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Incidence theorems and triangulated surfaces

Incidence theorems in 2-dimensional Euclidean or projective geometry state
that some incidences follow from other incidences.

Goal Formalise and extend, within proof theory, a methodology of
Richter-Gebert of deriving such theorems from associated triangulated
surfaces.

2 / 18



Introduction The Menaus logical system The Menelaus cyclic operad

The Menelaus theorem

For three points in the Euclidean plane R2, let

(X ,Y ;Z ) =df

{
XZ
YZ , if Z is between X and Y ,

−XZ
YZ , otherwise.

if X , Y and Z are mutually distinct and colinear. Otherwise, we set
(X ,Y ;Z ) to be undefined.

A sextuple (A,B,C ,P,Q,R) (ABCPQR for short) of points in R2 is a
Menelaus configuration when

(B,C ;P), (C ,A;Q) and (A,B;R) are defined

and their product is -1.

Theorem 1.1 (Menelaus)

For a triangle ABC (with A,B,C not colinear), and points P, Q and R
(different from the vertices) on the lines BC, CA and AB, it holds that

P,Q,R are colinear iff (A,B,C ,P,Q,R) is a Menelaus configuration.
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(half of) Desargues theorem
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(C ,D;W ) · (D,B;V ) · (B,C ;P) = −1
(D,C ;W ) · (A,D;U) · (C ,A;Q) = −1
(B,D;V ) · (D,A;U) · (A,B;R) = −1

(B,C ;P) · (C ,A;Q) · (A,B;R) = −1

Hence, P,Q,R are colinear.

We could have picked any other triple of triangles forming the faces of
ABCD viewed as a tetrahedron, assuming the corresponding
colinearities, and would have derived the colinearity for the missing one.

In logical terms, we have that the following sequent is satisfied:

⊢ ABCPQR,ABDVUR,ACDWUQ,BCDWVP

where satisfaction means that whenever 3 out of these 4 sextuples is a
Menelaus configuration, then so is the fourth.
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Homology meets Menelaus

We suppose given a semi-simplical set K , and a function v : K0 ∪K1 → R2.

Consider the operator µ : K2 → (R2)6

that sends a 2-cell x ∈ K2 to (vA, vB, vC , vP, vQ, vR) (its realisation),

where A,B,C ,P,Q,R are the 0-cells and 1-cells of the boundary of x .

Let c be a cycle on (the chain complex associated with) K . We can write

c = ε1x1 + ε2x2 + . . .+ εn−1xn−1 + εnxn

were all xi ’s are in K2 and all εi ’s are 1 or -1. There may be repetitions!

Proposition 2.1

For any 1 ≤ i ≤ n, if all µxj ’s, for j ≠ i , are Menelaus configurations, then
µxi is a Menelaus configuration, too.

Proof idea: Extend y 7→ (vd0y , vd1y ; vy) (y ∈ K1) (e.g.
BC 7→ (B,C ;P)) to a (partial) homomorphism
h : (C1,+, 0) → (R \ {0}, ·, 1).
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A suitable class of semi-simplicial sets

For applications to incidence theorems, it is sufficient to consider
M-complexes (for Menelaus), i.e., semi-simplicial sets L such that:

(0) L has a finite number of cells;

(1) for every m ≥ 3, the set Lm is empty, and every element of L0 ∪ L1 is a face
of some element of L1 ∪ L2;

(2) distinct faces map an element of Li+1 to distinct elements of Li (i ≤ 1);

(3) every 1-cell of L is a face of exactly two 2-cells of L;

(4) for every w ∈ L0, the set Lw = {u ∈ L2 | w is a vertex of u} is linked, i.e., if
u, u′ ∈ Lw , then there is a sequence of 2-cells starting at u and ending at u′,
such that every two consecutive 2-cells share an edge having w as a vertex;

(5) L is orientable.

Proposition 2.2

The geometric realisation of an M-complex is a closed orientable
2-manifold.
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Permutation and switching of triangles

- If A1A2A3B1B2B3 is a Menelaus configuration and π is a permutation
of the set {1, 2, 3}, then Aπ(1)Aπ(2)Aπ(3)Bπ(1)Bπ(2)Bπ(3) is a
Menelaus configuration.

- If ABCPQR is a Menelaus configuration, then BPRQAC , ARQPCB
and CPQRAB are Menelaus configurations.
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The formal system

We fix an arbitrary countable set W . Let

F 6(W ) = W 6 − {X1 . . .X6 ∈ W 6 | Xi = Xj for some i ̸= j}.
The (atomic) formulas of our language are the elements of F 6(W ).

A sequent is a finite multiset Γ of formulas, written ⊢ Γ.

• For every M-complex L such that L0 ∪ L1 ⊆ W , let ν : L2 → F 6(W ) be
defined as νx = (d1d2x , d0d2x , d0d0x , d0x , d1x , d2x). Then we set

⊢ {νx | x ∈ L2}
• Permutations of vertices and switching of triangles:

⊢ ABCPQR,BCAQRP ⊢ ABCPQR,ARQPCB

• In this system, the cut rule looks like this:

⊢ Γ, φ ⊢ ∆, φ

⊢ Γ,∆
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Soundness

Proposition 2.3

The Menelaus system is sound.

By this we mean that

for every provable sequent ⊢ Γ,

for any interpretation (i.e., a sufficiently defined partial function v
from W to R2), and

for all ϕ ∈ Γ,

if the interpretation of each formula in Γ \ {ϕ} is a Menelaus
configuration, then the interpretation of ϕ is a Menelaus configuration.

[The interpretation ((v × . . .× v) ◦ ν)(x)
of the “logical” sextuple νx

is the “realised” sextuple µx from above.]
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Decidability

For a multiset Γ of formulae, let λ(Γ) be the set of elements of W
occurring in Γ and let κ(Γ) be the number of elements (possibly with
repetition) of Γ.

Lemma 2.4

For every sequent ⊢ ∆ that occurs in a derivation of ⊢ Γ, we have that
λ(∆) ⊆ λ(Γ) and 2 ≤ κ(∆) ≤ κ(Γ).

Proposition 2.5

The Menelaus system is decidable.

This follows from the lemma (finiteness of the search space), and from the
decidability of the properties defining an M-complex.
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Proof of Desargues theorem
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⊢ ABDVUR,BCDWVP,ACDWUQ,ABCPQR
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A proof using cuts

Let AU, BV and CW be concurrent lines in R2, and let X and E be such
that B, X and E are colinear. For {P} = BC ∩ VW , {Q} = AC ∩ UW ,
{R} = AB ∩UV , {Y } = AX ∩RE , {Z} = XC ∩ EP, the points Q, Y and
Z are colinear. The proof is obtained by cutting three axioms:

⊢ ABDVUR,BCDWVP,ACDWUQ,ABCPQR
⊢ ABCPQR,BPRQAC
⊢ BREYXA,BPEZXC ,RPEZYQ,BPRQAC
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A more sophisticated example

Consider two triples (A,B,C ) and (D,E ,F ) of colinear points, all mutually
distinct. Assume that, for {X} = CD ∩ AE and {Z} = BE ∩ CF , the lines AB,
DE and XZ are not concurrent. Let {K} = BE ∩ CD, {L} = AF ∩ CD,
{M} = AF ∩ BE , {U} = AE ∩ CF , {V } = AE ∩ BD, {W } = CF ∩ BD. Then
the lines KU, LV and MW are concurrent.

The proof uses the axiom given by the following triangulation of the torus:
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The Menelaus cyclic operad C

- For a given set X , we set C(X ) to be the set of isomorphism classes
of M-complexes having X as set of 2-cells.

- Compositions are given by connected sums (cf. cut rule)!.

- Identities are given by the M-complexes with exactly two 2-cells
sharing their 3 faces.

Proposition 3.1

M-complexes are stable under connected sums.

Goal Give a presentation of this cyclic operad by generators and relations.
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Reducible M-complexes

Let K be an M-complex and let T = {e0, e1, e2} ⊆ K1 be such that
∂(e0 − e1 + e2) = 0, i.e. e0 − e1 + e2 is a 1-cycle.

Consider the binary relation on K2 of sharing an edge from K1 − T .

Let τ be the transitive closure of this relation.

We say that T is a cut-triangle, when τ is an equivalence relation with
exactly two classes. If K contains a cut-triangle, then we say that it is
reducible, otherwise it is irreducible.

Proposition 3.2

An M-complex K is reducible if and only if it can be obtained as a
connected sum of two simpler M-complexes.

Proposition 3.3

The Menelaus cyclic operad is generated by the irreducible M-complexes.
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The Menelaus cyclic operad is not free

K = 1 2
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- σ renames the 2-cells α,
β, γ, δ of K into β, α,
γ′, φ

- τ renames the 2-cells α′,
β′, γ′, δ′ of L into α′,
β′, δ, ψ
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Disjoint cut-triangles

Let T1,T2 ⊆ K1 be cut-triangles of an M-complex K . We say that T1 is
disjoint from T2 if all the edges of T1 are 1-cells of one of the two
M-complexes induced by T2.

Below, T1 = {2, 3, 4} and T2 = {1, 5, 6} are disjoint:
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A presentation of the Menelaus cyclic operad

Theorem 3.4

The Menelaus cyclic operad is the quotient of the free cyclic operad
generated by the irreducible M-complexes under the equivalence relation
generated by all the equalities of the form

T1 u◦v T2 = T ′
1 u′◦v ′ T ′

2 ,

such that both hand sides evaluate, up to isomorphism, to the same
M-complex K, in which the cut-triangles T and T ′, associated with the
pairs (u, v) and (u′, v ′), are not disjoint.
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