# Partially ordered varieties of idempotent residuated posets 

## Peter Jipsen

## Chapman University

based on joint work with
Jóse Gil-Ferez, Olim Tuyt (U. Bern) and Diego Valota (U. Milan)
TACL, University of Nice June 17-21, 2019

## Outline

- Involutive residuated posets
- Partially ordered subvarieties
- Number of finite members in some subvarieties
- Boolean decomposition of commutative idempotent involutive residuated posets
- Cyclic idempotent involutive residuated posets are commutative


## Involutive residuated posets

An involutive residuated poset is of the form $(A, \leqslant, \cdot, \sim,-, 0)$ such that
(1) $(A, \leqslant)$ is a poset (i.e., $\leqslant$ is reflexive, antisymmetric, transitive),
(2) - is an associative operation on $A:(x y) z=x(y z)$, and
(3) $x \leqslant y \Longleftrightarrow x \cdot \sim y \leqslant 0 \Longleftrightarrow-y \cdot x \leqslant 0 \quad$ for all $x, y \in A$.

The element -0 is denoted by 1 , and $x \cdot y$ is usually written $x y$.
Also define $x+y=\sim(-y \cdot-x)$ (not necessarily commutative).

## Involutive residuated posets

## Lemma

Involutive residuated posets have the following properties:
(1) $\sim-x=x=-\sim x$
(2) $x \leqslant y \Longleftrightarrow \sim y \leqslant \sim x \Longleftrightarrow-y \leqslant-x$
(3) $1 x=x=x 1$
(2) $1=\sim 0, \quad-1=\sim 1=0$
(6) $\sim(-y \cdot-x)=-(\sim y \cdot \sim x)$
( $x y \leqslant z \Longleftrightarrow y \leqslant \sim(-z \cdot x) \Longleftrightarrow x \leqslant-(y \cdot \sim z)$
Hence they are residuated po-monoids with residuals $x \backslash y=\sim(-y \cdot x)$ and $x / y=-(y \cdot \sim x)$, and $\cdot$ is order-preserving in both arguments.

## Involutive residuated posets

Involutive "residuation": $x \leqslant y \Longleftrightarrow x \cdot \sim y \leqslant 0 \Longleftrightarrow-y \cdot x \leqslant 0$
Proof of (1): $\sim-x=x=-\sim x$.
$-x \leqslant y \Longleftrightarrow-x \cdot \sim y \leqslant 0 \Longleftrightarrow \sim y \leqslant x$ (dual Galois connection).
Therefore $-x \leqslant-x \Longrightarrow \sim-x \leqslant x$, hence $\sim-\sim-x \leqslant \sim-x \leqslant x$.
Equivalently $-x \leqslant-\sim-x$.
Similarly $\sim-x \leqslant \sim-x \Longrightarrow-\sim-x \leqslant-x$, hence $-\sim-x=-x$.
Now $x \leqslant x \Longrightarrow-x \cdot x \leqslant 0$, so $-\sim-x \cdot x \leqslant 0$ and therefore $x \leqslant \sim-x$.
This proves $\sim-x=x$, and $-\sim x=x$ follows similarly.
(2)-(6) are also easy to derive.

## Involutive residuated posets are a po-variety

The class of involutive residuated posets is denoted by $\operatorname{InRP}$.
All operations are order-preserving or order-reversing in each argument, hence this class forms a partially ordered quasivariety (Pigozzi 2004)
$\operatorname{lnRP}$ is a partially ordered variety (or po-variety) defined by the po-identities

$$
\begin{gathered}
(x y) z=x(y z), \quad \sim-x=x=-\sim x, \quad \sim 0=-0 \\
-0 \cdot x=x, \quad-x \cdot x \leqslant 0, \quad x \cdot \sim(y x) \leqslant \sim y
\end{gathered}
$$

together with the order-preservation of $\cdot$ and the order-reversal of $\sim,-$.

Integral, cyclic, commutative and idempotent InRPs
IInRP is the po-subvariety of integral $(x \leqslant 1) \operatorname{InRPs}$
CyInRP is the po-subvariety of cyclic $(\sim x=-x) \operatorname{lnRPs}$
CInRP is the po-subvariety of commutative $(x y=y x) \operatorname{InRPs}$
IdInRP is the po-subvariety of idempotent $(x x=x) \operatorname{lnRPs}$
Commutative $\Longrightarrow$ cyclic:
$x \leqslant \sim y \Longleftrightarrow-\sim y \cdot x \leqslant 0 \Longleftrightarrow x \cdot \sim-y \leqslant 0 \Longleftrightarrow x \leqslant-y$.


CInRP

## Po-subvarieties of involutive residuated posets



Note: meet in the diagram $=$ intersection (joins are not shown)
Integral + idempotent $\Longrightarrow$ Boolean
Cyclic + idempotent $\Longrightarrow$ commutative (more details and/or proofs later)

## Po-subvarieties of involutive residuated posets

InRP contains several well-known subclasses of (po-)algebras:

- The variety of pointed groups is axiomatized by adding $x \leqslant y \Longrightarrow x=y$ to $\operatorname{InRP}$.
- The variety of groups is axiomatized by adding $0=1$ to pointed groups. Hence involutive residuated posets may be considered the analogue of (pointed) groups over the category of posets.
- The po-subvariety of pregroups (Lambek 1999) is obtained by adding the identity $x y=\sim(-y \cdot-x)$ to $\operatorname{InRP}$.
- The po-subvariety of partially ordered groups (Fuchs 1963, Glass 1999) is obtained by adding $\sim x=-x$ to pregroups.


## Po-subvarieties of involutive residuated posets

- Involutive pocrims (Raftery 2007) are defined as commutative integral involutive residuated partially ordered monoids, hence they are the same as $\mathbf{C I I n R P}$.

They are a class of algebras since $x \leqslant y \Longleftrightarrow-y \cdot x=0$. Involutive pocrims include the subvarieties of IMTL-algebras, MV-algebras and Boolean algebras.

- The variety of involutive residuated lattices is the expansion of InRP with a semilattice operation $\vee$ such that $x \leqslant y \Longleftrightarrow x \vee y=y$.

This class includes the subvarieties of lattice-ordered groups, classical linear logic algebras (without exponentials), De Morgan monoids and Sugihara algebras from relevance logic.

## Number of nonisomorphic po-algebras

| Number of elements: $n=$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Residuated posets | 1 | 2 | 5 | 28 | 186 | 1795 |  |  |
| Residuated lattices | 1 | 1 | 3 | 20 | 149 | 1488 | 18554 | 295292 |

## Number of nonisomorphic po-algebras

| Number of elements: $n=$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Residuated posets | 1 | 2 | 5 | 28 | 186 | 1795 |  |  |
| Residuated lattices | 1 | 1 | 3 | 20 | 149 | 1488 | 18554 | 295292 |
| Comm. residuated posets | 1 | 2 | 5 | 24 | 131 | 1001 |  |  |
| Comm. residuated lattices | 1 | 1 | 3 | 16 | 100 | 794 | 7493 | 84961 |

## Number of nonisomorphic po-algebras

| Number of elements: $n=$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Residuated posets | 1 | 2 | 5 | 28 | 186 | 1795 |  |  |
| Residuated lattices | 1 | 1 | 3 | 20 | 149 | 1488 | 18554 | 295292 |
| Comm. residuated posets | 1 | 2 | 5 | 24 | 131 | 1001 |  |  |
| Comm. residuated lattices | 1 | 1 | 3 | 16 | 100 | 794 | 7493 | 84961 |
| Involutive res. posets | 1 | 3 | 5 | 20 | 39 | 179 | 500 | 2525 |
| Involutive res. lattices | 1 | 1 | 2 | 9 | 21 | 101 | 284 | 1464 |

## Number of nonisomorphic po-algebras

| Number of elements: $n=$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Residuated posets | 1 | 2 | 5 | 28 | 186 | 1795 |  |  |
| Residuated lattices | 1 | 1 | 3 | 20 | 149 | 1488 | 18554 | 295292 |
| Comm. residuated posets | 1 | 2 | 5 | 24 | 131 | 1001 |  |  |
| Comm. residuated lattices | 1 | 1 | 3 | 16 | 100 | 794 | 7493 | 84961 |
| Involutive res. posets | 1 | 3 | 5 | 20 | 39 | 179 | 500 | 2525 |
| Involutive res. lattices | 1 | 1 | 2 | 9 | 21 | 101 | 284 | 1464 |
| Cyclic inv. res. posets | 1 | 3 | 5 | 20 | 39 | 176 | 493 | 2461 |
| Cyclic inv. res. lattices | 1 | 1 | 2 | 9 | 21 | 101 | 279 | 1433 |

## Number of nonisomorphic po-algebras

| Number of elements: $n=$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Residuated posets | 1 | 2 | 5 | 28 | 186 | 1795 |  |  |
| Residuated lattices | 1 | 1 | 3 | 20 | 149 | 1488 | 18554 | 295292 |
| Comm. residuated posets | 1 | 2 | 5 | 24 | 131 | 1001 |  |  |
| Comm. residuated lattices | 1 | 1 | 3 | 16 | 100 | 794 | 7493 | 84961 |
| Involutive res. posets | 1 | 3 | 5 | 20 | 39 | 179 | 500 | 2525 |
| Involutive res. lattices | 1 | 1 | 2 | 9 | 21 | 101 | 284 | 1464 |
| Cyclic inv. res. posets | 1 | 3 | 5 | 20 | 39 | 176 | 493 | 2461 |
| Cyclic inv. res. lattices | 1 | 1 | 2 | 9 | 21 | 101 | 279 | 1433 |
| Comm. inv. res. posets | 1 | 3 | 5 | 20 | 39 | 174 | 488 | 2399 |
| Comm. inv. res. lattices | 1 | 1 | 2 | 9 | 21 | 100 | 276 | 1392 |

## Number of nonisomorphic po-algebras

| Number of elements: $n=$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Residuated posets | 1 | 2 | 5 | 28 | 186 | 1795 |  |  |
| Residuated lattices | 1 | 1 | 3 | 20 | 149 | 1488 | 18554 | 295292 |
| Comm. residuated posets | 1 | 2 | 5 | 24 | 131 | 1001 |  |  |
| Comm. residuated lattices | 1 | 1 | 3 | 16 | 100 | 794 | 7493 | 84961 |
| Involutive res. posets | 1 | 3 | 5 | 20 | 39 | 179 | 500 | 2525 |
| Involutive res. lattices | 1 | 1 | 2 | 9 | 21 | 101 | 284 | 1464 |
| Cyclic inv. res. posets | 1 | 3 | 5 | 20 | 39 | 176 | 493 | 2461 |
| Cyclic inv. res. lattices | 1 | 1 | 2 | 9 | 21 | 101 | 279 | 1433 |
| Comm. inv. res. posets | 1 | 3 | 5 | 20 | 39 | 174 | 488 | 2399 |
| Comm. inv. res. lattices | 1 | 1 | 2 | 9 | 21 | 100 | 276 | 1392 |
| Integ. inv. res. posets | 1 | 1 | 1 | 3 | 3 | 13 | 17 | 84 |
| Integ. inv. res. lattices | 1 | 1 | 1 | 3 | 3 | 12 | 17 | 78 |

## Number of nonisomorphic po-algebras

| Number of elements: $n=$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Residuated posets | 1 | 2 | 5 | 28 | 186 | 1795 |  |  |
| Residuated lattices | 1 | 1 | 3 | 20 | 149 | 1488 | 18554 | 295292 |
| Comm. residuated posets | 1 | 2 | 5 | 24 | 131 | 1001 |  |  |
| Comm. residuated lattices | 1 | 1 | 3 | 16 | 100 | 794 | 7493 | 84961 |
| Involutive res. posets | 1 | 3 | 5 | 20 | 39 | 179 | 500 | 2525 |
| Involutive res. lattices | 1 | 1 | 2 | 9 | 21 | 101 | 284 | 1464 |
| Cyclic inv. res. posets | 1 | 3 | 5 | 20 | 39 | 176 | 493 | 2461 |
| Cyclic inv. res. lattices | 1 | 1 | 2 | 9 | 21 | 101 | 279 | 1433 |
| Comm. inv. res. posets | 1 | 3 | 5 | 20 | 39 | 174 | 488 | 2399 |
| Comm. inv. res. lattices | 1 | 1 | 2 | 9 | 21 | 100 | 276 | 1392 |
| Integ. inv. res. posets | 1 | 1 | 1 | 3 | 3 | 13 | 17 | 84 |
| Integ. inv. res. lattices | 1 | 1 | 1 | 3 | 3 | 12 | 17 | 78 |
| Involutive pocrims = ClInRP | 1 | 1 | 1 | 3 | 3 | 12 | 15 | 73 |
| Comm. int. inv. res. lattices | 1 | 1 | 1 | 3 | 3 | 12 | 15 | 70 |

## Number of nonisomorphic po-algebras

| Number of elements: $n=$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Residuated posets | 1 | 2 | 5 | 28 | 186 | 1795 |  |  |
| Residuated lattices | 1 | 1 | 3 | 20 | 149 | 1488 | 18554 | 295292 |
| Comm. residuated posets | 1 | 2 | 5 | 24 | 131 | 1001 |  |  |
| Comm. residuated lattices | 1 | 1 | 3 | 16 | 100 | 794 | 7493 | 84961 |
| Involutive res. posets | 1 | 3 | 5 | 20 | 39 | 179 | 500 | 2525 |
| Involutive res. lattices | 1 | 1 | 2 | 9 | 21 | 101 | 284 | 1464 |
| Cyclic inv. res. posets | 1 | 3 | 5 | 20 | 39 | 176 | 493 | 2461 |
| Cyclic inv. res. lattices | 1 | 1 | 2 | 9 | 21 | 101 | 279 | 1433 |
| Comm. inv. res. posets | 1 | 3 | 5 | 20 | 39 | 174 | 488 | 2399 |
| Comm. inv. res. lattices | 1 | 1 | 2 | 9 | 21 | 100 | 276 | 1392 |
| Integ. inv. res. posets | 1 | 1 | 1 | 3 | 3 | 13 | 17 | 84 |
| Integ. inv. res. lattices | 1 | 1 | 1 | 3 | 3 | 12 | 17 | 78 |
| Involutive pocrims = ClInRP | 1 | 1 | 1 | 3 | 3 | 12 | 15 | 73 |
| Comm. int. inv. res. lattices | 1 | 1 | 1 | 3 | 3 | 12 | 15 | 70 |
| Idempotent inv. res. posets | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{2}$ | $\mathbf{4}$ | $\mathbf{4}$ | $\mathbf{9}$ |

## Number of nonisomorphic po-algebras

| Number of elements: $n=$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Residuated posets | 1 | 2 | 5 | 28 | 186 | 1795 |  |  |
| Residuated lattices | 1 | 1 | 3 | 20 | 149 | 1488 | 18554 | 295292 |
| Comm. residuated posets | 1 | 2 | 5 | 24 | 131 | 1001 |  |  |
| Comm. residuated lattices | 1 | 1 | 3 | 16 | 100 | 794 | 7493 | 84961 |
| Involutive res. posets | 1 | 3 | 5 | 20 | 39 | 179 | 500 | 2525 |
| Involutive res. lattices | 1 | 1 | 2 | 9 | 21 | 101 | 284 | 1464 |
| Cyclic inv. res. posets | 1 | 3 | 5 | 20 | 39 | 176 | 493 | 2461 |
| Cyclic inv. res. lattices | 1 | 1 | 2 | 9 | 21 | 101 | 279 | 1433 |
| Comm. inv. res. posets | 1 | 3 | 5 | 20 | 39 | 174 | 488 | 2399 |
| Comm. inv. res. lattices | 1 | 1 | 2 | 9 | 21 | 100 | 276 | 1392 |
| Integ. inv. res. posets | 1 | 1 | 1 | 3 | 3 | 13 | 17 | 84 |
| Integ. inv. res. lattices | 1 | 1 | 1 | 3 | 3 | 12 | 17 | 78 |
| Involutive pocrims = CIInRP | 1 | 1 | 1 | 3 | 3 | 12 | 15 | 73 |
| Comm. int. inv. res. lattices | 1 | 1 | 1 | 3 | 3 | 12 | 15 | 70 |
| Idempotent inv. res. posets | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{2}$ | $\mathbf{4}$ | $\mathbf{4}$ | $\mathbf{9}$ |
| MV-algebras | 1 | 1 | 1 | 2 | 1 | 2 | 1 | 3 |

## Number of nonisomorphic po-algebras

| Number of elements: $n=$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Residuated posets | 1 | 2 | 5 | 28 | 186 | 1795 |  |  |
| Residuated lattices | 1 | 1 | 3 | 20 | 149 | 1488 | 18554 | 295292 |
| Comm. residuated posets | 1 | 2 | 5 | 24 | 131 | 1001 |  |  |
| Comm. residuated lattices | 1 | 1 | 3 | 16 | 100 | 794 | 7493 | 84961 |
| Involutive res. posets | 1 | 3 | 5 | 20 | 39 | 179 | 500 | 2525 |
| Involutive res. lattices | 1 | 1 | 2 | 9 | 21 | 101 | 284 | 1464 |
| Cyclic inv. res. posets | 1 | 3 | 5 | 20 | 39 | 176 | 493 | 2461 |
| Cyclic inv. res. lattices | 1 | 1 | 2 | 9 | 21 | 101 | 279 | 1433 |
| Comm. inv. res. posets | 1 | 3 | 5 | 20 | 39 | 174 | 488 | 2399 |
| Comm. inv. res. lattices | 1 | 1 | 2 | 9 | 21 | 100 | 276 | 1392 |
| Integ. inv. res. posets | 1 | 1 | 1 | 3 | 3 | 13 | 17 | 84 |
| Integ. inv. res. lattices | 1 | 1 | 1 | 3 | 3 | 12 | 17 | 78 |
| Involutive pocrims = CIInRP | 1 | 1 | 1 | 3 | 3 | 12 | 15 | 73 |
| Comm. int. inv. res. lattices | 1 | 1 | 1 | 3 | 3 | 12 | 15 | 70 |
| Idempotent inv. res. posets | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{2}$ | $\mathbf{4}$ | $\mathbf{4}$ | $\mathbf{9}$ |
| MV-algebras | 1 | 1 | 1 | 2 | 1 | 2 | 1 | 3 |
| Boolean algebras | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 |

## Number of nonisomorphic idempotent InRPs

There are "very few" idempotent involutive residuated posets

| $n=$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ | $\mathbf{1 1}$ | $\mathbf{1 2}$ | $\mathbf{1 3}$ | $\mathbf{1 4}$ | $\mathbf{1 5}$ | $\mathbf{1 6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{I} \mathbf{d n R P}$ | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 9 | 10 | 22 | 24 | 53 | 61 | 134 | 157 | 343 |
| $\mathbf{I d} \mathbf{I n R L}$ | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 9 | 10 | 21 | 22 | 49 | 52 | 114 | 121 | 270 |
| $\mathbf{M V}$ | 1 | 1 | 1 | 2 | 1 | 2 | 1 | 3 | 2 | 2 | 1 | 4 | 1 | 2 | 2 | 5 |
| $\mathbf{B A}$ | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |

Most of the idempotent InRPs are lattice-ordered.
All with $\leqslant 16$ elements are commutative!
For an idempotent $\operatorname{lnRP}$ define the monoid preorder by $x \sqsubseteq y \Longleftrightarrow x y=x$.
1 is the top of this preorder; if $\perp$ exists then $\perp \sqsubseteq x$
Note: If $\cdot$ is commutative then $\sqsubseteq$ is a (meet-)semilattice order.
Clearly the semilattice order $\sqsubseteq$ determines the moniod operation •

## A typical finite commutative idempotent involutive RL



Figure: The lattice order and the monoid order for $\mathbf{A} \in \operatorname{Id} \ln R L$

## The smallest commutative idempotent invol. res. poset


$\leqslant 10$

$\sqsubseteq_{10}$

## The next two smallest idempotent invol. res. posets

$$
0=1
$$



## Constants in cyclic idempotent involutive posets

A residuated lattice is said to be square-increasing if it satisfies the identity $x \leqslant x^{2}$, and square-decreasing if $x^{2} \leqslant x$.

## Lemma

Given a square-increasing involutive residuated poset A,

$$
0 \leqslant 1 \Longleftrightarrow \mathbf{A} \text { is idempotent. }
$$

## Proof.

It suffices to show that in a square-increasing involutive residuated poset, $0 \leqslant 1 \Longleftrightarrow x x \leqslant x$.
If $\mathbf{A}$ is square-decreasing then $00 \leqslant 0$, and then $0 \leqslant 0 \backslash 0=1$.
Conversely, suppose that $0 \leqslant 1$. Then $-x=0 / x \leqslant 1 / x$, hence $-x x \leqslant 1$. By square-increasing, $-x x \leqslant(-x-x) x=-x(-x x) \leqslant-x 1=-x$. Hence, $x \leqslant \sim(-x x)=x \backslash x$, and therefore $x^{2} \leqslant x$.

## Boolean intervals in commutative IdInRLs

## Corollary <br> In any idempotent involutive residuated poset $0 \leqslant 1$.

In an involutive residuated lattice, idempotence implies that $0 \leqslant 1$ and that $([0,1], \cdot,+,-, 0,1)$ is a Boolean algebra, where $x+y=\sim(-y \cdot-x)$.

For $A \in \mathbf{C l d} \operatorname{lnRP}$, define the terms
$0_{x}=x \cdot-x$ and
$1_{x}=-0_{x}=-(x \cdot-x)=x+-x$.
Define the monoid interval of $x$ by $\mathbb{B}_{x}=\left\{a \in A: 0_{x} \sqsubseteq a \sqsubseteq 1_{x}\right\}$
I.e., $\mathbb{B}_{X}=\left\{a \in A: 0_{x} \cdot a=0_{x}\right.$ and $\left.a \cdot 1_{x}=a\right\}$

Intervals in the monoid order of CIdlnRPs

## Lemma

For $a, b \in[0,1], a \sqsubseteq b \Longleftrightarrow a \leqslant b$, hence $\mathbb{B}_{0}=\mathbb{B}_{1}=[0,1]$.

Lemma (PJ., Olim Tuyt, Diego Valota)
Let $A \in \mathbf{C l d} \operatorname{lnRP}, x \in A$ and $a \in \mathbb{B}_{x}$. Then
(1) $-a=a \rightarrow 0_{x}$
(2) $-a \in \mathbb{B}_{x}$, and
(3) $a \cdot-a=0_{x}$.

Theorem (PJ., Olim Tuyt, Diego Valota)
Let $A$ be a commutative idempotent involutive residuated poset. Then for all $x \in A,\left(\mathbb{B}_{x}, \cdot,+,-, 0_{x}, 1_{x}\right)$ is a Boolean algebra.

## Boolean intervals partition any CIdlnRP

The set of monoid intervals $\mathbb{B}_{x}$ actually partition $A$.
To see this, define a relation $\equiv_{0}$ as follows for $x, y \in A$

$$
x \equiv 0 y \quad \Longleftrightarrow \quad 0_{x}=0_{y}
$$

$\equiv_{0}$ is easily seen to be an equivalence relation on $A$.
Let $[x]_{0}$ denote the equivalence class of an element $x \in A$.
Theorem (PJ., Olim Tuyt, Diego Valota)
For all $x \in A,[x]_{0}=\mathbb{B}_{x}$.

## A typical finite commutative idempotent involutive RL



## The smallest commutative idempotent invol. res. poset



$$
\leqslant 10
$$

$$
\sqsubseteq_{10}
$$

Dark lines show the monoid order partitioned into Boolean intervals

## The next two smallest idempotent invol. res. posets

$$
0=1
$$


$\sqsubseteq_{11,1}$

$\leqslant 11,2$


$$
\sqsubseteq_{11,2}=\sqsubseteq_{10} \oplus \mathbf{1}
$$

Dark lines show the monoid order partitioned into Boolean intervals

## Properties of cyclic idempotent involutive posets

Idempotence for cyclic involutive residuated posets is a strong restriction.
Lemma (José Gil-Ferez and PJ)
Any involutive idempotent residuated posets satisfies:
(1) $x(\sim x) \leqslant \sim x$ and $(-x) x \leqslant-x$,
(2) $x(\sim x) \leqslant x$ and $(-x) x \leqslant x$.

Assuming cyclicity implies the following additional identities:
(3) $x(\sim x) x=x(\sim x)$,
(9) $x(\sim x)=(\sim x) x$.

## Proof.

In any involutive residuated poset $\sim(y x) \leqslant \sim(y x)$, so $y x(\sim(y x)) \leqslant 0$, whence $x(\sim(y x)) \leqslant \sim y$.
(1) Follows from this identity and idempotence by substituting $x$ for $y$.
(2) Replace $x$ by $\sim x$ in the second identity of (1).
(3) Multiplying (1) by $x$ on the right we obtain $x(\sim x) x \leqslant(\sim x) x$. By cyclicity $(\sim x) x \leqslant 0$, and using idempotence gives $x x(\sim x) x \leqslant 0$, or equivalently $x(\sim x) x \leqslant \sim x$. Multiplying by $x$ on the left shows that $x(\sim x) x \leqslant x(\sim x)$. Multiplying (2) by $x(\sim x)$ on the left produces $x(\sim x) x(\sim x) \leqslant x(\sim x) x$, whence $x(\sim x) \leqslant x(\sim x) x$ follows from idempotence. Therefore (3) holds.
(9) Again multiplying (1) by $x$ on the right we obtain $x(\sim x) x \leqslant(\sim x) x$, hence by (3) we get $x(\sim x) \leqslant(\sim x) x$. Using cyclicity we can replace $x$ by $\sim x$ to deduce the reverse inequality.

## Every cyclic idempotent involutive poset is commutative

 Theorem (José Gil-Ferez and PJ)Every cyclic idempotent involutive residuated poset is commutative.

## Proof.

The identity $y \cdot \sim(x y) \leqslant \sim x$ holds in any $\ln R L$, hence

$$
x y \cdot \sim(x y) \leqslant x \cdot \sim x \leqslant \sim x
$$

Applying (4) of the preceeding lemma on the left, we have $\sim(x y) x y \leqslant \sim x$, from which we deduce $\sim(x y) x y x \leqslant(\sim x) x \leqslant 0$. Therefore $x y x \leqslant x y$.

Now multiply both sides by $y$ on the left and use idempotence to deduce the identity $y x \leqslant y x y$. Renaming variables proves $x y x=x y$.

A similar argument shows $x y x=y x$, whence $x y=x y x=y x$.

## A noncyclic idempotent involutive residuated lattice

There exist noncommutative idempotent involutive residuated lattices:
Example (Jóse Gil-Ferez and PJ)
Let $A=\mathbb{Z} \oplus\{\mathbf{1}\} \oplus \mathbb{Z}^{\partial}$, where $\oplus$ is the ordinal sum.
Lattice order:
$\cdots a_{-2}<a_{-1}<a_{0}<a_{1}<a_{2} \cdots<\mathbf{1}<\cdots b_{2}<b_{1}<b_{0}<b_{-1}<b_{-2} \cdots$
Monoid preorder:
$\cdots a_{-2} \equiv b_{-2} \sqsubset a_{-1} \equiv b_{-1} \sqsubset a_{0} \equiv b_{0} \sqsubset a_{1} \equiv b_{1} \sqsubset a_{2} \equiv b_{2} \sqsubset \cdots \sqsubset \mathbf{1}$
Linear negations:
$\mathbf{1}=\mathbf{0}, \sim a_{i}=b_{i}, \sim b_{i}=a_{i-1}, \quad-a_{i}=b_{i+1}, \quad-b_{i}=a_{i}$ Hence $\sim \sim a_{i}=a_{i-1}$ and $--a_{i}=a_{i+1}$ and the same for $b_{i}$.

Conjecture: All finite idempotent involutive res. posets are commutative.

## Some partial results

## Theorem

Finite idempotent involutive residuated chains are commutative.

The following results have been obtained using Prover9 [McCune]

## Theorem

(1) The po-subvariety of IdInRP determined by the identity $----x=x$ satisfies $--x=x$, hence is cyclic and thus commutative.
(2) The po-subvariety of IdInRP determined by the identity $------x=x$ satisfies $----x=x$.

Let $-_{n} x$ be the term with $n$ copies of - . Then $-_{n} x$ is a permutation on $A$, hence if $A$ is finite it satisfies $-_{n} x=-{ }_{m} x$ for some $n>m \geqslant 0$. Applying $m$ copies of $\sim$ on both sides shows $A$ satisfies $-_{n-m} x=x$.

## Some references

A. M. W. Glass: "Partially ordered groups." World Scientific, 1999.
J. Lambek: Type grammar revisited, In A. Lecomte, F. Lamarche and G. Perrier, editors, Logical Aspects of Computational Linguistics, Springer LNAI 1582, 1999, 1-27.
W. McCune: Prover9 and Mace4. www.cs.unm.edu/~mccune/prover9/, 2005-2010.
D. Pigozzi: Partially ordered varieties and quasivarieties. Unpublished lecture notes, 2004, 1-26, orion.math.iastate.edu/dpigozzi/notes/santiago_notes.pdf.
J. Raftery: On the variety generated by involutive pocrims. Reports on Mathematical Logic, 42, (2007), 71-86.

Thanks!

