Proofs and surfaces

Djordje Baralić, Marina Milićević, Zoran Petrić, Mladen Zekić, Rade Živaljević

Mathematical Institute of the Serbian Academy of Sciences and Arts

Pierre-Louis Curien

 πr^2 , IRIF (INRIA, Université Paris Diderot, CNRS)

Jovana Obradović

Institute of Mathematics of the Czech Academy of Sciences

TACL, Nice, June 2019

Incidence theorems and triangulated surfaces

Incidence theorems in 2-dimensional Euclidean or projective geometry state that some incidences follow from other incidences.

Goal Formalise and extend, within proof theory, a methodology of Richter-Gebert of deriving such theorems from associated triangulated surfaces.

The Menaus logical system

The Menelaus theorem

For three points in the Euclidean plane $\mathbb{R}^2,$ let

$$(X, Y; Z) =_{df} \begin{cases} rac{XZ}{YZ}, & ext{if } Z ext{ is between } X ext{ and } Y, \\ -rac{XZ}{YZ}, & ext{otherwise.} \end{cases}$$

if X, Y and Z are mutually distinct and colinear. Otherwise, we set (X, Y; Z) to be undefined.

A sextuple (A, B, C, P, Q, R) (*ABCPQR* for short) of points in \mathbb{R}^2 is a *Menelaus configuration* when

(B, C; P), (C, A; Q) and (A, B; R) are defined

and their product is -1.

Theorem 1.1 (Menelaus)

For a triangle ABC (with A, B, C not colinear), and points P, Q and R (different from the vertices) on the lines BC, CA and AB, it holds that

P, Q, R are colinear iff (A, B, C, P, Q, R) is a Menelaus configuration.

Introduction

The Menaus logical system

The Menelaus cyclic operad

(half of) Desargues theorem

 $(C, D; W) \cdot (D, B; V) \cdot (B, C; P) = -1$ $(D, C; W) \cdot (A, D; U) \cdot (C, A; Q) = -1$ $(B, D; V) \cdot (D, A; U) \cdot (A, B; R) = -1$

 $(B, C; P) \cdot (C, A; Q) \cdot (A, B; R) = -1$ Hence, P, Q, R are colinear.

We could have picked any other triple of triangles forming the faces of *ABCD* **viewed as a tetrahedron**, assuming the corresponding colinearities, and would have derived the colinearity for the missing one. In logical terms, we have that the following sequent is satisfied:

⊢ ABCPQR, ABDVUR, ACDWUQ, BCDWVP

where satisfaction means that whenever 3 out of these 4 sextuples is a Menelaus configuration, then so is the fourth.

Homology meets Menelaus

We suppose given a semi-simplical set K, and a function $v: K_0 \cup K_1 \to \mathbb{R}^2$. Consider the operator $\mu: K_2 \to (\mathbb{R}^2)^6$ that sends a 2-cell $x \in K_2$ to (vA, vB, vC, vP, vQ, vR) (its realisation), where A, B, C, P, Q, R are the 0-cells and 1-cells of the boundary of x. Let c be a cycle on (the chain complex associated with) K. We can write

$$c = \varepsilon_1 x_1 + \varepsilon_2 x_2 + \ldots + \varepsilon_{n-1} x_{n-1} + \varepsilon_n x_n$$

were all x_i 's are in K_2 and all ε_i 's are 1 or -1. There may be repetitions!

Proposition 2.1

For any $1 \le i \le n$, if all μx_j 's, for $j \ne i$, are Menelaus configurations, then μx_i is a Menelaus configuration, too.

Proof idea: Extend $y \mapsto (vd_0y, vd_1y; vy)$ $(y \in K_1)$ (e.g. $BC \mapsto (B, C; P)$) to a (partial) homomorphism $h: (C_1, +, 0) \rightarrow (\mathbb{R} \setminus \{0\}, \cdot, 1).$

A suitable class of semi-simplicial sets

For applications to incidence theorems, it is sufficient to consider \mathcal{M} -complexes (for Menelaus), i.e., semi-simplicial sets L such that:

- (0) L has a finite number of cells;
- (1) for every $m \ge 3$, the set L_m is empty, and every element of $L_0 \cup L_1$ is a face of some element of $L_1 \cup L_2$;
- (2) distinct faces map an element of L_{i+1} to distinct elements of L_i $(i \le 1)$;
- (3) every 1-cell of L is a face of exactly two 2-cells of L;
- (4) for every $w \in L_0$, the set $L_w = \{u \in L_2 \mid w \text{ is a vertex of } u\}$ is *linked*, i.e., if $u, u' \in L_w$, then there is a sequence of 2-cells starting at u and ending at u', such that every two consecutive 2-cells share an edge having w as a vertex;
- (5) *L* is orientable.

Proposition 2.2

The geometric realisation of an \mathcal{M} -complex is a closed orientable 2-manifold.

Permutation and switching of triangles

- If $A_1A_2A_3B_1B_2B_3$ is a Menelaus configuration and π is a permutation of the set $\{1, 2, 3\}$, then $A_{\pi(1)}A_{\pi(2)}A_{\pi(3)}B_{\pi(1)}B_{\pi(2)}B_{\pi(3)}$ is a Menelaus configuration.
- If *ABCPQR* is a Menelaus configuration, then *BPRQAC*, *ARQPCB* and *CPQRAB* are Menelaus configurations.

The formal system

We fix an arbitrary countable set W. Let

$$F^6(W) = W^6 - \{X_1 \dots X_6 \in W^6 \mid X_i = X_j \text{ for some } i \neq j\}.$$

The (atomic) formulas of our language are the elements of $F^6(W)$. A *sequent* is a finite multiset Γ of formulas, written $\vdash \Gamma$.

• For every \mathcal{M} -complex L such that $L_0 \cup L_1 \subseteq W$, let $\nu \colon L_2 \to F^6(W)$ be defined as $\nu x = (d_1d_2x, d_0d_2x, d_0d_0x, d_0x, d_1x, d_2x)$. Then we set

$$\vdash \{\nu x \mid x \in L_2\}$$

• Permutations of vertices and switching of triangles:

 \vdash ABCPQR, BCAQRP \vdash ABCPQR, ARQPCB

• In this system, the cut rule looks like this:

$$\frac{\vdash \mathsf{\Gamma}, \varphi \quad \vdash \Delta, \varphi}{\vdash \mathsf{\Gamma}, \Delta}$$

Soundness

Proposition 2.3

```
The Menelaus system is sound.
```

By this we mean that

```
for every provable sequent \vdash \Gamma,
for any interpretation (i.e., a sufficiently defined partial function v
from W to \mathbb{R}^2), and
for all \phi \in \Gamma.
```

if the interpretation of each formula in $\Gamma \setminus \{\phi\}$ is a Menelaus configuration, then the interpretation of ϕ is a Menelaus configuration.

```
[The interpretation ((v \times \ldots \times v) \circ \nu)(x)
```

of the "logical" sextuple νx

is the "realised" sextuple μx from above.]

Decidability

For a multiset Γ of formulae, let $\lambda(\Gamma)$ be the set of elements of W occurring in Γ and let $\kappa(\Gamma)$ be the number of elements (possibly with repetition) of Γ .

Lemma 2.4

For every sequent $\vdash \Delta$ that occurs in a derivation of $\vdash \Gamma$, we have that $\lambda(\Delta) \subseteq \lambda(\Gamma)$ and $2 \leq \kappa(\Delta) \leq \kappa(\Gamma)$.

Proposition 2.5

The Menelaus system is decidable.

This follows from the lemma (finiteness of the search space), and from the decidability of the properties defining an \mathcal{M} -complex.

Introduction

The Menaus logical system

The Menelaus cyclic operad

Proof of Desargues theorem

⊢ ARUVDB, ARQPCB, URQPWV, AQUWDC

A proof using cuts

Let AU, BV and CW be concurrent lines in \mathbb{R}^2 , and let X and E be such that B, X and E are colinear. For $\{P\} = BC \cap VW$, $\{Q\} = AC \cap UW$, $\{R\} = AB \cap UV$, $\{Y\} = AX \cap RE$, $\{Z\} = XC \cap EP$, the points Q, Y and Z are colinear. The proof is obtained by cutting three axioms:

⊢ ABDVUR, BCDWVP, ACDWUQ, ABCPQR⊢ ABCPQR, BPRQAC⊢ BREYXA, BPEZXC, RPEZYQ, BPRQAC

A more sophisticated example

Consider two triples (A, B, C) and (D, E, F) of colinear points, all mutually distinct. Assume that, for $\{X\} = CD \cap AE$ and $\{Z\} = BE \cap CF$, the lines AB, DE and XZ are not concurrent. Let $\{K\} = BE \cap CD$, $\{L\} = AF \cap CD$, $\{M\} = AF \cap BE$, $\{U\} = AE \cap CF$, $\{V\} = AE \cap BD$, $\{W\} = CF \cap BD$. Then the lines KU, LV and MW are concurrent.

The proof uses the axiom given by the following triangulation of the torus:

The Menelaus cyclic operad ${\mathcal C}$

- For a given set X, we set C(X) to be the set of isomorphism classes of \mathcal{M} -complexes having X as set of 2-cells.
- Compositions are given by connected sums (cf. cut rule)!.

- Identities are given by the $\mathcal M\text{-}\mathsf{complexes}$ with exactly two 2-cells sharing their 3 faces.

Proposition 3.1

 \mathcal{M} -complexes are stable under connected sums.

Goal Give a presentation of this cyclic operad by generators and relations.

Reducible \mathcal{M} -complexes

Let K be an \mathcal{M} -complex and let $T = \{e_0, e_1, e_2\} \subseteq K_1$ be such that $\partial(e_0 - e_1 + e_2) = 0$, i.e. $e_0 - e_1 + e_2$ is a 1-cycle.

Consider the binary relation on K_2 of sharing an edge from $K_1 - T$.

Let τ be the transitive closure of this relation.

We say that T is a *cut-triangle*, when τ is an equivalence relation with exactly two classes. If K contains a cut-triangle, then we say that it is *reducible*, otherwise it is *irreducible*.

Proposition 3.2

An \mathcal{M} -complex K is reducible if and only if it can be obtained as a connected sum of two simpler \mathcal{M} -complexes.

Proposition 3.3

The Menelaus cyclic operad is generated by the irreducible \mathcal{M} -complexes.

The Menelaus cyclic operad is not free

The Menaus logical system

Disjoint cut-triangles

Let $T_1, T_2 \subseteq K_1$ be cut-triangles of an \mathcal{M} -complex K. We say that T_1 is *disjoint* from T_2 if all the edges of T_1 are 1-cells of one of the two \mathcal{M} -complexes induced by T_2 .

Below, $T_1 = \{2, 3, 4\}$ and $T_2 = \{1, 5, 6\}$ are disjoint:

A presentation of the Menelaus cyclic operad

Theorem 3.4

The Menelaus cyclic operad is the quotient of the free cyclic operad generated by the irreducible \mathcal{M} -complexes under the equivalence relation generated by all the equalities of the form

$$\mathcal{T}_1 {}_u \circ_v \mathcal{T}_2 = \mathcal{T}'_1 {}_{u'} \circ_{v'} \mathcal{T}'_2,$$

such that both hand sides evaluate, up to isomorphism, to the same \mathcal{M} -complex K, in which the cut-triangles T and T', associated with the pairs (u, v) and (u', v'), are not disjoint.