Proofs and surfaces

Djordje Baralić, Marina Milićević, Zoran Petrić, Mladen Zekić, Rade Živaljević
Mathematical Institute of the Serbian Academy of Sciences and Arts
Pierre-Louis Curien
πr^{2}, IRIF (INRIA, Université Paris Diderot, CNRS)
Jovana Obradović
Institute of Mathematics of the Czech Academy of Sciences
TACL, Nice, June 2019

Incidence theorems and triangulated surfaces

Incidence theorems in 2-dimensional Euclidean or projective geometry state that some incidences follow from other incidences.

Goal Formalise and extend, within proof theory, a methodology of Richter-Gebert of deriving such theorems from associated triangulated surfaces.

The Menelaus theorem

For three points in the Euclidean plane \mathbb{R}^{2}, let

$$
(X, Y ; Z)={ }_{d f}\left\{\begin{aligned}
\frac{X Z}{Y Z}, & \text { if } Z \text { is between } X \text { and } Y, \\
-\frac{X Z}{Y Z}, & \text { otherwise. }
\end{aligned}\right.
$$

if X, Y and Z are mutually distinct and colinear. Otherwise, we set $(X, Y ; Z)$ to be undefined.
A sextuple $(A, B, C, P, Q, R)(A B C P Q R$ for short $)$ of points in \mathbb{R}^{2} is a Menelaus configuration when

$$
(B, C ; P),(C, A ; Q) \text { and }(A, B ; R) \text { are defined }
$$

and their product is -1 .

Theorem 1.1 (Menelaus)

For a triangle $A B C$ (with A, B, C not colinear), and points P, Q and R (different from the vertices) on the lines $B C, C A$ and $A B$, it holds that P, Q, R are colinear iff $\quad(A, B, C, P, Q, R)$ is a Menelaus configuration.

(half of) Desargues theorem

$(C, D ; W) \cdot(D, B ; V) \cdot(B, C ; P)=-1$
$(D, C ; W) \cdot(A, D ; U) \cdot(C, A ; Q)=-1$
$(B, D ; V) \cdot(D, A ; U) \cdot(A, B ; R)=-1$
$(B, C ; P) \cdot(C, A ; Q) \cdot(A, B ; R)=-1$
Hence, P, Q, R are colinear.
We could have picked any other triple of triangles forming the faces of $A B C D$ viewed as a tetrahedron, assuming the corresponding colinearities, and would have derived the colinearity for the missing one. In logical terms, we have that the following sequent is satisfied:
$\vdash A B C P Q R, A B D V U R, A C D W U Q, B C D W V P$
where satisfaction means that whenever 3 out of these 4 sextuples is a Menelaus configuration, then so is the fourth.

Homology meets Menelaus

We suppose given a semi-simplical set K, and a function $v: K_{0} \cup K_{1} \rightarrow \mathbb{R}^{2}$. Consider the operator $\mu: K_{2} \rightarrow\left(\mathbb{R}^{2}\right)^{6}$
that sends a 2-cell $x \in K_{2}$ to $(v A, v B, v C, v P, v Q, v R)$ (its realisation), where A, B, C, P, Q, R are the 0 -cells and 1-cells of the boundary of x. Let c be a cycle on (the chain complex associated with) K. We can write

$$
c=\varepsilon_{1} x_{1}+\varepsilon_{2} x_{2}+\ldots+\varepsilon_{n-1} x_{n-1}+\varepsilon_{n} x_{n}
$$

were all x_{i} 's are in K_{2} and all ε_{i} 's are 1 or -1 . There may be repetitions!

Proposition 2.1

For any $1 \leq i \leq n$, if all μx_{j} 's, for $j \neq i$, are Menelaus configurations, then μx_{i} is a Menelaus configuration, too.

Proof idea: Extend $y \mapsto\left(v d_{0} y, v d_{1} y ; v y\right)\left(y \in K_{1}\right)$ (e.g. $B C \mapsto(B, C ; P))$ to a (partial) homomorphism $h:\left(C_{1},+, 0\right) \rightarrow(\mathbb{R} \backslash\{0\}, \cdot, 1)$.

A suitable class of semi-simplicial sets

For applications to incidence theorems, it is sufficient to consider M-complexes (for Menelaus), i.e., semi-simplicial sets L such that:
(0) L has a finite number of cells;
(1) for every $m \geq 3$, the set L_{m} is empty, and every element of $L_{0} \cup L_{1}$ is a face of some element of $L_{1} \cup L_{2}$;
(2) distinct faces map an element of L_{i+1} to distinct elements of $L_{i}(i \leq 1)$;
(3) every 1 -cell of L is a face of exactly two 2 -cells of L;
(4) for every $w \in L_{0}$, the set $L_{w}=\left\{u \in L_{2} \mid w\right.$ is a vertex of $\left.u\right\}$ is linked, i.e., if $u, u^{\prime} \in L_{w}$, then there is a sequence of 2-cells starting at u and ending at u^{\prime}, such that every two consecutive 2-cells share an edge having w as a vertex;
(5) L is orientable.

Proposition 2.2

The geometric realisation of an \mathcal{M}-complex is a closed orientable 2-manifold.

Permutation and switching of triangles

- If $A_{1} A_{2} A_{3} B_{1} B_{2} B_{3}$ is a Menelaus configuration and π is a permutation of the set $\{1,2,3\}$, then $A_{\pi(1)} A_{\pi(2)} A_{\pi(3)} B_{\pi(1)} B_{\pi(2)} B_{\pi(3)}$ is a Menelaus configuration.
- If $A B C P Q R$ is a Menelaus configuration, then BPRQAC, $A R Q P C B$ and $C P Q R A B$ are Menelaus configurations.

The formal system

We fix an arbitrary countable set W. Let

$$
F^{6}(W)=W^{6}-\left\{X_{1} \ldots X_{6} \in W^{6} \mid X_{i}=X_{j} \text { for some } i \neq j\right\}
$$

The (atomic) formulas of our language are the elements of $F^{6}(W)$.
A sequent is a finite multiset Γ of formulas, written $\vdash \Gamma$.

- For every \mathcal{M}-complex L such that $L_{0} \cup L_{1} \subseteq W$, let $\nu: L_{2} \rightarrow F^{6}(W)$ be defined as $\nu x=\left(d_{1} d_{2} x, d_{0} d_{2} x, d_{0} d_{0} x, d_{0} x, d_{1} x, d_{2} x\right)$. Then we set

$$
\overline{\vdash\left\{\nu x \mid x \in L_{2}\right\}}
$$

- Permutations of vertices and switching of triangles:

$$
\overline{\vdash A B C P Q R, B C A Q R P} \quad \overline{\vdash A B C P Q R, A R Q P C B}
$$

- In this system, the cut rule looks like this:

$$
\frac{\vdash \Gamma, \varphi \quad \vdash \Delta, \varphi}{\vdash \Gamma, \Delta}
$$

Soundness

Proposition 2.3

The Menelaus system is sound.
By this we mean that
for every provable sequent $\vdash \Gamma$,
for any interpretation (i.e., a sufficiently defined partial function v
from W to \mathbb{R}^{2}), and
for all $\phi \in \Gamma$,
if the interpretation of each formula in $\Gamma \backslash\{\phi\}$ is a Menelaus
configuration, then the interpretation of ϕ is a Menelaus configuration.
[The interpretation $((v \times \ldots \times v) \circ \nu)(x)$
of the "logical" sextuple νx
is the "realised" sextuple μx from above.]

Decidability

For a multiset Γ of formulae, let $\lambda(\Gamma)$ be the set of elements of W occurring in Γ and let $\kappa(\Gamma)$ be the number of elements (possibly with repetition) of Γ.

Lemma 2.4

For every sequent $\vdash \Delta$ that occurs in a derivation of $\vdash \Gamma$, we have that $\lambda(\Delta) \subseteq \lambda(\Gamma)$ and $2 \leq \kappa(\Delta) \leq \kappa(\Gamma)$.

Proposition 2.5

The Menelaus system is decidable.
This follows from the lemma (finiteness of the search space), and from the decidability of the properties defining an \mathcal{M}-complex.

Proof of Desargues theorem

$\vdash A B D V U R, B C D W V P, A C D W U Q, A B C P Q R$

$\vdash A R U V D B, A R Q P C B, U R Q P W V, A Q U W D C$

A proof using cuts

Let $A U, B V$ and $C W$ be concurrent lines in \mathbb{R}^{2}, and let X and E be such that B, X and E are colinear. For $\{P\}=B C \cap V W,\{Q\}=A C \cap U W$, $\{R\}=A B \cap U V,\{Y\}=A X \cap R E,\{Z\}=X C \cap E P$, the points Q, Y and Z are colinear. The proof is obtained by cutting three axioms:

$\vdash A B D V U R, B C D W V P, A C D W U Q, A B C P Q R$
$\vdash A B C P Q R, B P R Q A C$
$\vdash B R E Y X A, B P E Z X C, R P E Z Y Q, B P R Q A C$

A more sophisticated example

Consider two triples (A, B, C) and (D, E, F) of colinear points, all mutually distinct. Assume that, for $\{X\}=C D \cap A E$ and $\{Z\}=B E \cap C F$, the lines $A B$, $D E$ and $X Z$ are not concurrent. Let $\{K\}=B E \cap C D,\{L\}=A F \cap C D$, $\{M\}=A F \cap B E,\{U\}=A E \cap C F,\{V\}=A E \cap B D,\{W\}=C F \cap B D$. Then the lines $K U, L V$ and $M W$ are concurrent.

The proof uses the axiom given by the following triangulation of the torus:

The Menelaus cyclic operad \mathcal{C}

- For a given set X, we set $\mathcal{C}(X)$ to be the set of isomorphism classes of \mathcal{M}-complexes having X as set of 2-cells.
- Compositions are given by connected sums (cf. cut rule)!.

- Identities are given by the \mathcal{M}-complexes with exactly two 2 -cells sharing their 3 faces.

Proposition 3.1

\mathcal{M}-complexes are stable under connected sums.
Goal Give a presentation of this cyclic operad by generators and relations.

Reducible \mathcal{M}-complexes

Let K be an \mathcal{M}-complex and let $T=\left\{e_{0}, e_{1}, e_{2}\right\} \subseteq K_{1}$ be such that $\partial\left(e_{0}-e_{1}+e_{2}\right)=0$, i.e. $e_{0}-e_{1}+e_{2}$ is a 1-cycle.
Consider the binary relation on K_{2} of sharing an edge from $K_{1}-T$.
Let τ be the transitive closure of this relation.
We say that T is a cut-triangle, when τ is an equivalence relation with exactly two classes. If K contains a cut-triangle, then we say that it is reducible, otherwise it is irreducible.

Proposition 3.2

An \mathcal{M}-complex K is reducible if and only if it can be obtained as a connected sum of two simpler \mathcal{M}-complexes.

Proposition 3.3

The Menelaus cyclic operad is generated by the irreducible \mathcal{M}-complexes.

The Menelaus cyclic operad is not free

- σ renames the 2-cells α, β, γ, δ of K into β, α, γ^{\prime}, φ
- τ renames the 2-cells α^{\prime}, $\beta^{\prime}, \gamma^{\prime}, \delta^{\prime}$ of L into α^{\prime}, $\beta^{\prime}, \delta, \psi$

Disjoint cut-triangles

Let $T_{1}, T_{2} \subseteq K_{1}$ be cut-triangles of an \mathcal{M}-complex K. We say that T_{1} is disjoint from T_{2} if all the edges of T_{1} are 1-cells of one of the two \mathcal{M}-complexes induced by T_{2}.

Below, $T_{1}=\{2,3,4\}$ and $T_{2}=\{1,5,6\}$ are disjoint:

A presentation of the Menelaus cyclic operad

Theorem 3.4

The Menelaus cyclic operad is the quotient of the free cyclic operad generated by the irreducible \mathcal{M}-complexes under the equivalence relation generated by all the equalities of the form

$$
\mathcal{T}_{1 u{ }_{u}{ }_{v} \mathcal{T}_{2}=\mathcal{T}_{1 u^{\prime} \circ}^{\prime}{ }_{v^{\prime}} \mathcal{T}_{2}^{\prime}, ~}^{\prime}
$$

such that both hand sides evaluate, up to isomorphism, to the same \mathcal{M}-complex K, in which the cut-triangles T and T^{\prime}, associated with the pairs (u, v) and ($\left.u^{\prime}, v^{\prime}\right)$, are not disjoint.

