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Operations on tables: the natural join (pullback)

Name Surname Item
Luigi Santocanale 33
Alan Turing 21

./

Item Description
33 Book
33 Livre
21 Machine

=

Name Surname Item Description
Luigi Santocanale 33 Book
Luigi Santocanale 33 Livre
Alan Turing 21 Machine
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Operations on tables: the inner union

Name Surname Item
Luigi Santocanale 33
Alan Turing 21

∪
Name Surname Sport
Diego Maradona Football
Usain Bolt Athletics

=

Name Surname
Luigi Santocanale
Alan Turing

Diego Maradona
Usain Bolt
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Lattices from databases

Proposition. [Spight & Tropashko, 2006] The set of tables, whose
columns are indexed by a subset of A and values are from a set D,
is a lattice, with natural join as meet and inner union as join.

R(D,A) shall denote the lattice whose elements are tables, with
columns indexed a subset of A and cells’ values are from a set D.

A project (Tropashko): Rebuild Codd’s relational algebra out of
lattice theoretic building blocks.
See QBQL.

For lattices of tables (the relational lattices):

∧ is ./ , ∨ is ∪ .

Lattice terms = queries.
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A family of undecidable theories and problems

Theorem (Maddux)
The equational theory of 3-dimensional diagonal free cylindric
algebras is undecidable.

Theorem (Hirsch and Hodkinson)
It is not decidable whether a finite simple relation algebra embeds
into a concrete one (a powerset of a binary product).

Theorem (Hirsch, Hodkinson and Kurucz)
It is not decidable whether a finite mutimodal frame has a
surjective p-morphism from a universal product frame.
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Undecidable quasiequational theories of relational lattices

Theorem (Litak, Mikulás and Hidders, 2015)
The set of quasiequations in the signature (∧,∨,H) that are valid
on relational lattices is undecidable.

This was refined to:

Theorem (S., RAMICS 2017)
The set of quasiequations in the signature (∧,∨) that are valid on
relational lattices is undecidable.

where we actually proved a stronger result:

Theorem (S., RAMICS 2017)
It is undecidable whether a finite subdirectly irreducible lattice
embeds into some R(D,A).
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Main result

Theorem (S., FOSSACS 2018)
The equational theory of the relational lattices is decidable.
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The relational lattices R(D, A)
A a set of attributes, D a set of values.
An element of R(D,A):
I a pair (α,Y ) with α ⊆ A and Y ⊆ Dα.

The ordering:
I (α1,Y1) ≤ (α2,Y2) iff α2 ⊆ α1 and Y1��α1

α2 ⊆ Y2

iff . . . Y1 ⊆ iα2
α1 (Y2)

where:

I �� is direct image of restriction:

Y��α1
α2 = { f�α2

| f : α1 −! D , f ∈ Y } .

I i is cylindrification (inverse image of restriction):

iα2
α1 (Y ) = { f : α1 −! D | f�α2

∈ Y } .
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Meet and join

(α1,Y1) ∧ (α2,Y2) = iα1
α1∪α2(Y1) ∩ iα2

α1∪α2(Y2) ,

(α1,Y1) ∨ (α2,Y2) = Y1��
α1
α1∩α2 ∪Y2��

α2
α1∩α2 .

NB :
I R(D,A) is the Grothendieck construction of the functor

P(D( · )) :P(A)op −−−! Latt∨ .
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Representation of R(D, A) via a closure operator

The Hamming/Priess Crampe-Ribenboim ultrametric distance on DA:

δ(f , g) := { x ∈ A | f (x) 6= g(x) } .

NB: this distance takes values in the join-semilattice (P(A), ∅,∪).

Proposition. [Litak, Mikulás and Hidders 2015] R(D,A) is isomorphic to
the lattice of closed subsets of A + DA, where . . .

. . . a subset Z of A + DA is closed if(
g ∈ DA ∩ Z

δ(f , g) ⊆ A ∩ Z

)
implies f ∈ Z .
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Ingredients

I Duality, for non-distributive lattices.

I Generalized ultrametric spaces, injectivity.

I Modal logic, (selective) filtration techniques, tableaux.

I A finite model theorem with bounding of size.
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Generalized ultrametric spaces

A generalized ultrametric space over P(A) is a pair (X , δ) with
I X a set,
I δ : X × X −! P(A),

and s.t.
I δ(f , g) = ∅ iff f = g ,
I δ(f , g) ⊆ δ(f , h) ∪ δ(h, g),
I δ(f , g) = δ(g , f ).
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Lattices from generalized ultrametric spaces

Let (X , δ) be a generalized ultrametric space over some P(A).

A pair (α,Y ) ∈ P(A)× P(X ) is closed if(
g ∈ Y

δ(f , g) ⊆ α

)
implies f ∈ Y .

Let

L(X , δ) := { (α,Y ) | (α,Y ) is closed } ,

then L(X , δ) is a lattice (w.r.t. ⊆).

Notice that R(D,A) = L(DA, δ).
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Injective generalized ultrametric spaces

Consider

X =
∏
a∈A

Xa , δ(x , y) = { a ∈ A | xa 6= ya } . (**)

These are :
I Hamming graphs,
I Dependent product types,
I Partial products, sections, ∀!,
I Universal product frames,
I . . .

Proposition. Spaces as in (**) are, up to iso, the injective (read:
complete) spaces in the category of generalized ultrametric spaces.
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Relational lattices as modal logic
The theory of the lattices L(X , δ) is interpreted in a
multidimensional S5n modal logic:

〈α〉Y := { f ∈ DA | ∃g ∈ Y s.t. δ(f , g) ⊆ α } , where α ⊆ A

If (X , δ) is injective, then:

〈α1 ∪ α2〉Y ≡ 〈α1〉〈α2〉Y
(Beck-Chevalley, Malcev, injectiveness, pairwise completeness)

Meet is conjunction, join is:

(α1,Y1) ∨ (α2,Y2) = (α1 ∪ α2, 〈α1 ∪ α2〉(Y1 ∪ Y2))
= (α1 ∪ α2, 〈α1 ∪ α2〉Y1 ∪ 〈α1 ∪ α2〉Y2)
= (α1 ∪ α2, 〈α2〉〈α1〉Y1 ∪ 〈α1〉〈α2〉Y2)
= (α1 ∪ α2, 〈α2〉Y1 ∪ 〈α1〉Y2) .
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A finite model theorem of bounded size

I Every lattice equation t = s is equivalent to a pair of
“inclusions”, t ≤ s and s ≤ t.

I If R(D,A) 6|= t ≤ s, then R(E ,B) 6|= t ≤ s, where

size( R(E ,B) ) = O(222size(t,s)
) .

I Construction reminiscent of Gabbay’s selective filtration in
modal logic.
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Failure in a finite generalized ultrametric space

Suppose R(D,A), v 6|= t ≤ s, so there is f ∈ A ∪ DA such that
f ∈ JtKv \ JsKv .

I We can assume that f ∈ DA.
I There is a finite subset T (f , t) ⊆ DA witnessing that f ∈ JtKv .
I Consider the subspace induced by T ⊆ DA:

(T , δ) ↪−−−−−! (DA, δ)

Lemma (preservation of failures)
If T (f , t) ⊆ T ⊆ DA, then

L(T , δ) 6|= t ≤ s .
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Failure with a finite Boolean algebra

Let T be finite.
I The lattice L(T , δ) might still be infinite,
I . . . since it contains a copy of P(A).
I We can find a finite Boolean sub-algebra P(B) of P(A) and
I consider T as a generalized ultrametric space (T , δB) over P(B).

Lemma (preservation of failures in the finite)
There is a finite subset T (f , t) ⊆ DA such that, if T (f , t) ⊆ T ⊆ DA

and T is finite, then

L(T , δB) 6|= t ≤ s .
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Failures in an injective

I L(T , δB) is a finite lattice.
I L(T , δB) does not belong to the variety of the R(D,A)s.
I We expand T to its (finite) injective hull T .
I Then L( T , δB) belongs to the variety of the R(D,A)s.

Theorem
Let T0 := T (f , t). Then the lattice L( T0 , δB)
I is finite,
I L( T0 , δB) 6|= t ≤ s,
I satisfies all the equations satisfied by all the R(D,A)s.
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Thanks for your attention !!!
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