
Epimorphisms in Varieties of Heyting Algebras1

T. Moraschini J. J. Wannenburg

Academy of Sciences of the Czech Republic, Czech Republic

University of Pretoria, South Africa, funded by DST-NRF Centre of Excellence in
Mathematical and Statistical Sciences (CoE-MaSS)

TACL 2019

1Opinions expressed and conclusions arrived at are those of the second author
and are not necessarily to be attributed to the CoE-MaSS.



Heyting algebras

A Heyting algebra A = 〈A;∧,∨,→, 1, 0〉 is a distributive lattice
with bounds 1 and 0 which satisfies

x ∧ y ≤ z iff x ≤ y → z .

Heyting algebras are fully determined by their lattice reducts,
because

y → z =
∨
{x : x ∧ y ≤ z}.

Thus any finite distributive lattice is a Heyting algebra.

Varieties of Heyting algebras algebraize axiomatic extensions of
intuitionistic logic (i.e., intermediate logics).



Esakia Duality

An Esakia space X = 〈X ; τ,≤〉, is a compact Hausdorff space with
topology τ on X and a partial order ≤ such that

1. ↑x is closed for all x ∈ X , and
2. ↓U is clopen for every clopen U ⊆ X ,

where ↑x := {z ∈ X : z ≥ x} and
↓U := {z ∈ X : z ≤ y for some y ∈ U}, and ↓x and ↑U are defined
similarly.

An Esakia morphism f : X→ Y between Esakia spaces is a
continuous order-preserving map such that for every x ∈ X ,

if f (x) ≤ y ∈ Y , then y = f (z) for some z ≥ x .



Duality
The category of Heyting algebras (with algebraic homomorphisms)
is dually equivalent to the category of Esakia spaces (with Esakia
morphisms), as witnessed by the covariant functors (−)∗ and (−)∗
which we now define.

(−)∗:

Let Pr A denote the set of (non-empty, proper) prime filters of a
Heyting algebra A. Define, for every a ∈ A,

γA(a) := {F ∈ Pr A : a ∈ F}.

The structure A∗ := 〈Pr A; τ,⊆〉 is an Esakia space, where the
topology τ has subbasis {γA(a) : a ∈ A} ∪ {γA(a)c : a ∈ A}.
Furthermore, for every homomorphism f : A→ B, the map
f∗ : B∗ → A∗ is defined by F 7→ f −1[F ].

For a variety K of Heyting algebras, let K∗ := {A∗ : A ∈ K}.



(−)∗:

Given an Esakia space X, we let Cu X denote the set of clopen
up-sets of X. Then the structure X∗ := 〈Cu X;∩,∪,→, ∅,X 〉 is a
Heyting algebra, where U → V := X \ ↓(U \ V). For every Esakia
morphism f : X→ Y, we similarly define f ∗ : Y∗ → X∗ to be
U 7→ f −1[U ].

Note The topology of finite Esakia spaces is discrete (and
can therefore be ignored).
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Epimorphisms

Let K be a variety of algebras and A,B ∈ K. A homomorphism
f : A→ B is an epimorphism if, whenever C ∈ K and g , h : B→ C
are homomorphisms,

if g ◦ f = h ◦ f , then g = h.

All surjective homomorphisms are epimorphisms, but, the converse
need not be true.



Example The embedding of the 3-element chain into the
4-element diamond is a (non-surjective) epimorphism
in the variety of distributive lattices. This reflects the
fact that lattice complements are implicitly defined
(i.e., unique or non-existent) for distributive lattices,
even though there is no unary term that defines them
explicitly.



We say K has the epimorphism surjectivity (ES) property if all its
epimorphisms are surjective.

The ES property is not in general inherited by subvarieties, because
a (non-surjective) homomorphism in a variety may become an
epimorphism in a subvariety.

Example The variety of all lattices has the ES property but the
variety of distributive lattices does not. The
embedding above is not an epimorphism in the variety
of lattices, because the above diagram extends in two
distinct ways to M3.



Equivalent conditions

Let K be a variety of Heyting algebras that algebraizes an
intermediate logic `. The following are equivalent:

I K has surjective epimorphisms.
I ` satisfies the infinite Beth property, i.e., all implicit definitions

of propositional functions in ` can be made explicit.

We shall investigate the ES property for varieties of Heyting algebras,
and by implication, the infinite Beth property for intermediate logics.



A subalgebra A ≤ B ∈ K is epic if the inclusion map A ↪→ B is an
epimorphism, i.e., homomorphisms from B to members of K are
determined by their restrictions to A.

A correct partition R on an Esakia space X is a equivalence relation
on X such that for every x , y , z ∈ X

1. if 〈x , y〉 ∈ R and x ≤ z , then 〈z ,w〉 ∈ R for some w ≥ y , and
2. if 〈x , y〉 /∈ R, then there is a clopen U which is a union of

equivalence classes of R, such that x ∈ U and y /∈ U .



Let K be a variety of Heyting algebras. The following are equivalent:

I K lacks the ES property.
I There is a member of K with a proper epic subalgebra.
I There is an Esakia space X ∈ K∗ with a non-identity correct

partition R such that for every Y ∈ K∗ and every pair of Esakia
morphisms f , g : Y→ X, if 〈f (y), g(y)〉 ∈ R for every y ∈ Y ,
then f = g .



Known results
Thm (Maksimova) Only finitely many varieties of Heyting algebras

K satisfy the following stronger variant of the ES
property:

If f : A→ B is a hom. in K and b ∈ B \ f [A], then
there are homs. g , h : B→ C ∈ K such that
g ◦ f = h ◦ f and g(b) 6= h(b).

Varieties with this stronger property include the respective classes of
all Boolean algebras, Gödel algebras, and Heyting algebras.

Thm (Kreisel) Every variety K of Heyting algebras has the following
weak variant of the ES property:

If f : A→ B is a non-surjective hom. in K, where B
is generated by f [A] plus finitely many elements of B,
then f is not an epimorphism.

Nevertheless, the (unqualified) ES property remains poorly
understood.



Thm (Campercholi) Let K be an arithmetical variety whose FSI
members form a universal class. Then K has the ES
property iff its FSI members lack proper epic
subalgebras.

Thm Every finitely generated variety K of Heyting algebras
has surjective epimorphisms.

Proof Suppose, on the contrary, that K lacks the ES
property. By Campercholi, there is a FSI B ∈ K with
a proper epic subalgebra A. Since K is fin. gen.,
Jónsson’s Lemma guarantees that B is finite. But
Kreisel’s result then implies that A is not epic in B, a
contradiction.



One of the few general positive results is the following:

Thm (G. Bezhanishvili, T. Moraschini, J. G. Raftery) Varieties of
Heyting algebras with finite depth have surjective
epimorphisms.

I This implies that there is a continuum of such varieties with
the ES property.

I The above authors also provided one example of a variety of
Heyting algebras which lacks the ES property—thereby
confirming a conjecture by Blok and Hoogland: the weak ES
property is indeed strictly weaker than the ES property.

We will recall this example shortly and exhibit the failure of the ES
property for many more varieties.

Recall that to find varieties of Heyting algebras without the ES
property, we must avoid varieties that have finite depth. The
following construction proves useful in this regard.



Infinite Sums

Let {Yn : n ∈ ω} be a family of Esakia spaces. Let
∑

Yn denote
the Esakia space obtained by stacking the components above one
another, increasing with n, and then adding a fresh top element >
(as in a topological one-point compactification).

Dually, if {An : n ∈ ω} is a family of Heyting algebras, we let
∑

An
denote the Heyting algebra obtained by stacking the components,
decreasing with n, and identifying the bottom element of the
component above with the top element of component below, and
then adding a fresh bottom element.

Then
∑

Y∗n ∼= (
∑

Yn)∗.
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Failure of the ES property

The variety discovered by
Bezhanishvili, Moraschini and
Raftery in which the ES property
fails is V((D∞2 )∗). In this variety
(D∞2 )∗ has an epic subalgebra
consisting of the chain of its
left-most elements.
In this algebra every element has
a unique ‘sibling’ (an element
order-incomparable with it) or
no sibling. Siblinghood cannot
be explicitly defined.



New Failures of the ES property

Let n be a positive integer. An Esakia space has width ≤ n if for
every x ∈ X , the up-set ↑x does not contain antichains of n + 1
elements.

A Heyting algebra has width ≤ n if its Esakia dual does.

Thm (Baker) The class Wn of all Heyting algebras with width ≤ n
is a variety. In particular, W1 is the variety of Gödel
algebras.

We shall show that Wn lacks the ES property for any n ≥ 2.

Consider the following Esakia space, for n ≥ 2:













For every Y ∈ (Wn)∗ and every pair of Esakia morphisms
f , g : Y→ X∞n , if 〈f (y), g(y)〉 ∈ R for every y ∈ Y , then f = g .

Thm For every integer n ≥ 2 and variety K ⊆Wn, if
X∞n ∈ K∗, then K lacks the ES property.

We sketch the proof for n = 2, making use of the following technical
Lemma.



Lemma

For 0 < n ∈ ω, let X and Y be Esakia spaces of width ≤ n, such
that Y has a bottom element ⊥. Let f : Y→ X be an Esakia
morphism and define

X ′ = {x ∈ X : f (⊥) ≤ x and x is non-maximum}.

Suppose that whenever f (⊥) < x ∈ X ′ there is an antichain of n
elements in X ′ which contains x .

Then there is a subposet Z of Y such that the restriction

f : Z → X ′

is a poset isomorphism.



Proof for n = 2

Let Y ∈ (W2)∗ and
f , g : Y→ X∞2 different Esakia
morphisms such that
〈f (y), g(y)〉 ∈ R for every
y ∈ Y .
One can show that there exists
⊥ ∈ Y such that f (⊥) = α and
g(⊥) = β in some component of
X∞2 .



We may suppose w.l.o.g. that
Y = ↑⊥.



By the Lemma, there is a
subposet Z ⊆ Y such that the
restriction

f : Z → ↑α \ {>}

is a poset isomorphism.
We label every element of Z as
the ‘prime’ of its copy under f in
X .
We can show that for x ′ ∈ Z

g(x ′) = max(x/R).



Since g(⊥) = β ≤ c, there
exists y ∈ Y such that
g(y) = c.
Since c is incomparable with
d = g(b′), we have y
incomparable with b′.
Then y is comparable with a′,
since Y has width ≤ 2.
But then, g(y) = c is
comparable with g(a′) = a.
From this contradiction it
follows that f = g .





Associated failure of the Beth property



Each of the elements, labeled a1, a2, . . . above, can be considered a
sibling of (each member of) a subset of the epic subalgebra.

Then, siblinghood is not explicitly definable.



Rieger-Nishimura lattice

Recall that the Rieger-Nishimura
lattice RN is the one-generated
free Heyting algebra depicted on
the right.



Kuznetsov-Gerčiu Varieties

The Kuznetsov-Gerčiu variety is defined as
KG := V{A1 + · · ·+ An : 0 < n ∈ ω and A1, . . . ,An ∈ H(RN)}.

Thm A variety K ⊆ KG has the ES property iff it excludes
all sums of the form

∑
An where each An is either

(X2)∗ or (D2)∗.

I This provides an alternative explanation of the fact that all
varieties of Gödel algebras have the ES property.

I All subvarieties of KG that have the ES property are locally
finite.

I Within KG, the ES property is inherited by subvarieties.
I The variety V(RN) lacks the ES property.



A Continuum of Varieties Lacking the ES Property

For every n ∈ ω, consider the
depicted algebra Bn. Let
F := {Bn : n ∈ ω}.
Bezhanishvili, Bezhanishvili and
de Jongh showed that, for every
different pair T , S ⊆ F , we get
V(T ) 6= V(S).
For every T ⊆ F , we show that
V(T , (D∞2 )∗) is a locally finite
subvariety of V(RN), and the
map

V(T ) 7→ V(T , (D∞2 )∗)

is injective.



Thm There is a continuum of locally finite subvarieties of
V(RN) without the ES property.



thank you



Implicit definitions

Let K be a variety of Heyting algebras. The following are equivalent:

I K has surjective epimorphisms.
I Whenever an expression ∃~yΣ(~x , ~y , v)-where Σ is a set of

equations-defines v implicitly i.t.o ~x over K (in the sense that
K satisfies

&
(
Σ(~x , ~y , v1) ∪ Σ(~x ,~z , v2)

)
=⇒ v1 ≈ v2)

and all elements of some B ∈ K are define implicitly i.t.o.
elements of a subalgebra A of B (in the same sense, i.e.,

∀b ∈ B ∃~a ∈ A ∃~y ∈ B Σ(~a, ~y , b)),

then A = B.



Let ` be an intermediate logic .

Consider two disjoint sets X and Z of variables, with X 6= ∅, and a
set Γ of formulas over X ∪ Z . We say that Z is defined implicitly in
terms of X by means of Γ in ` if

Γ ∪ σ[Γ] ` z ↔ σ(z)

for every substitution σ such that σ(x) = x for all x ∈ X . On the
other hand, Z is said to be defined explicitly in terms of X by
means of Γ in ` when, for every z ∈ Z , there exists a formula ϕz
over X such that

Γ ` z ↔ ϕz .

Then the infinite Beth property postulates the equivalence of
implicit and explicit definability in ` (for all X ,Z , Γ as above).




