
Computing the validity degree in Lukasiewicz logic

Zuzana Haniková

Institute of Computer Science, Czech Academy of Sciences

Topology, Algebra, and Categories in Logic,
Nice, June 2019

Zuzana Haniková Computing the validity degree in Lukasiewicz logic

Outline

Setting: propositional (infinite-valued) Lukasiewicz logic.

Array of complexity results for decision problems.

Algebraic method: the standard MV-algebra.

Validity degree is an optimization problem.

Complete in FPNP under metric reductions:

upper bound (oracle computation);

lower bound (metric reduction).

Zuzana Haniková Computing the validity degree in Lukasiewicz logic

Standard MV-algebra

Language: {⊕,¬}.

[0, 1] L = 〈[0, 1],⊕,¬〉, with

x ⊕ y = min(1, x + y)

¬x = 1− x

Denote fϕ the function defined by the term ϕ in [0, 1] L.

Define:

x � y is ¬(¬x ⊕ ¬y);

x → y is ¬x ⊕ y ;

x ∨ y is (x → y)→ y ;

x ≡ y is (x → y)� (y → x).

Moreover, xn is x � · · · � x︸ ︷︷ ︸
n times

; analogously for nx .

The algebra [0, 1] L captures theorems and provability from finite theories
in propositional Lukasiewicz logic.

In particular, [0, 1] L provides a semantic method of investigating
computational properties of propositional infinite-valued Lukasiewicz logic.

Zuzana Haniková Computing the validity degree in Lukasiewicz logic

Standard MV-algebra

Language: {⊕,¬}.

[0, 1] L = 〈[0, 1],⊕,¬〉, with

x ⊕ y = min(1, x + y)

¬x = 1− x

Denote fϕ the function defined by the term ϕ in [0, 1] L.

Define:

x � y is ¬(¬x ⊕ ¬y);

x → y is ¬x ⊕ y ;

x ∨ y is (x → y)→ y ;

x ≡ y is (x → y)� (y → x).

Moreover, xn is x � · · · � x︸ ︷︷ ︸
n times

; analogously for nx .

The algebra [0, 1] L captures theorems and provability from finite theories
in propositional Lukasiewicz logic.

In particular, [0, 1] L provides a semantic method of investigating
computational properties of propositional infinite-valued Lukasiewicz logic.

Zuzana Haniková Computing the validity degree in Lukasiewicz logic

Standard MV-algebra

Language: {⊕,¬}.

[0, 1] L = 〈[0, 1],⊕,¬〉, with

x ⊕ y = min(1, x + y)

¬x = 1− x

Denote fϕ the function defined by the term ϕ in [0, 1] L.

Define:

x � y is ¬(¬x ⊕ ¬y);

x → y is ¬x ⊕ y ;

x ∨ y is (x → y)→ y ;

x ≡ y is (x → y)� (y → x).

Moreover, xn is x � · · · � x︸ ︷︷ ︸
n times

; analogously for nx .

The algebra [0, 1] L captures theorems and provability from finite theories
in propositional Lukasiewicz logic.

In particular, [0, 1] L provides a semantic method of investigating
computational properties of propositional infinite-valued Lukasiewicz logic.

Zuzana Haniková Computing the validity degree in Lukasiewicz logic

Standard MV-algebra

Language: {⊕,¬}.

[0, 1] L = 〈[0, 1],⊕,¬〉, with

x ⊕ y = min(1, x + y)

¬x = 1− x

Denote fϕ the function defined by the term ϕ in [0, 1] L.

Define:

x � y is ¬(¬x ⊕ ¬y);

x → y is ¬x ⊕ y ;

x ∨ y is (x → y)→ y ;

x ≡ y is (x → y)� (y → x).

Moreover, xn is x � · · · � x︸ ︷︷ ︸
n times

; analogously for nx .

The algebra [0, 1] L captures theorems and provability from finite theories
in propositional Lukasiewicz logic.

In particular, [0, 1] L provides a semantic method of investigating
computational properties of propositional infinite-valued Lukasiewicz logic.

Zuzana Haniková Computing the validity degree in Lukasiewicz logic

McNaughton functions

A function f : [0, 1]n → [0, 1] is a McNaughton function if

f is continuous

f is piecewise linear: there are finitely many linear polynomials {pi}i∈I ,
with pi (x̄) = Σn

j=1aij xj + bi ,
such that for any x̄ ∈ [0, 1]n there is an i ∈ I with f (x̄) = pi (x̄)

the polynomials pi have integer coefficients āi , bi .

Theorem [McNaughton 1951]

Term-definable functions of [0, 1] L coincide with McNaughton functions.

Zuzana Haniková Computing the validity degree in Lukasiewicz logic

Tautologies in standard MV-algebra

Consider MV-term ϕ(x1, ... , xn).

fϕ introduces a polyhedral complex C on its domain (i.e.,
⋃

C = [0, 1]n)
s.t. restriction of fϕ to each (n-dimensional) cell of C is a linear polynomial.

Minimum (maximum) of fϕ on [0, 1]n is attained at a vertex of a cell in C .

Vertices of cells of C occur as solutions of systems of linear equations,
with integer coefficient bounded by]ϕ (the number of occurrences of variables in ϕ).

All vertices of n-dimensional cells of C are rational vectors (p1/q1, ... , pn/qn) with

qi ≤ (
]ϕ

n
)n

Tautologous terms of the standard MV-algebra are in coNP.

[Mundici 1987; Aguzzoli and Ciabattoni 2000; Aguzzoli 2006]

Zuzana Haniková Computing the validity degree in Lukasiewicz logic

Tautologies in standard MV-algebra

Consider MV-term ϕ(x1, ... , xn).

fϕ introduces a polyhedral complex C on its domain (i.e.,
⋃

C = [0, 1]n)
s.t. restriction of fϕ to each (n-dimensional) cell of C is a linear polynomial.

Minimum (maximum) of fϕ on [0, 1]n is attained at a vertex of a cell in C .

Vertices of cells of C occur as solutions of systems of linear equations,
with integer coefficient bounded by]ϕ (the number of occurrences of variables in ϕ).

All vertices of n-dimensional cells of C are rational vectors (p1/q1, ... , pn/qn) with

qi ≤ (
]ϕ

n
)n

Tautologous terms of the standard MV-algebra are in coNP.

[Mundici 1987; Aguzzoli and Ciabattoni 2000; Aguzzoli 2006]

Zuzana Haniková Computing the validity degree in Lukasiewicz logic

Tautologies in standard MV-algebra

Consider MV-term ϕ(x1, ... , xn).

fϕ introduces a polyhedral complex C on its domain (i.e.,
⋃

C = [0, 1]n)
s.t. restriction of fϕ to each (n-dimensional) cell of C is a linear polynomial.

Minimum (maximum) of fϕ on [0, 1]n is attained at a vertex of a cell in C .

Vertices of cells of C occur as solutions of systems of linear equations,
with integer coefficient bounded by]ϕ (the number of occurrences of variables in ϕ).

All vertices of n-dimensional cells of C are rational vectors (p1/q1, ... , pn/qn) with

qi ≤ (
]ϕ

n
)n

Tautologous terms of the standard MV-algebra are in coNP.

[Mundici 1987; Aguzzoli and Ciabattoni 2000; Aguzzoli 2006]

Zuzana Haniková Computing the validity degree in Lukasiewicz logic

Standard RMV-algebra and validity degree

Language: MV, expanded with constants for rationals in [0, 1].

[0, 1]Q
 L = 〈[0, 1],⊕,¬, {r | r ∈ Q ∩ [0, 1]}〉.

The algebra [0, 1]Q
 L captures theorems and provability from finite theories

in Rational Pavelka logic (RPL), a conservative expansion of Lukasicz logic.

Let ϕ be an RMV-term and T a set thereof.
The validity degree of ϕ under T is

‖ϕ‖T = inf{v(ϕ) | v model of T}.

Corresponding syntactic notion is |ϕ|T = sup{r | T `RPL r → ϕ}.

Pavelka completeness:
|ϕ|T = ‖ϕ‖T

For T finite, write τ instead of T .

|ϕ|τ = 1 implies ϕ is provable from τ ;

|ϕ|τ is rational.

[Hájek 1998]

Zuzana Haniková Computing the validity degree in Lukasiewicz logic

Standard RMV-algebra and validity degree

Language: MV, expanded with constants for rationals in [0, 1].

[0, 1]Q
 L = 〈[0, 1],⊕,¬, {r | r ∈ Q ∩ [0, 1]}〉.

The algebra [0, 1]Q
 L captures theorems and provability from finite theories

in Rational Pavelka logic (RPL), a conservative expansion of Lukasicz logic.

Let ϕ be an RMV-term and T a set thereof.
The validity degree of ϕ under T is

‖ϕ‖T = inf{v(ϕ) | v model of T}.

Corresponding syntactic notion is |ϕ|T = sup{r | T `RPL r → ϕ}.

Pavelka completeness:
|ϕ|T = ‖ϕ‖T

For T finite, write τ instead of T .

|ϕ|τ = 1 implies ϕ is provable from τ ;

|ϕ|τ is rational.

[Hájek 1998]

Zuzana Haniková Computing the validity degree in Lukasiewicz logic

Standard RMV-algebra and validity degree

Language: MV, expanded with constants for rationals in [0, 1].

[0, 1]Q
 L = 〈[0, 1],⊕,¬, {r | r ∈ Q ∩ [0, 1]}〉.

The algebra [0, 1]Q
 L captures theorems and provability from finite theories

in Rational Pavelka logic (RPL), a conservative expansion of Lukasicz logic.

Let ϕ be an RMV-term and T a set thereof.
The validity degree of ϕ under T is

‖ϕ‖T = inf{v(ϕ) | v model of T}.

Corresponding syntactic notion is |ϕ|T = sup{r | T `RPL r → ϕ}.

Pavelka completeness:
|ϕ|T = ‖ϕ‖T

For T finite, write τ instead of T .

|ϕ|τ = 1 implies ϕ is provable from τ ;

|ϕ|τ is rational.

[Hájek 1998]

Zuzana Haniková Computing the validity degree in Lukasiewicz logic

Standard RMV-algebra and validity degree

Language: MV, expanded with constants for rationals in [0, 1].

[0, 1]Q
 L = 〈[0, 1],⊕,¬, {r | r ∈ Q ∩ [0, 1]}〉.

The algebra [0, 1]Q
 L captures theorems and provability from finite theories

in Rational Pavelka logic (RPL), a conservative expansion of Lukasicz logic.

Let ϕ be an RMV-term and T a set thereof.
The validity degree of ϕ under T is

‖ϕ‖T = inf{v(ϕ) | v model of T}.

Corresponding syntactic notion is |ϕ|T = sup{r | T `RPL r → ϕ}.

Pavelka completeness:
|ϕ|T = ‖ϕ‖T

For T finite, write τ instead of T .

|ϕ|τ = 1 implies ϕ is provable from τ ;

|ϕ|τ is rational.

[Hájek 1998]

Zuzana Haniková Computing the validity degree in Lukasiewicz logic

Implicit definability of rationals in standard MV-algebra

Rationals (bar 0 and 1) are not MV-term definable.

On the other hand, each rational a is implicitly definable in [0, 1] L:
there is an MV-term ϕ(x1, ... , xn) and i ≤ n s.t.

ϕ satisfiable in [0, 1] L, and

v(ϕ) = 1 implies v(xi) = a for each assignment v .

Example: x ≡ (¬x)n−1 implicitly defines 1/n.

Moreover, each rational p/q (with p and q written in binary)
has a poly-size implicit definition, adding (linear number of) new variables.

Example: let nmnm−1 ... n0 be the binary notation for n − 1.
Then y0 ≡ ¬x ; y1 ≡ y 2

0 ; y2 ≡ y 2
1 ; . . . ; x ≡ Πni =1yi implicitly defines 1/n in variable x .

Lemma: ‖ϕ‖τ = ‖ϕ?‖τ?�δτ�ϕ .

[Hájek 1998]

Zuzana Haniková Computing the validity degree in Lukasiewicz logic

Implicit definability of rationals in standard MV-algebra

Rationals (bar 0 and 1) are not MV-term definable.

On the other hand, each rational a is implicitly definable in [0, 1] L:
there is an MV-term ϕ(x1, ... , xn) and i ≤ n s.t.

ϕ satisfiable in [0, 1] L, and

v(ϕ) = 1 implies v(xi) = a for each assignment v .

Example: x ≡ (¬x)n−1 implicitly defines 1/n.

Moreover, each rational p/q (with p and q written in binary)
has a poly-size implicit definition, adding (linear number of) new variables.

Example: let nmnm−1 ... n0 be the binary notation for n − 1.
Then y0 ≡ ¬x ; y1 ≡ y 2

0 ; y2 ≡ y 2
1 ; . . . ; x ≡ Πni =1yi implicitly defines 1/n in variable x .

Lemma: ‖ϕ‖τ = ‖ϕ?‖τ?�δτ�ϕ .

[Hájek 1998]

Zuzana Haniková Computing the validity degree in Lukasiewicz logic

Implicit definability of rationals in standard MV-algebra

Rationals (bar 0 and 1) are not MV-term definable.

On the other hand, each rational a is implicitly definable in [0, 1] L:
there is an MV-term ϕ(x1, ... , xn) and i ≤ n s.t.

ϕ satisfiable in [0, 1] L, and

v(ϕ) = 1 implies v(xi) = a for each assignment v .

Example: x ≡ (¬x)n−1 implicitly defines 1/n.

Moreover, each rational p/q (with p and q written in binary)
has a poly-size implicit definition, adding (linear number of) new variables.

Example: let nmnm−1 ... n0 be the binary notation for n − 1.
Then y0 ≡ ¬x ; y1 ≡ y 2

0 ; y2 ≡ y 2
1 ; . . . ; x ≡ Πni =1yi implicitly defines 1/n in variable x .

Lemma: ‖ϕ‖τ = ‖ϕ?‖τ?�δτ�ϕ .

[Hájek 1998]

Zuzana Haniková Computing the validity degree in Lukasiewicz logic

Implicit definability of rationals in standard MV-algebra

Rationals (bar 0 and 1) are not MV-term definable.

On the other hand, each rational a is implicitly definable in [0, 1] L:
there is an MV-term ϕ(x1, ... , xn) and i ≤ n s.t.

ϕ satisfiable in [0, 1] L, and

v(ϕ) = 1 implies v(xi) = a for each assignment v .

Example: x ≡ (¬x)n−1 implicitly defines 1/n.

Moreover, each rational p/q (with p and q written in binary)
has a poly-size implicit definition, adding (linear number of) new variables.

Example: let nmnm−1 ... n0 be the binary notation for n − 1.
Then y0 ≡ ¬x ; y1 ≡ y 2

0 ; y2 ≡ y 2
1 ; . . . ; x ≡ Πni =1yi implicitly defines 1/n in variable x .

Lemma: ‖ϕ‖τ = ‖ϕ?‖τ?�δτ�ϕ .

[Hájek 1998]

Zuzana Haniková Computing the validity degree in Lukasiewicz logic

Implicit definability of rationals in standard MV-algebra

Rationals (bar 0 and 1) are not MV-term definable.

On the other hand, each rational a is implicitly definable in [0, 1] L:
there is an MV-term ϕ(x1, ... , xn) and i ≤ n s.t.

ϕ satisfiable in [0, 1] L, and

v(ϕ) = 1 implies v(xi) = a for each assignment v .

Example: x ≡ (¬x)n−1 implicitly defines 1/n.

Moreover, each rational p/q (with p and q written in binary)
has a poly-size implicit definition, adding (linear number of) new variables.

Example: let nmnm−1 ... n0 be the binary notation for n − 1.
Then y0 ≡ ¬x ; y1 ≡ y 2

0 ; y2 ≡ y 2
1 ; . . . ; x ≡ Πni =1yi implicitly defines 1/n in variable x .

Lemma: ‖ϕ‖τ = ‖ϕ?‖τ?�δτ�ϕ .

[Hájek 1998]

Zuzana Haniková Computing the validity degree in Lukasiewicz logic

Two optimization problems in [0, 1] L

• MAX value
Instance: (R)MV-term ϕ.
Output: MAX(ϕ) (maximal value of fϕ in [0, 1] L).

GenSAT: for ϕ, c, d (with c, d ∈ N), is fϕ(ā) ≥ c/d for some ā ∈ [0, 1]n?
This is NP-complete.
[Mundici, Olivetti 1998]

• Validity Degree
Instance: (R)MV-terms τ and ϕ.
Output: ‖ϕ‖τ (minimal value of fϕ on the 1-set of fτ) in [0, 1] L.

where the 1-set of fτ is {ā ∈ Rn | fτ (ā) = 1}.

Finite consequence in RMV: for τ , ϕ, is it the case that τ |=RMV r → ϕ?
This is coNP-complete.
[Hájek 2006]

Function problems such as these sometimes called “evaluation” or “cost” problems.

Zuzana Haniková Computing the validity degree in Lukasiewicz logic

Two optimization problems in [0, 1] L

• MAX value
Instance: (R)MV-term ϕ.
Output: MAX(ϕ) (maximal value of fϕ in [0, 1] L).

GenSAT: for ϕ, c, d (with c, d ∈ N), is fϕ(ā) ≥ c/d for some ā ∈ [0, 1]n?
This is NP-complete.
[Mundici, Olivetti 1998]

• Validity Degree
Instance: (R)MV-terms τ and ϕ.
Output: ‖ϕ‖τ (minimal value of fϕ on the 1-set of fτ) in [0, 1] L.

where the 1-set of fτ is {ā ∈ Rn | fτ (ā) = 1}.

Finite consequence in RMV: for τ , ϕ, is it the case that τ |=RMV r → ϕ?
This is coNP-complete.
[Hájek 2006]

Function problems such as these sometimes called “evaluation” or “cost” problems.

Zuzana Haniková Computing the validity degree in Lukasiewicz logic

Two optimization problems in [0, 1] L

• MAX value
Instance: (R)MV-term ϕ.
Output: MAX(ϕ) (maximal value of fϕ in [0, 1] L).

GenSAT: for ϕ, c, d (with c, d ∈ N), is fϕ(ā) ≥ c/d for some ā ∈ [0, 1]n?
This is NP-complete.
[Mundici, Olivetti 1998]

• Validity Degree
Instance: (R)MV-terms τ and ϕ.
Output: ‖ϕ‖τ (minimal value of fϕ on the 1-set of fτ) in [0, 1] L.

where the 1-set of fτ is {ā ∈ Rn | fτ (ā) = 1}.

Finite consequence in RMV: for τ , ϕ, is it the case that τ |=RMV r → ϕ?
This is coNP-complete.
[Hájek 2006]

Function problems such as these sometimes called “evaluation” or “cost” problems.
Zuzana Haniková Computing the validity degree in Lukasiewicz logic

Non-approximability of MAX value

Work in MV-language.

Theorem

Let δ < 1/2 be a positive real. Suppose ALG is a poly-time algorithm computing,
for MV-term ϕ, a real number ALG(ϕ) satisfying |ALG(ϕ)−MAX(ϕ)| ≤ δ.
Then P = NP.

Proof: solve Boolean SAT using ALG.

Instance: Boolean formula ϕ, given as {�,∨}-combination of literals.
Then fϕ in [0, 1] L is a convex function.

– ϕ satisfiable in {0, 1} implies ϕ satisfiable in [0, 1] L.

– ϕ not satisfiable in {0, 1}: then fϕ is identically 0.

So ϕ ∈ SAT({0, 1}) iff MAX(ϕ) = 1 iff ALG(ϕ) > 1/2.

[H., Savický 2016]

Zuzana Haniková Computing the validity degree in Lukasiewicz logic

Non-approximability of MAX value

Work in MV-language.

Theorem

Let δ < 1/2 be a positive real. Suppose ALG is a poly-time algorithm computing,
for MV-term ϕ, a real number ALG(ϕ) satisfying |ALG(ϕ)−MAX(ϕ)| ≤ δ.
Then P = NP.

Proof: solve Boolean SAT using ALG.

Instance: Boolean formula ϕ, given as {�,∨}-combination of literals.
Then fϕ in [0, 1] L is a convex function.

– ϕ satisfiable in {0, 1} implies ϕ satisfiable in [0, 1] L.

– ϕ not satisfiable in {0, 1}: then fϕ is identically 0.

So ϕ ∈ SAT({0, 1}) iff MAX(ϕ) = 1 iff ALG(ϕ) > 1/2.

[H., Savický 2016]

Zuzana Haniková Computing the validity degree in Lukasiewicz logic

Computing MAX value: oracle computation

Work in MV-language (can be adapted to RMV-).

MAX(ϕ) is attained at a vertex of a polyhedral decomposition of the domain,
with rationalcoordinates with denominators of (binary) length bounded by n log(]ϕ/n).

Oracle: GenSAT (given ϕ and a rational r ∈ [0, 1], is MAX(ϕ) ≥ r?) This is NP-c.

Binary search within rationals on [0, 1] with denominators up to N = (]ϕ/n)n2

.

Minimal distance of any two such distinct numbers:
∣∣∣ p1

q1
− p2

q2

∣∣∣ ≥ 1
N2

If ϕ ∈ SAT([0, 1] L), we have MAX(ϕ) = 1.
If not, let a := 0 and b := 1 and k := 0.

Repeat ++k; MAX(ϕ) ≥ (a + b)/2?

{
Y a := (a + b)/2;

N b := (a + b)/2;
until 2k > N2.

This yields interval [m/2k , (m + 1)/2k) for some m, of length 1/2k , with exactly one
rational with denominator up to N.

Pick a value in (m/2k , (m + 1)/2k) and compute best rational approximations.

MAX value is in FPNP.

Zuzana Haniková Computing the validity degree in Lukasiewicz logic

Computing MAX value: oracle computation

Work in MV-language (can be adapted to RMV-).

MAX(ϕ) is attained at a vertex of a polyhedral decomposition of the domain,
with rationalcoordinates with denominators of (binary) length bounded by n log(]ϕ/n).

Oracle: GenSAT (given ϕ and a rational r ∈ [0, 1], is MAX(ϕ) ≥ r?) This is NP-c.

Binary search within rationals on [0, 1] with denominators up to N = (]ϕ/n)n2

.

Minimal distance of any two such distinct numbers:
∣∣∣ p1

q1
− p2

q2

∣∣∣ ≥ 1
N2

If ϕ ∈ SAT([0, 1] L), we have MAX(ϕ) = 1.
If not, let a := 0 and b := 1 and k := 0.

Repeat ++k; MAX(ϕ) ≥ (a + b)/2?

{
Y a := (a + b)/2;

N b := (a + b)/2;
until 2k > N2.

This yields interval [m/2k , (m + 1)/2k) for some m, of length 1/2k , with exactly one
rational with denominator up to N.

Pick a value in (m/2k , (m + 1)/2k) and compute best rational approximations.

MAX value is in FPNP.

Zuzana Haniková Computing the validity degree in Lukasiewicz logic

Computing MAX value: oracle computation

Work in MV-language (can be adapted to RMV-).

MAX(ϕ) is attained at a vertex of a polyhedral decomposition of the domain,
with rationalcoordinates with denominators of (binary) length bounded by n log(]ϕ/n).

Oracle: GenSAT (given ϕ and a rational r ∈ [0, 1], is MAX(ϕ) ≥ r?) This is NP-c.

Binary search within rationals on [0, 1] with denominators up to N = (]ϕ/n)n2

.

Minimal distance of any two such distinct numbers:
∣∣∣ p1

q1
− p2

q2

∣∣∣ ≥ 1
N2

If ϕ ∈ SAT([0, 1] L), we have MAX(ϕ) = 1.
If not, let a := 0 and b := 1 and k := 0.

Repeat ++k; MAX(ϕ) ≥ (a + b)/2?

{
Y a := (a + b)/2;

N b := (a + b)/2;
until 2k > N2.

This yields interval [m/2k , (m + 1)/2k) for some m, of length 1/2k , with exactly one
rational with denominator up to N.

Pick a value in (m/2k , (m + 1)/2k) and compute best rational approximations.

MAX value is in FPNP.

Zuzana Haniková Computing the validity degree in Lukasiewicz logic

Computing MAX value: oracle computation

Work in MV-language (can be adapted to RMV-).

MAX(ϕ) is attained at a vertex of a polyhedral decomposition of the domain,
with rationalcoordinates with denominators of (binary) length bounded by n log(]ϕ/n).

Oracle: GenSAT (given ϕ and a rational r ∈ [0, 1], is MAX(ϕ) ≥ r?) This is NP-c.

Binary search within rationals on [0, 1] with denominators up to N = (]ϕ/n)n2

.

Minimal distance of any two such distinct numbers:
∣∣∣ p1

q1
− p2

q2

∣∣∣ ≥ 1
N2

If ϕ ∈ SAT([0, 1] L), we have MAX(ϕ) = 1.
If not, let a := 0 and b := 1 and k := 0.

Repeat ++k; MAX(ϕ) ≥ (a + b)/2?

{
Y a := (a + b)/2;

N b := (a + b)/2;
until 2k > N2.

This yields interval [m/2k , (m + 1)/2k) for some m, of length 1/2k , with exactly one
rational with denominator up to N.

Pick a value in (m/2k , (m + 1)/2k) and compute best rational approximations.

MAX value is in FPNP.

Zuzana Haniková Computing the validity degree in Lukasiewicz logic

Computing MAX value: oracle computation

Work in MV-language (can be adapted to RMV-).

MAX(ϕ) is attained at a vertex of a polyhedral decomposition of the domain,
with rationalcoordinates with denominators of (binary) length bounded by n log(]ϕ/n).

Oracle: GenSAT (given ϕ and a rational r ∈ [0, 1], is MAX(ϕ) ≥ r?) This is NP-c.

Binary search within rationals on [0, 1] with denominators up to N = (]ϕ/n)n2

.

Minimal distance of any two such distinct numbers:
∣∣∣ p1

q1
− p2

q2

∣∣∣ ≥ 1
N2

If ϕ ∈ SAT([0, 1] L), we have MAX(ϕ) = 1.
If not, let a := 0 and b := 1 and k := 0.

Repeat ++k; MAX(ϕ) ≥ (a + b)/2?

{
Y a := (a + b)/2;

N b := (a + b)/2;
until 2k > N2.

This yields interval [m/2k , (m + 1)/2k) for some m, of length 1/2k , with exactly one
rational with denominator up to N.

Pick a value in (m/2k , (m + 1)/2k) and compute best rational approximations.

MAX value is in FPNP.

Zuzana Haniková Computing the validity degree in Lukasiewicz logic

Computing MAX value: oracle computation

Work in MV-language (can be adapted to RMV-).

MAX(ϕ) is attained at a vertex of a polyhedral decomposition of the domain,
with rationalcoordinates with denominators of (binary) length bounded by n log(]ϕ/n).

Oracle: GenSAT (given ϕ and a rational r ∈ [0, 1], is MAX(ϕ) ≥ r?) This is NP-c.

Binary search within rationals on [0, 1] with denominators up to N = (]ϕ/n)n2

.

Minimal distance of any two such distinct numbers:
∣∣∣ p1

q1
− p2

q2

∣∣∣ ≥ 1
N2

If ϕ ∈ SAT([0, 1] L), we have MAX(ϕ) = 1.
If not, let a := 0 and b := 1 and k := 0.

Repeat ++k; MAX(ϕ) ≥ (a + b)/2?

{
Y a := (a + b)/2;

N b := (a + b)/2;
until 2k > N2.

This yields interval [m/2k , (m + 1)/2k) for some m, of length 1/2k , with exactly one
rational with denominator up to N.

Pick a value in (m/2k , (m + 1)/2k) and compute best rational approximations.

MAX value is in FPNP.

Zuzana Haniková Computing the validity degree in Lukasiewicz logic

Computing the Validity Degree: oracle computation

Instance: (R)MV-terms τ and ϕ (with or without constants)
Output: ‖ϕ‖τ .

To obtain upper bound for binary search, get rid of constants.
Recall ‖ϕ‖τ = ‖ϕ?‖τ?�δτ�ϕ
with MV-terms ϕ?, τ? and δτ�ϕ.

So ‖ϕ‖τ is a rational p/q, with q ≤ N = (]{ϕ?, τ?, δτ�ϕ}/n)n2

,
where n is the number of variables in {ϕ?, τ?, δτ�ϕ}
and the] function is taken over these three terms.

The minimum of f ?ϕ on the (compact) 1-region of fτ?�δτ�ϕ
is attained at a vertex of the common refinement of complexes of fϕ and fτ?�δτ�ϕ .
Then use Aguzzoli’s bounds on denominators.

Validity Degree in FPNP.
(“Upper bound.”)

Zuzana Haniková Computing the validity degree in Lukasiewicz logic

Computing the Validity Degree: oracle computation

Instance: (R)MV-terms τ and ϕ (with or without constants)
Output: ‖ϕ‖τ .

To obtain upper bound for binary search, get rid of constants.
Recall ‖ϕ‖τ = ‖ϕ?‖τ?�δτ�ϕ
with MV-terms ϕ?, τ? and δτ�ϕ.

So ‖ϕ‖τ is a rational p/q, with q ≤ N = (]{ϕ?, τ?, δτ�ϕ}/n)n2

,
where n is the number of variables in {ϕ?, τ?, δτ�ϕ}
and the] function is taken over these three terms.

The minimum of f ?ϕ on the (compact) 1-region of fτ?�δτ�ϕ
is attained at a vertex of the common refinement of complexes of fϕ and fτ?�δτ�ϕ .
Then use Aguzzoli’s bounds on denominators.

Validity Degree in FPNP.
(“Upper bound.”)

Zuzana Haniková Computing the validity degree in Lukasiewicz logic

Computing the Validity Degree: oracle computation

Instance: (R)MV-terms τ and ϕ (with or without constants)
Output: ‖ϕ‖τ .

To obtain upper bound for binary search, get rid of constants.
Recall ‖ϕ‖τ = ‖ϕ?‖τ?�δτ�ϕ
with MV-terms ϕ?, τ? and δτ�ϕ.

So ‖ϕ‖τ is a rational p/q, with q ≤ N = (]{ϕ?, τ?, δτ�ϕ}/n)n2

,
where n is the number of variables in {ϕ?, τ?, δτ�ϕ}
and the] function is taken over these three terms.

The minimum of f ?ϕ on the (compact) 1-region of fτ?�δτ�ϕ
is attained at a vertex of the common refinement of complexes of fϕ and fτ?�δτ�ϕ .
Then use Aguzzoli’s bounds on denominators.

Validity Degree in FPNP.
(“Upper bound.”)

Zuzana Haniková Computing the validity degree in Lukasiewicz logic

Metric reductions, and a separation

Let f , g : Σ∗ → N.
A metric reduction of f to g is a pair (h1, h2) of p-time functions
(with h1 : Σ∗ → Σ∗ and h2 : Σ∗ × N → N)
such that f (x) = h2(x , g(h1(x))) for each x ∈ Σ∗.

Let z : N → N. FPNP[z(n)] is the class of functions
computable in P-time with NP oracle with at most z(|x |) oracle calls for input x .
(So FPNP = FPNP[nO(1)].)

Theorem [Krentel 1988]

Assume P 6= NP. Then FPNP[O(log log n)] 6= FPNP[O(log n)] 6= FPNP[nO(1)].

In particular, there are no metric reductions from FPNP-complete problems
to problems in FPNP[O(log n)].

[Krentel: Complexity of optimization problems, 1988]

Zuzana Haniková Computing the validity degree in Lukasiewicz logic

Metric reductions, and a separation

Let f , g : Σ∗ → N.
A metric reduction of f to g is a pair (h1, h2) of p-time functions
(with h1 : Σ∗ → Σ∗ and h2 : Σ∗ × N → N)
such that f (x) = h2(x , g(h1(x))) for each x ∈ Σ∗.

Let z : N → N. FPNP[z(n)] is the class of functions
computable in P-time with NP oracle with at most z(|x |) oracle calls for input x .
(So FPNP = FPNP[nO(1)].)

Theorem [Krentel 1988]

Assume P 6= NP. Then FPNP[O(log log n)] 6= FPNP[O(log n)] 6= FPNP[nO(1)].

In particular, there are no metric reductions from FPNP-complete problems
to problems in FPNP[O(log n)].

[Krentel: Complexity of optimization problems, 1988]

Zuzana Haniková Computing the validity degree in Lukasiewicz logic

Metric reductions, and a separation

Let f , g : Σ∗ → N.
A metric reduction of f to g is a pair (h1, h2) of p-time functions
(with h1 : Σ∗ → Σ∗ and h2 : Σ∗ × N → N)
such that f (x) = h2(x , g(h1(x))) for each x ∈ Σ∗.

Let z : N → N. FPNP[z(n)] is the class of functions
computable in P-time with NP oracle with at most z(|x |) oracle calls for input x .
(So FPNP = FPNP[nO(1)].)

Theorem [Krentel 1988]

Assume P 6= NP. Then FPNP[O(log log n)] 6= FPNP[O(log n)] 6= FPNP[nO(1)].

In particular, there are no metric reductions from FPNP-complete problems
to problems in FPNP[O(log n)].

[Krentel: Complexity of optimization problems, 1988]

Zuzana Haniková Computing the validity degree in Lukasiewicz logic

Weighted MaxSAT problem

• Weighted MaxSAT
Instance: Boolean CNF formula C1 ∧ · · · ∧ Cn (k variables) with weights w1, ... ,wn.
Output: maxe Σiwie(Ci)(max sum of weights of true clauses over all assignments to ϕ).

Theorem [Krentel 1988]

Weighted MaxSAT is complete in FPNP (under metric reductions).

Zuzana Haniková Computing the validity degree in Lukasiewicz logic

Computing the Validity Degree: lower bound

Theorem

Validity Degree is FPNP-complete (under metric reductions).

Proof: reduce weighted MaxSAT to Validity Degree.
Maximize Σiwie(Ci) over all assigments e.

It is easy to:
– switch min and max (using ¬);
– scale weights: take w = Σiwi and replace wi with w ′i = wi/w (and de-scale again);

Build a theory T (or τ) to
– make assignments Boolean (adding xi ∨ ¬xi for each i ∈ {1, ... , k})
– implicitly condition each w ′i with Ci under v :

b ≡ (¬b)w−1 (implicitly defines 1/w);
yi → b and wyi ≡ Ci for each i ∈ {1, ... , n}; then

v(Ci) = 0 implies v(yi) = 0
v(Ci) = 1 implies v(yi) ≥ 1/w

and so v(yi) = v(Ci)1/w for any model e of T ;

zi ≡ wiyi ;

which yields v(zi) = v(Ci)w
′
i for any model v of T and any i .

Finally, let Φ be ¬(z1 ⊕ z2 ⊕ · · · ⊕ zn). Compute m = ‖Φ‖T and return (1−m)w .

Zuzana Haniková Computing the validity degree in Lukasiewicz logic

Computing the Validity Degree: lower bound

Theorem

Validity Degree is FPNP-complete (under metric reductions).

Proof: reduce weighted MaxSAT to Validity Degree.
Maximize Σiwie(Ci) over all assigments e.

It is easy to:
– switch min and max (using ¬);
– scale weights: take w = Σiwi and replace wi with w ′i = wi/w (and de-scale again);

Build a theory T (or τ) to
– make assignments Boolean (adding xi ∨ ¬xi for each i ∈ {1, ... , k})
– implicitly condition each w ′i with Ci under v :

b ≡ (¬b)w−1 (implicitly defines 1/w);
yi → b and wyi ≡ Ci for each i ∈ {1, ... , n}; then

v(Ci) = 0 implies v(yi) = 0
v(Ci) = 1 implies v(yi) ≥ 1/w

and so v(yi) = v(Ci)1/w for any model e of T ;

zi ≡ wiyi ;

which yields v(zi) = v(Ci)w
′
i for any model v of T and any i .

Finally, let Φ be ¬(z1 ⊕ z2 ⊕ · · · ⊕ zn). Compute m = ‖Φ‖T and return (1−m)w .

Zuzana Haniková Computing the validity degree in Lukasiewicz logic

Computing the Validity Degree: lower bound

Theorem

Validity Degree is FPNP-complete (under metric reductions).

Proof: reduce weighted MaxSAT to Validity Degree.
Maximize Σiwie(Ci) over all assigments e.

It is easy to:
– switch min and max (using ¬);
– scale weights: take w = Σiwi and replace wi with w ′i = wi/w (and de-scale again);

Build a theory T (or τ) to
– make assignments Boolean (adding xi ∨ ¬xi for each i ∈ {1, ... , k})
– implicitly condition each w ′i with Ci under v :

b ≡ (¬b)w−1 (implicitly defines 1/w);
yi → b and wyi ≡ Ci for each i ∈ {1, ... , n}; then

v(Ci) = 0 implies v(yi) = 0
v(Ci) = 1 implies v(yi) ≥ 1/w

and so v(yi) = v(Ci)1/w for any model e of T ;

zi ≡ wiyi ;

which yields v(zi) = v(Ci)w
′
i for any model v of T and any i .

Finally, let Φ be ¬(z1 ⊕ z2 ⊕ · · · ⊕ zn). Compute m = ‖Φ‖T and return (1−m)w .

Zuzana Haniková Computing the validity degree in Lukasiewicz logic

Computing the Validity Degree: lower bound

Theorem

Validity Degree is FPNP-complete (under metric reductions).

Proof: reduce weighted MaxSAT to Validity Degree.
Maximize Σiwie(Ci) over all assigments e.

It is easy to:
– switch min and max (using ¬);
– scale weights: take w = Σiwi and replace wi with w ′i = wi/w (and de-scale again);

Build a theory T (or τ) to
– make assignments Boolean (adding xi ∨ ¬xi for each i ∈ {1, ... , k})
– implicitly condition each w ′i with Ci under v :

b ≡ (¬b)w−1 (implicitly defines 1/w);
yi → b and wyi ≡ Ci for each i ∈ {1, ... , n}; then

v(Ci) = 0 implies v(yi) = 0
v(Ci) = 1 implies v(yi) ≥ 1/w

and so v(yi) = v(Ci)1/w for any model e of T ;

zi ≡ wiyi ;

which yields v(zi) = v(Ci)w
′
i for any model v of T and any i .

Finally, let Φ be ¬(z1 ⊕ z2 ⊕ · · · ⊕ zn). Compute m = ‖Φ‖T and return (1−m)w .

Zuzana Haniková Computing the validity degree in Lukasiewicz logic

Computing the Validity Degree: lower bound

Theorem

Validity Degree is FPNP-complete (under metric reductions).

Proof: reduce weighted MaxSAT to Validity Degree.
Maximize Σiwie(Ci) over all assigments e.

It is easy to:
– switch min and max (using ¬);
– scale weights: take w = Σiwi and replace wi with w ′i = wi/w (and de-scale again);

Build a theory T (or τ) to
– make assignments Boolean (adding xi ∨ ¬xi for each i ∈ {1, ... , k})
– implicitly condition each w ′i with Ci under v :

b ≡ (¬b)w−1 (implicitly defines 1/w);

yi → b and wyi ≡ Ci for each i ∈ {1, ... , n}; then
v(Ci) = 0 implies v(yi) = 0
v(Ci) = 1 implies v(yi) ≥ 1/w

and so v(yi) = v(Ci)1/w for any model e of T ;

zi ≡ wiyi ;

which yields v(zi) = v(Ci)w
′
i for any model v of T and any i .

Finally, let Φ be ¬(z1 ⊕ z2 ⊕ · · · ⊕ zn). Compute m = ‖Φ‖T and return (1−m)w .

Zuzana Haniková Computing the validity degree in Lukasiewicz logic

Computing the Validity Degree: lower bound

Theorem

Validity Degree is FPNP-complete (under metric reductions).

Proof: reduce weighted MaxSAT to Validity Degree.
Maximize Σiwie(Ci) over all assigments e.

It is easy to:
– switch min and max (using ¬);
– scale weights: take w = Σiwi and replace wi with w ′i = wi/w (and de-scale again);

Build a theory T (or τ) to
– make assignments Boolean (adding xi ∨ ¬xi for each i ∈ {1, ... , k})
– implicitly condition each w ′i with Ci under v :

b ≡ (¬b)w−1 (implicitly defines 1/w);
yi → b and wyi ≡ Ci for each i ∈ {1, ... , n}; then

v(Ci) = 0 implies v(yi) = 0
v(Ci) = 1 implies v(yi) ≥ 1/w

and so v(yi) = v(Ci)1/w for any model e of T ;

zi ≡ wiyi ;

which yields v(zi) = v(Ci)w
′
i for any model v of T and any i .

Finally, let Φ be ¬(z1 ⊕ z2 ⊕ · · · ⊕ zn). Compute m = ‖Φ‖T and return (1−m)w .

Zuzana Haniková Computing the validity degree in Lukasiewicz logic

Computing the Validity Degree: lower bound

Theorem

Validity Degree is FPNP-complete (under metric reductions).

Proof: reduce weighted MaxSAT to Validity Degree.
Maximize Σiwie(Ci) over all assigments e.

It is easy to:
– switch min and max (using ¬);
– scale weights: take w = Σiwi and replace wi with w ′i = wi/w (and de-scale again);

Build a theory T (or τ) to
– make assignments Boolean (adding xi ∨ ¬xi for each i ∈ {1, ... , k})
– implicitly condition each w ′i with Ci under v :

b ≡ (¬b)w−1 (implicitly defines 1/w);
yi → b and wyi ≡ Ci for each i ∈ {1, ... , n}; then

v(Ci) = 0 implies v(yi) = 0
v(Ci) = 1 implies v(yi) ≥ 1/w

and so v(yi) = v(Ci)1/w for any model e of T ;

zi ≡ wiyi ;

which yields v(zi) = v(Ci)w
′
i for any model v of T and any i .

Finally, let Φ be ¬(z1 ⊕ z2 ⊕ · · · ⊕ zn). Compute m = ‖Φ‖T and return (1−m)w .

Zuzana Haniková Computing the validity degree in Lukasiewicz logic

Concluding remarks

Algebraic semantics is (once again) the methodology of choice
for complexity results in propositional Lukasiewicz logic.

The Validity Degree problem, native to many-valued logic,
sits among other optimization problems in FPNP.

Metric reductions are natural (many-one) reductions for optimization problems.
Between some pairs of problems, such reductions cannot exist unless P equals NP.
In the sense of metric reductions,
Validity Degree ranks among “hardest” (i.e., complete) FPNP-problems.

Zuzana Haniková Computing the validity degree in Lukasiewicz logic

Concluding remarks

Algebraic semantics is (once again) the methodology of choice
for complexity results in propositional Lukasiewicz logic.

The Validity Degree problem, native to many-valued logic,
sits among other optimization problems in FPNP.

Metric reductions are natural (many-one) reductions for optimization problems.
Between some pairs of problems, such reductions cannot exist unless P equals NP.
In the sense of metric reductions,
Validity Degree ranks among “hardest” (i.e., complete) FPNP-problems.

Zuzana Haniková Computing the validity degree in Lukasiewicz logic

Concluding remarks

Algebraic semantics is (once again) the methodology of choice
for complexity results in propositional Lukasiewicz logic.

The Validity Degree problem, native to many-valued logic,
sits among other optimization problems in FPNP.

Metric reductions are natural (many-one) reductions for optimization problems.
Between some pairs of problems, such reductions cannot exist unless P equals NP.
In the sense of metric reductions,
Validity Degree ranks among “hardest” (i.e., complete) FPNP-problems.

Zuzana Haniková Computing the validity degree in Lukasiewicz logic

