Completeness properties in abstract algebraic logic

Petr Cintula¹ Carles Noguera²

¹Institute of Computer Science Czech Academy of Sciences

²Institute of Information Theory and Automation Czech Academy of Sciences

Logic: Syntax \leftrightarrow Semantics

Logic: Syntax ↔ Semantics Completeness theorems

• Study them from the point of view of abstract algebraic logic

- Study them from the point of view of abstract algebraic logic
- Consider their different forms for arbitrary classes of matrices

- Study them from the point of view of abstract algebraic logic
- Consider their different forms for arbitrary classes of matrices
- Give useful characterizations

- Study them from the point of view of abstract algebraic logic
- Consider their different forms for arbitrary classes of matrices
- Give useful characterizations
- Use them to describe the classes of all models of the logic in question

- Study them from the point of view of abstract algebraic logic
- Consider their different forms for arbitrary classes of matrices
- Give useful characterizations
- Use them to describe the classes of all models of the logic in question
- Explicate the role of equivalence and disjunction connectives

The precedents (from a personal point of view)

 PC, F. Esteva, J. Gispert, L. Godo, F. Montagna, C. Noguera. Distinguished algebraic semantics for t-norm based fuzzy logics. *Annals of Pure and Applied Logic* 160:53–81, 2009. The precedents (from a personal point of view)

- PC, F. Esteva, J. Gispert, L. Godo, F. Montagna, C. Noguera. Distinguished algebraic semantics for t-norm based fuzzy logics. *Annals of Pure and Applied Logic* 160:53–81, 2009.
- **2** J. Czelakowski. *Protoalgebraic Logics*. Kluwer, 2001.

The precedents (from a personal point of view)

- PC, F. Esteva, J. Gispert, L. Godo, F. Montagna, C. Noguera. Distinguished algebraic semantics for t-norm based fuzzy logics. *Annals of Pure and Applied Logic* 160:53–81, 2009.
- J. Czelakowski. *Protoalgebraic Logics*. Kluwer, 2001.
- PC, C. Noguera. Implicational (semilinear) logics III: completeness properties. Archive for Mathematical Logic 7:391–420, 2018.

What is a logic (in AAL)

Language \mathcal{L} : an at most countable type

 $Fm_{\mathcal{L}}$: the absolutely free \mathcal{L} -algebra with countably infinite set of generators we call elements of $Fm_{\mathcal{L}}$ \mathcal{L} -formulas

Logic L: a relation between sets of \mathcal{L} -formulae and \mathcal{L} -formulae s.t.: we write ' $\Gamma \vdash_{L} \varphi$ ' instead of ' $\langle \Gamma, \varphi \rangle \in L$ ' and ' $\Gamma \vdash_{L} \Delta$ ' instead of ' $\Gamma \vdash_{L} \varphi$ for each $\varphi \in \Delta$ '

• $\Gamma, \varphi \vdash_L \varphi$ (Reflexivity) • If $\Gamma \vdash_L \Delta$ and $\Delta \vdash_L \varphi$, then $\Gamma \vdash_L \varphi$ (Cut)

• If $\Gamma \vdash_L \varphi$, then $\sigma[\Gamma] \vdash_L \sigma(\varphi)$ for each substitution σ (Structurality)

A trivial completeness theorem all logics enjoy

Matrix A: a tuple $\langle A, F \rangle$, where A is an \mathcal{L} -algebra and $F \subseteq A$.

 $\Gamma \models_{\mathbf{A}} \varphi$ if for each $e \colon Fm_{\mathcal{L}} \to A$ if $e[\Gamma] \subseteq F$, then $e(\varphi) \in F$

A is an L-model if $\Gamma \vdash_L \varphi$ implies $\Gamma \models_A \varphi$ *F* is then called an L-filter on *A*

Class of all models: **Mod**(L)

Fact: theories (deductively closed sets) = L-filters on $Fm_{\mathcal{L}}$

1st completeness theorem: for each Γ and φ , $\Gamma \vdash_L \varphi$ iff $\Gamma \models_{\mathbf{Mod}(L)} \varphi$

A less trivial completeness theorem all logics enjoy

Leibniz congruence $\Omega_A(F)$: the largest congruence on A s.t. $\langle x, y \rangle \in \Omega_A(F)$ and $x \in F$ implies $y \in F$

Reduced model: $\langle A, F \rangle \in \mathbf{Mod}(L)$ such that $\Omega_A(F) = Id_A$

Class of all reduced models: Mod*(L)

Reduction of a matrix: $\langle A, F \rangle^* = \langle A / \Omega_A(F), F / \Omega_A(F) \rangle$

Observation: (1) \mathbf{A}^* is reduced (2) $\mathbf{A}^* = (\mathbf{A}^*)^*$ (3) $\models_{\mathbf{A}^*} = \models_{\mathbf{A}}$

2nd completeness theorem: for each Γ and φ , $\Gamma \vdash_L \varphi$ iff $\Gamma \vDash_{Mod^*(L)} \varphi$

A non-trivial completeness theorem all finitary logics enjoy

Finitary logic: if $\Gamma \vdash_L \varphi$, then there is a finite $\Gamma' \subseteq \Gamma$ s.t. $\Gamma' \vdash_L \varphi$

A matrix $\langle A, F \rangle$ is subdirectly irreducible if *F* is not the intersection of any system of strictly bigger L-filters on *A*

A matrix $\langle A, F \rangle$ is finitely subdirectly irreducible if *F* is not the intersection of any non-empty finite system of strictly bigger L-filters on *A*

3rd completeness theorem: If L is finitary, then for each $\Gamma \cup \{\varphi\} \subseteq Fm_{\mathcal{L}}$,

 $\Gamma \vdash_{\mathsf{L}} \varphi \text{ iff } \Gamma \models_{\mathbf{Mod}^*(\mathsf{L})_{\mathsf{RSI}}} \varphi \text{ iff } \Gamma \models_{\mathbf{Mod}^*(\mathsf{L})_{\mathsf{RFSI}}} \varphi$

Definition

Let L be a logic and $\mathbb{K} \subseteq Mod(L)$. We say that L has the property of:

• Strong K-completeness, SKC for short, whenever $\Gamma \vdash_{L} \varphi$ iff $\Gamma \models_{K} \varphi$ for every set $\Gamma \cup \{\varphi\} \subseteq Fm_{\Gamma}$

Definition

Let L be a logic and $\mathbb{K} \subseteq Mod(L)$. We say that L has the property of:

- Strong K-completeness, SKC for short, whenever $\Gamma \vdash_{L} \varphi$ iff $\Gamma \vDash_{K} \varphi$ for every set $\Gamma \cup \{\varphi\} \subseteq Fm_{\mathcal{L}}$
- Finite strong K-completeness, FSKC for short, whenever $\Gamma \models_{\mathbb{L}} \varphi$ iff $\Gamma \models_{\mathbb{K}} \varphi$ for every finite set $\Gamma \cup \{\varphi\} \subseteq Fm_{\mathcal{L}}$

Definition

Let L be a logic and $\mathbb{K} \subseteq Mod(L)$. We say that L has the property of:

- Strong K-completeness, SKC for short, whenever $\Gamma \vdash_{L} \varphi$ iff $\Gamma \models_{\mathbb{K}} \varphi$ for every set $\Gamma \cup \{\varphi\} \subseteq Fm_{\mathcal{L}}$
- Finite strong K-completeness, FSKC for short, whenever $\Gamma \models_L \varphi$ iff $\Gamma \models_K \varphi$ for every finite set $\Gamma \cup \{\varphi\} \subseteq Fm_L$
- K-completeness, KC for short, whenever $\vdash_{L} \varphi$ iff $\models_{\mathbb{K}} \varphi$ for every $\varphi \in Fm_{\mathcal{L}}$

Definition

Let L be a logic and $\mathbb{K} \subseteq Mod(L)$. We say that L has the property of:

- Strong K-completeness, SKC for short, whenever $\Gamma \vdash_{L} \varphi$ iff $\Gamma \models_{\mathbb{K}} \varphi$ for every set $\Gamma \cup \{\varphi\} \subseteq Fm_{\mathcal{L}}$
- Finite strong K-completeness, FSKC for short, whenever $\Gamma \models_L \varphi$ iff $\Gamma \models_K \varphi$ for every finite set $\Gamma \cup \{\varphi\} \subseteq Fm_L$
- K-completeness, KC for short, whenever $\vdash_{L} \varphi$ iff $\models_{\mathbb{K}} \varphi$ for every $\varphi \in Fm_{\mathcal{L}}$

Łukasiewicz logic has FSKC w.r.t. class $\mathbb K$ of its finite models but not SKC

Any logic has $\mathbb{K}C$ for $\mathbb{K} = \{\langle Fm_{\mathcal{L}}, Thm(L) \rangle\}$ but only structurally complete logics have FS $\mathbb{K}C$

Definition

Let L be a logic and $\mathbb{K} \subseteq Mod(L)$. We say that L has the property of:

- Strong K-completeness, SKC for short, whenever $\Gamma \vdash_{L} \varphi$ iff $\Gamma \models_{\mathbb{K}} \varphi$ for every set $\Gamma \cup \{\varphi\} \subseteq Fm_{\mathcal{L}}$
- Finite strong K-completeness, FSKC for short, whenever $\Gamma \models_L \varphi$ iff $\Gamma \models_K \varphi$ for every finite set $\Gamma \cup \{\varphi\} \subseteq Fm_L$
- K-completeness, KC for short, whenever $\vdash_{L} \varphi$ iff $\models_{\mathbb{K}} \varphi$ for every $\varphi \in Fm_{\mathcal{L}}$

Łukasiewicz logic has FSKC w.r.t. class $\mathbb K$ of its finite models but not SKC

Any logic has $\mathbb{K}C$ for $\mathbb{K} = \{\langle Fm_{\mathcal{L}}, Thm(L) \rangle\}$ but only structurally complete logics have FS $\mathbb{K}C$

Recall $\models_{A^*} = \models_A$, thus from now on we assume $\mathbb{K} \subseteq Mod^*(L)$

The most general characterizations

Theorem

Let L be a logic.

- L has the SKC iff $Mod^*(L) \subseteq IS^*P_{\omega-f}(K)$.
- **2** L has the FSKC iff $Mod^*(L) \subseteq IS^*PP_U(\mathbb{K})$.

- I isomorphic images
- **S**^{*} reductions of submatrices
- P products
- \mathbf{P}_{U} ultraproducts
- $\mathbf{P}_{\omega-f}$ ω -filtered products

The most general characterizations

Theorem

Let L be a logic.

- L has the SKC iff $Mod^*(L) \subseteq IS^*P_{\omega-f}(K)$.
- **2** L has the FSKC iff $Mod^*(L) \subseteq IS^*PP_U(\mathbb{K})$.

Therefore L has the FSKC iff it has the $SP_U(\mathbb{K})C$.

I isomorphic images

- **S**^{*} reductions of submatrices
- P products
- **P**_U ultraproducts
- $\mathbf{P}_{\omega-f}$ ω -filtered products

What are protoalgebraic and equivalential logics?

Let \overrightarrow{r} be a sequence of atoms (parameters) and $\Leftrightarrow (p, q, \overrightarrow{r}) \subseteq Fm_{\mathcal{L}}$

Convention: given formulae φ and ψ , we set

 $\varphi \Leftrightarrow \psi = \{ \chi(\varphi, \psi, \alpha_1, \dots, \alpha_n) \mid \chi(p, q, r_1, \dots, r_n) \in \Leftrightarrow \text{ and } \alpha_i \in Fm_{\mathcal{L}} \}$

What are protoalgebraic and equivalential logics?

Let \overrightarrow{r} be a sequence of atoms (parameters) and $\Leftrightarrow (p, q, \overrightarrow{r}) \subseteq Fm_{\mathcal{L}}$

Convention: given formulae φ and ψ , we set

$$\varphi \Leftrightarrow \psi = \{\chi(\varphi, \psi, \alpha_1, \dots, \alpha_n) \mid \chi(p, q, r_1, \dots, r_n) \in \Leftrightarrow \text{ and } \alpha_i \in Fm_{\mathcal{L}}\}$$

A logic is protoalgebraic if it has a parameterized equivalence set \Leftrightarrow , s.t.:

What are protoalgebraic and equivalential logics?

Let \overrightarrow{r} be a sequence of atoms (parameters) and $\Leftrightarrow (p, q, \overrightarrow{r}) \subseteq Fm_{\mathcal{L}}$

Convention: given formulae φ and ψ , we set

$$\varphi \Leftrightarrow \psi = \{\chi(\varphi, \psi, \alpha_1, \dots, \alpha_n) \mid \chi(p, q, r_1, \dots, r_n) \in \Leftrightarrow \text{ and } \alpha_i \in Fm_{\mathcal{L}}\}$$

A logic is protoalgebraic if it has a parameterized equivalence set \Leftrightarrow , s.t.:

A logic is (finitely) equivalential if it has a (finite) equivalence set $\Leftrightarrow (p,q)$

The most general characterizations

Theorem

Let L be a logic.

- L has the SKC iff $Mod^*(L) \subseteq IS^*P_{\omega-f}(K)$.
- **2** L has the FSKC iff $Mod^*(L) \subseteq IS^*PP_U(\mathbb{K})$.

I isomorphic images

- **S**^{*} reductions of submatrices
- P products
- \mathbf{P}_{U} ultraproducts
- $\mathbf{P}_{\omega-f}$ ω -filtered products

Very little less general characterizations

Theorem

Let L be a protoalgebraic logic.

- L has the SKC iff $Mod^*(L) = IS^*P_{\omega-f}(\mathbb{K})$.
- **2** L has the FSKC iff $Mod^*(L) \subseteq IS^*PP_U(\mathbb{K})$.
- L has the $\mathbb{K}C$ iff $\mathbf{H}(\mathbf{Mod}^*(L)) = \mathbf{HS}^*\mathbf{P}(\mathbb{K})$.
- I isomorphic images
- **H** homomorphic images
- **S**^{*} reductions of submatrices
- P products
- \mathbf{P}_{U} ultraproducts
- $\mathbf{P}_{\omega-f}$ ω -filtered products

Little less general characterizations

Theorem

Let L be an *equivalential* logic.

- L has the SKC iff $Mod^*(L) = ISP_{\omega f}(K)$.
- **2** L has the FS \mathbb{K} C iff $\mathbf{Mod}^*(L) \subseteq \mathbf{ISPP}_U(\mathbb{K})$.
- L has the $\mathbb{K}C$ iff $H(Mod^*(L)) = HSP(\mathbb{K})$.
- I isomorphic images
- **H** homomorphic images
- S submatrices
- P products
- **P**_U ultraproducts
- $\mathbf{P}_{\omega-f}$ ω -filtered products

Less general characterizations

Theorem

Let L be a finitary finitely equivalential logic.

- L has the SKC iff $Mod^*(L) = ISP_{\omega-f}(K)$.
- **2** L has the FS \mathbb{K} C iff $\mathbf{Mod}^*(L) = \mathbf{ISPP}_U(\mathbb{K})$.
- **(a)** L has the \mathbb{K} C iff $\mathbf{H}(\mathbf{Mod}^*(L)) = \mathbf{HSP}(\mathbb{K})$.
- I isomorphic images
- **H** homomorphic images
- S submatrices
- P products
- **P**_U ultraproducts
- $\mathbf{P}_{\omega-f}$ ω -filtered products

What are p-disjunctional logics?

Let \overrightarrow{r} be a sequence of atoms (parameters) and $\nabla(p,q,\overrightarrow{r}) \subseteq Fm_{\mathcal{L}}$

Convention: given formulae φ and ψ , we set

 $\varphi \nabla \psi = \{ \chi(\varphi, \psi, \alpha_1, \dots, \alpha_n) \mid \chi(p, q, r_1, \dots, r_n) \in \nabla \text{ and } \alpha_i \in Fm_{\mathcal{L}} \}$

What are p-disjunctional logics?

Let \overrightarrow{r} be a sequence of atoms (parameters) and $\nabla(p,q,\overrightarrow{r}) \subseteq Fm_{\mathcal{L}}$

Convention: given formulae φ and ψ , we set

$$\varphi \nabla \psi = \{\chi(\varphi, \psi, \alpha_1, \dots, \alpha_n) \mid \chi(p, q, r_1, \dots, r_n) \in \nabla \text{ and } \alpha_i \in Fm_{\mathcal{L}}\}$$

A logic is p-disjunctional if it has a parameterized disjunction set ∇ , s.t.:

$$T, \varphi \vdash_{\mathcal{L}} \chi \text{ and } T, \psi \vdash_{\mathcal{L}} \chi \quad \text{iff} \quad T, \varphi \nabla \psi \vdash_{\mathcal{L}} \chi$$

What are p-disjunctional logics?

Let \overrightarrow{r} be a sequence of atoms (parameters) and $\nabla(p,q,\overrightarrow{r}) \subseteq Fm_{\mathcal{L}}$

Convention: given formulae φ and ψ , we set

$$\varphi \nabla \psi = \{\chi(\varphi, \psi, \alpha_1, \dots, \alpha_n) \mid \chi(p, q, r_1, \dots, r_n) \in \nabla \text{ and } \alpha_i \in Fm_{\mathcal{L}}\}$$

A logic is p-disjunctional if it has a parameterized disjunction set ∇ , s.t.:

$$T, \varphi \vdash_{\mathcal{L}} \chi \text{ and } T, \psi \vdash_{\mathcal{L}} \chi \quad \text{iff} \quad T, \varphi \nabla \psi \vdash_{\mathcal{L}} \chi$$

In a protoalgebraic logic a disjunction $\{p \lor q\}$ is lattice disjunction if:

$$\begin{array}{ll} (\mathbf{I}) & \vdash_{\mathbf{L}} \varphi \lor \varphi \Leftrightarrow \varphi \\ (\mathbf{C}) & \vdash_{\mathbf{L}} \varphi \lor \psi \Leftrightarrow \psi \lor \varphi \\ (\mathbf{A}) & \vdash_{\mathbf{L}} \varphi \lor (\psi \lor \chi) \Leftrightarrow (\varphi \lor \psi) \lor \chi \end{array}$$

The most general characterizations

Theorem

Let L be a logic.

- L has the SKC iff $Mod^*(L) \subseteq IS^*P_{\omega-f}(K)$.
- **2** L has the FSKC iff $Mod^*(L) \subseteq IS^*PP_U(\mathbb{K})$.

Therefore L has the FSKC iff it has the $SP_U(\mathbb{K})C$.

I isomorphic images

- **S**^{*} reductions of submatrices
- P products
- **P**_U ultraproducts
- $\mathbf{P}_{\omega-f}$ ω -filtered products

Theorem

Let L be a finitary logic that is protoalgebraic or p-disjunctional.

- L has the SKC iff $Mod^*(L)_{RSI}^{\omega} \subseteq IS^*(\mathbb{K})$.
- ② L has the FSKC iff $Mod^*(L)_{RFSI} \subseteq IS^*P_U(K)$.

 \mathbb{M}^{ω} stands for the class of at most countable members of \mathbb{M}

Theorem

Let L be a finitary logic that is protoalgebraic and p-disjunctional.

- L has the SKC iff $Mod^*(L)_{RSI}^{\omega} \subseteq IS^*(\mathbb{K})$.
- ② L has the FSKC iff $Mod^*(L)_{RFSI} \subseteq IS^*P_U(K)$.
- L has the $\mathbb{K}C$ iff $Mod^*(L)_{RFSI} \subseteq HS^*P_U(\mathbb{K})$.

 \mathbb{M}^{ω} stands for the class of at most countable members of \mathbb{M}

Theorem

Let L be a finitary protoalgebraic logic with lattice disjunction.

- L has the SKC iff $Mod^*(L)_{RFSI}^{\omega} \subseteq IS^*(\mathbb{K}^+)$.
- ② L has the FSKC iff $Mod^*(L)_{RFSI} \subseteq IS^*P_U(K)$.
- **③** L has the \mathbb{K} C iff Mod^{*}(L)_{RFSI} ⊆ HS^{*}P_U(\mathbb{K}).

 \mathbb{M}^{ω} stands for the class of at most countable members of \mathbb{M}

 \mathbb{K}^+ stands for the class \mathbb{K} expanded by the trivial reduced matrix

Theorem

Let L be a finitary protoalgebraic logic with lattice disjunction.

- L has the SKC iff $Mod^*(L)_{RFSI}^{\omega} \subseteq IS^*(\mathbb{K}^+)$.
- ② L has the FSKC iff $Mod^*(L)_{RFSI} \subseteq IS^*P_U(K)$.
- **③** L has the \mathbb{K} C iff Mod^{*}(L)_{RFSI} ⊆ HS^{*}P_U(\mathbb{K}).

 \mathbb{M}^{ω} stands for the class of at most countable members of \mathbb{M}

 \mathbb{K}^+ stands for the class \mathbb{K} expanded by the trivial reduced matrix

Corollary

Let L be a finitary protoalgebraic logic with a lattice disjunction. Then

 $\mathbf{Mod}^*(L)_{RFSI}^{\omega} \subseteq \mathbf{IS}^*(\mathbf{Mod}^*(L)_{RSI}^{\omega,+})$

Characterization using partial embeddability

Partial embedding of a set $X \subseteq \langle A, F \rangle$ into $\langle B, G \rangle$: a one-to-one mapping s.t.

$$x \in F \quad \text{iff} \quad f(x) \in G$$
$$f(\lambda^{A}(x_{1}, \dots, x_{n})) = \lambda^{B}(f(x_{1}), \dots, f(x_{n})) \quad \text{whenever} \quad \lambda^{A}(x_{1}, \dots, x_{n}) \in X$$

 $\mathbb{K} \text{ is partially embeddable into } \mathbb{M} \text{ if each finite } X \subseteq \mathbf{A} \in \mathbb{K} \text{ is partially} \\ \text{embeddable into some } \mathbf{B} \in \mathbb{M}$

Characterization using partial embeddability

Partial embedding of a set $X \subseteq \langle A, F \rangle$ into $\langle B, G \rangle$: a one-to-one mapping s.t.

$$x \in F \quad \text{iff} \quad f(x) \in G$$
$$f(\lambda^{A}(x_{1}, \dots, x_{n})) = \lambda^{B}(f(x_{1}), \dots, f(x_{n})) \quad \text{whenever} \quad \lambda^{A}(x_{1}, \dots, x_{n}) \in X$$

 $\mathbb{K} \text{ is partially embeddable into } \mathbb{M} \text{ if each finite } X \subseteq \mathbf{A} \in \mathbb{K} \text{ is partially} \\ \text{embeddable into some } \mathbf{B} \in \mathbb{M}$

Theorem

Let L be a finitary equivalential logic in a finite language. Then L has the FS \mathbb{K} C iff $\mathbf{Mod}^*(L)_{RFSI}$ is partially embeddable into \mathbb{K}^+ .

Consequences for final matrices

Let us by \mathcal{F} denote the class of the finite members of $Mod^*(L)$

Corollary

Let L be a protoalgebraic and p-disjunctional logic. TFAE:

(i) L is finitary and tabular, i.e., it has $\mathbb{K}C$ w.r.t. a finite set $\mathbb{K} \subseteq \mathcal{F}$.

(iii) L is strongly finite, i.e., it has SKC w.r.t. a finite set $\mathbb{K} \subseteq \mathcal{F}$.

If furthermore L *finitely equivalential with a lattice disjunction we can add:* (iv) L *is finitary and has the* SFC.

Corollary

Let L be a protoalgebraic p-disjunctional finitary tabular logic. Then $Mod^*(L)_{RFSI}$ is finite (up to isomorphism) and

 $\mathbf{Mod}^*(L)_{RSI} = \mathbf{Mod}^*(L)_{RFSI} \subseteq \mathcal{F}.$

References

- PC, F. Esteva, J. Gispert, L. Godo, F. Montagna, C. Noguera. Distinguished algebraic semantics for t-norm based fuzzy logics. *Annals of Pure and Applied Logic* 160:53–81, 2009.
- J. Czelakowski. *Protoalgebraic Logics*. Kluwer, 2001.
- PC, C. Noguera. Implicational (semilinear) logics III: completeness properties. Archive for Mathematical Logic 7:391–420, 2018.