq \frac{1}{N^{2}}$
If $\varphi \in \operatorname{SAT}\left([0,1]_{\llcorner }\right)$, we have $\operatorname{MAX}(\varphi)=1$.
If not, let $a:=0$ and $b:=1$ and $k:=0$.
Repeat $++k ; \operatorname{MAX}(\varphi) \geq(a+b) / 2 ?\left\{\begin{array}{ll}\mathrm{Y} a & :=(a+b) / 2 ; \\ \mathrm{N} b & :=(a+b) / 2 ;\end{array}\right.$ until $2^{k}>N^{2}$.
This yields interval $\left[m / 2^{k},(m+1) / 2^{k}\right)$ for some m, of length $1 / 2^{k}$, with exactly one rational with denominator up to N.

Computing MAX value: oracle computation

Work in MV-language (can be adapted to RMV-).
$\operatorname{MAX}(\varphi)$ is attained at a vertex of a polyhedral decomposition of the domain, with rationalcoordinates with denominators of (binary) length bounded by $n \log (\sharp \varphi / n)$.
Oracle: GenSAT (given φ and a rational $r \in[0,1]$, is $\operatorname{MAX}(\varphi) \geq r$?) This is NP-c.
Binary search within rationals on $[0,1]$ with denominators up to $N=(\sharp \varphi / n)^{n^{2}}$.
Minimal distance of any two such distinct numbers: $\left|\frac{p_{1}}{q_{1}}-\frac{p_{2}}{q_{2}}\right| \geq \frac{1}{N^{2}}$
If $\varphi \in \operatorname{SAT}\left([0,1]_{\llcorner }\right)$, we have $\operatorname{MAX}(\varphi)=1$.
If not, let $a:=0$ and $b:=1$ and $k:=0$.
Repeat $++k ; \operatorname{MAX}(\varphi) \geq(a+b) / 2 ?\left\{\begin{array}{ll}\mathrm{Y} a & :=(a+b) / 2 ; \\ \mathrm{N} b & :=(a+b) / 2 ;\end{array}\right.$ until $2^{k}>N^{2}$.
This yields interval $\left[m / 2^{k},(m+1) / 2^{k}\right)$ for some m, of length $1 / 2^{k}$, with exactly one rational with denominator up to N.

Pick a value in $\left(m / 2^{k},(m+1) / 2^{k}\right)$ and compute best rational approximations.

Computing MAX value: oracle computation

Work in MV-language (can be adapted to RMV-).
$\operatorname{MAX}(\varphi)$ is attained at a vertex of a polyhedral decomposition of the domain, with rationalcoordinates with denominators of (binary) length bounded by $n \log (\sharp \varphi / n)$.
Oracle: GenSAT (given φ and a rational $r \in[0,1]$, is $\operatorname{MAX}(\varphi) \geq r$?) This is NP-c.
Binary search within rationals on $[0,1]$ with denominators up to $N=(\sharp \varphi / n)^{n^{2}}$.
Minimal distance of any two such distinct numbers: $\left|\frac{p_{1}}{q_{1}}-\frac{p_{2}}{q_{2}}\right| \geq \frac{1}{N^{2}}$
If $\varphi \in \operatorname{SAT}\left([0,1]_{\llcorner }\right)$, we have $\operatorname{MAX}(\varphi)=1$.
If not, let $a:=0$ and $b:=1$ and $k:=0$.
Repeat $++k ; \operatorname{MAX}(\varphi) \geq(a+b) / 2 ?\left\{\begin{array}{ll}\mathrm{Y} a & :=(a+b) / 2 ; \\ \mathrm{N} b & :=(a+b) / 2 ;\end{array}\right.$ until $2^{k}>N^{2}$.
This yields interval $\left[m / 2^{k},(m+1) / 2^{k}\right)$ for some m, of length $1 / 2^{k}$, with exactly one rational with denominator up to N.

Pick a value in $\left(m / 2^{k},(m+1) / 2^{k}\right)$ and compute best rational approximations.
MAX value is in $F P^{N P}$.

Computing the Validity Degree: oracle computation

```
Instance:(R)MV-terms \tau and \varphi (with or without constants)
Output: |\varphi| |
```


Computing the Validity Degree: oracle computation

Instance: (R)MV-terms τ and φ (with or without constants) Output: $\|\varphi\|_{\tau}$.

To obtain upper bound for binary search, get rid of constants.
Recall $\|\varphi\|_{\tau}=\left\|\varphi^{\star}\right\|_{\tau^{\star} \odot \delta_{\tau \odot \varphi}}$ with MV-terms $\varphi^{\star}, \tau^{\star}$ and $\delta_{\tau \odot \varphi}$.
So $\|\varphi\|_{\tau}$ is a rational p / q, with $q \leq N=\left(\sharp\left\{\varphi^{\star}, \tau^{\star}, \delta_{\tau \odot \varphi}\right\} / n\right)^{n^{2}}$, where n is the number of variables in $\left\{\varphi^{\star}, \tau^{\star}, \delta_{\tau \odot \varphi}\right\}$ and the \sharp function is taken over these three terms.

Computing the Validity Degree: oracle computation

Instance: (R)MV-terms τ and φ (with or without constants) Output: $\|\varphi\|_{\tau}$.

To obtain upper bound for binary search, get rid of constants.
Recall $\|\varphi\|_{\tau}=\left\|\varphi^{\star}\right\|_{\tau^{\star} \odot \delta_{\tau \odot \varphi}}$
with MV-terms $\varphi^{\star}, \tau^{\star}$ and $\delta_{\tau \odot \varphi}$.
So $\|\varphi\|_{\tau}$ is a rational p / q, with $q \leq N=\left(\sharp\left\{\varphi^{\star}, \tau^{\star}, \delta_{\tau \odot \varphi}\right\} / n\right)^{n^{2}}$, where n is the number of variables in $\left\{\varphi^{\star}, \tau^{\star}, \delta_{\tau \odot \varphi}\right\}$ and the \sharp function is taken over these three terms.

The minimum of f_{φ}^{\star} on the (compact) 1-region of $f_{\tau^{\star}} \odot \delta_{\tau \odot \varphi}$ is attained at a vertex of the common refinement of complexes of f_{φ} and $f_{\tau^{\star} \odot \delta_{\tau \odot \varphi}}$. Then use Aguzzoli's bounds on denominators.

Validity Degree in FPNP.
("Upper bound.")

Metric reductions, and a separation

Let $f, g: \Sigma^{*} \rightarrow N$.
A metric reduction of f to g is a pair $\left(h_{1}, h_{2}\right)$ of p-time functions (with $h_{1}: \Sigma^{*} \rightarrow \Sigma^{*}$ and $h_{2}: \Sigma^{*} \times N \rightarrow N$)
such that $f(x)=h_{2}\left(x, g\left(h_{1}(x)\right)\right)$ for each $x \in \Sigma^{*}$.

Metric reductions, and a separation

Let $f, g: \Sigma^{*} \rightarrow N$.
A metric reduction of f to g is a pair $\left(h_{1}, h_{2}\right)$ of p-time functions (with $h_{1}: \Sigma^{*} \rightarrow \Sigma^{*}$ and $h_{2}: \Sigma^{*} \times N \rightarrow N$)
such that $f(x)=h_{2}\left(x, g\left(h_{1}(x)\right)\right)$ for each $x \in \Sigma^{*}$.

Let $z: N \rightarrow N . \operatorname{FP}^{N P}[z(n)]$ is the class of functions computable in P-time with NP oracle with at most $z(|x|)$ oracle calls for input x. (So $\mathrm{FP}^{N P}=\mathrm{FP}^{N P}\left[n^{O(1)}\right]$.)

Metric reductions, and a separation

Let $f, g: \Sigma^{*} \rightarrow N$.
A metric reduction of f to g is a pair $\left(h_{1}, h_{2}\right)$ of p-time functions (with $h_{1}: \Sigma^{*} \rightarrow \Sigma^{*}$ and $h_{2}: \Sigma^{*} \times N \rightarrow N$)
such that $f(x)=h_{2}\left(x, g\left(h_{1}(x)\right)\right)$ for each $x \in \Sigma^{*}$.

Let $z: N \rightarrow N . \mathrm{FP}^{N P}[z(n)]$ is the class of functions computable in P-time with NP oracle with at most $z(|x|)$ oracle calls for input x. (So $\mathrm{FP}^{N P}=\mathrm{FP}^{N P}\left[n^{O(1)}\right]$.)

Theorem [Krentel 1988]

Assume $P \neq N$. Then $F P^{N P}[O(\log \log n)] \neq F P^{N P}[O(\log n)] \neq F P^{N P}\left[n^{O(1)}\right]$.
In particular, there are no metric reductions from $\mathrm{FP}^{N P}$-complete problems to problems in $\mathrm{FP}^{N P}[O(\log n)]$.
[Krentel: Complexity of optimization problems, 1988]

Weighted MaxSAT problem

- Weighted MaxSAT

Instance: Boolean CNF formula $C_{1} \wedge \cdots \wedge C_{n}$ (k variables) with weights w_{1}, \ldots, w_{n}. Output: $\max _{e} \sum_{i} w_{i} e\left(C_{i}\right)$ (max sum of weights of true clauses over all assignments to φ).

Theorem [Krentel 1988]

Weighted MaxSAT is complete in FP $P^{N P}$ (under metric reductions).

Computing the Validity Degree: lower bound

Theorem

Validity Degree is $F P^{N P}$-complete (under metric reductions).

Computing the Validity Degree: lower bound

Theorem

Validity Degree is $F P^{N P}$-complete (under metric reductions).

Proof: reduce weighted MaxSAT to Validity Degree.
Maximize $\sum_{i} w_{i} e\left(C_{i}\right)$ over all assigments e.

Computing the Validity Degree: lower bound

Theorem

Validity Degree is $F P^{N P}$-complete (under metric reductions).

Proof: reduce weighted MaxSAT to Validity Degree.
Maximize $\sum_{i} w_{i} e\left(C_{i}\right)$ over all assigments e.
It is easy to:

- switch min and max (using \neg);
- scale weights: take $w=\Sigma_{i} w_{i}$ and replace w_{i} with $w_{i}^{\prime}=w_{i} / w$ (and de-scale again);

Computing the Validity Degree: lower bound

Theorem

Validity Degree is $F P^{N P}$-complete (under metric reductions).

Proof: reduce weighted MaxSAT to Validity Degree.
Maximize $\sum_{i} w_{i} e\left(C_{i}\right)$ over all assigments e.
It is easy to:

- switch min and max (using \neg);
- scale weights: take $w=\Sigma_{i} w_{i}$ and replace w_{i} with $w_{i}^{\prime}=w_{i} / w$ (and de-scale again);

Build a theory T (or τ) to

- make assignments Boolean (adding $x_{i} \vee \neg x_{i}$ for each $i \in\{1, \ldots, k\}$)
- implicitly condition each w_{i}^{\prime} with C_{i} under v :

Computing the Validity Degree: lower bound

Theorem

Validity Degree is $F P^{N P}$-complete (under metric reductions).

Proof: reduce weighted MaxSAT to Validity Degree.
Maximize $\sum_{i} w_{i} e\left(C_{i}\right)$ over all assigments e.
It is easy to:

- switch min and max (using \neg);
- scale weights: take $w=\Sigma_{i} w_{i}$ and replace w_{i} with $w_{i}^{\prime}=w_{i} / w$ (and de-scale again);

Build a theory T (or τ) to

- make assignments Boolean (adding $x_{i} \vee \neg x_{i}$ for each $i \in\{1, \ldots, k\}$)
- implicitly condition each w_{i}^{\prime} with C_{i} under v :
- $b \equiv(\neg b)^{w-1}$ (implicitly defines $\left.1 / w\right)$;

Computing the Validity Degree: lower bound

Theorem

Validity Degree is $F P^{N P}$-complete (under metric reductions).

Proof: reduce weighted MaxSAT to Validity Degree.
Maximize $\sum_{i} w_{i} e\left(C_{i}\right)$ over all assigments e.
It is easy to:

- switch min and max (using \neg);
- scale weights: take $w=\Sigma_{i} w_{i}$ and replace w_{i} with $w_{i}^{\prime}=w_{i} / w$ (and de-scale again);

Build a theory T (or τ) to

- make assignments Boolean (adding $x_{i} \vee \neg x_{i}$ for each $i \in\{1, \ldots, k\}$)
- implicitly condition each w_{i}^{\prime} with C_{i} under v :
- $b \equiv(\neg b)^{w-1}$ (implicitly defines $\left.1 / w\right)$;
- $y_{i} \rightarrow b$ and $w y_{i} \equiv C_{i}$ for each $i \in\{1, \ldots, n\}$; then
- $v\left(C_{i}\right)=0$ implies $v\left(y_{i}\right)=0$
- $v\left(C_{i}\right)=1$ implies $v\left(y_{i}\right) \geq 1 / w$
and so $v\left(y_{i}\right)=v\left(C_{i}\right) 1 / w$ for any model e of T;
- $z_{i} \equiv w_{i} y_{i}$;
which yields $v\left(z_{i}\right)=v\left(C_{i}\right) w_{i}^{\prime}$ for any model v of T and any i.

Computing the Validity Degree: lower bound

Theorem

Validity Degree is $F P^{N P}$-complete (under metric reductions).

Proof: reduce weighted MaxSAT to Validity Degree.
Maximize $\sum_{i} w_{i} e\left(C_{i}\right)$ over all assigments e.
It is easy to:

- switch min and max (using \neg);
- scale weights: take $w=\Sigma_{i} w_{i}$ and replace w_{i} with $w_{i}^{\prime}=w_{i} / w$ (and de-scale again);

Build a theory T (or τ) to

- make assignments Boolean (adding $x_{i} \vee \neg x_{i}$ for each $i \in\{1, \ldots, k\}$)
- implicitly condition each w_{i}^{\prime} with C_{i} under v :
- $b \equiv(\neg b)^{w-1}$ (implicitly defines $\left.1 / w\right)$;
- $y_{i} \rightarrow b$ and $w y_{i} \equiv C_{i}$ for each $i \in\{1, \ldots, n\}$; then
- $v\left(C_{i}\right)=0$ implies $v\left(y_{i}\right)=0$
- $v\left(C_{i}\right)=1$ implies $v\left(y_{i}\right) \geq 1 / w$
and so $v\left(y_{i}\right)=v\left(C_{i}\right) 1 / w$ for any model e of T;
- $z_{i} \equiv w_{i} y_{i}$;
which yields $v\left(z_{i}\right)=v\left(C_{i}\right) w_{i}^{\prime}$ for any model v of T and any i.
Finally, let Φ be $\neg\left(z_{1} \oplus z_{2} \oplus \cdots \oplus z_{n}\right)$. Compute $m=\|\Phi\|_{T_{\square}}$ and return $(1-m) w_{\text {正 }}$

Concluding remarks

Algebraic semantics is (once again) the methodology of choice for complexity results in propositional Łukasiewicz logic.

Concluding remarks

Algebraic semantics is (once again) the methodology of choice for complexity results in propositional $Ł u k a s i e w i c z ~ l o g i c . ~$

The Validity Degree problem, native to many-valued logic, sits among other optimization problems in $\mathrm{FP}^{N P}$.

Concluding remarks

Algebraic semantics is (once again) the methodology of choice for complexity results in propositional Łukasiewicz logic.

The Validity Degree problem, native to many-valued logic, sits among other optimization problems in $\mathrm{FP}^{\mathrm{NP}}$.

Metric reductions are natural (many-one) reductions for optimization problems. Between some pairs of problems, such reductions cannot exist unless P equals NP. In the sense of metric reductions, Validity Degree ranks among "hardest" (i.e., complete) FP ${ }^{N P}$-problems.

