The continuous weak (Bruhat) order and mix *-autonomous quantale(oid)s

Maria João Gouveia¹ and Luigi Santocanale²

TACL@Nice, June 18, 2019

¹Faculdade de Ciências da Universidade de Lisboa, Portugal ²LIS, Aix-Marseille Université, France

Plan

Permutations, words, paths

The quantaloid of discrete paths

Adding the continuum

The continuous Bruhat order

Idempotents, a dive into combinatorics

Permutations, words, paths

The quantaloid of discrete paths

Adding the continuum

The continuous Bruhat order

Idempotents, a dive into combinatorics

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The weak Bruhat order, i.e. the permutohedron P(n)

Theorem (Santocanale & Wehrung, 2018) The equational theory of the lattices P(n) is non-trivial and decidable.

The weak Bruhat order, i.e. the permutohedron P(n)

Theorem (Santocanale & Wehrung, 2018) The equational theory of the lattices P(n) is non-trivial and decidable.

The multinomial lattice P(2, 1, 1)

Are there continuous multinomial lattices?

A B +
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

6/28

きょう き

Are there continuous multinomial lattices?

<ロト < 部ト < 目ト < 目ト 目 のQで 6/28

Motivations: discrete geometry and Christoffel words

Christoffel words are images of the diagonal via right/left adjoints:

Are there generalizations of these ideas in dimensions \geq 3?

Motivations: discrete geometry and Christoffel words

Christoffel words are images of the diagonal via right/left adjoints:

Are there generalizations of these ideas in dimensions $\geq 3?$

7/28

Motivations: discrete geometry and Christoffel words

Christoffel words are images of the diagonal via right/left adjoints:

Are there generalizations of these ideas in dimensions \geq 3?

7/28

Permutations, words, and paths The quantaloid of discrete paths Adding the continuum The continuous Bruhat order Idempoten

Plan

Permutations, words, paths

The quantaloid of discrete paths

Adding the continuum

The continuous Bruhat order

Idempotents, a dive into combinatorics

The category P of discrete words/paths

- Objects : natural numbers 0, 1, ..., n, ...
- Arrows:

$$\mathsf{P}(n,m) := \{ w \in \{ x, y \}^* \mid |w|_x = n, |w|_y = m \}$$

• Composition:

хухуух \otimes уххуху :

Let $[n] := \{1, ..., n\}, \mathbb{I}_n := \{0, 1..., n\} (= [2]^{[n]})$. Standard bijections:

 $\mathsf{P}(n,m) \simeq \mathsf{Pos}([n],\mathbb{I}_m) \simeq \operatorname{SLat}_{\bigvee}(\mathbb{I}_n,\mathbb{I}_m).$

 $yxxxyzyyxy \in P(5,5)$:

f(1) = f(2) = f(3) = 1 f(4) = 2f(5) = 4

Under the bijection, composition is function composition. Thus:

 $P \simeq \text{Kleisli}(\Delta, \mathbb{I}) \simeq$ weakening relations over finite chains

Let $[n] := \{1, \ldots, n\}, \mathbb{I}_n := \{0, 1, \ldots, n\} \ (= [2]^{[n]})$. Standard bijections: $\mathsf{P}(n, m) \simeq \mathsf{Pos}([n], \mathbb{I}_m) \simeq \operatorname{SLat}_{\bigvee}(\mathbb{I}_n, \mathbb{I}_m)$.

 $yxxxyzyyxy \in P(5,5)$:

f(1) = f(2) = f(3) = 1 f(4) = 2f(5) = 4

Under the bijection, composition is function composition. Thus:

 $\mathsf{P} \simeq \operatorname{Kleisli}(\Delta, \mathbb{I}) \simeq$ weakening relations over finite chains.

Let $[n] := \{1, ..., n\}, \mathbb{I}_n := \{0, 1..., n\} (= [2]^{[n]})$. Standard bijections:

$$\mathsf{P}(n,m) \simeq \mathsf{Pos}([n],\mathbb{I}_m) \simeq \operatorname{SLat}_{\bigvee}(\mathbb{I}_n,\mathbb{I}_m).$$

yxxxyzyyxy $\in P(5,5)$:

$$f(1) = f(2) = f(3) = 1$$

f(4) = 2
f(5) = 4

Under the bijection, composition is function composition. Thus:

 $\mathsf{P}\simeq \operatorname{Kleisli}(\Delta,\mathbb{I})\simeq$ weakening relations over finite chains .

Let $[n] := \{1, \dots, n\}, \mathbb{I}_n := \{0, 1 \dots, n\} \ (= [2]^{[n]})$. Standard bijections:

$$\mathsf{P}(n,m) \simeq \mathsf{Pos}([n],\mathbb{I}_m) \simeq \operatorname{SLat}_{\bigvee}(\mathbb{I}_n,\mathbb{I}_m).$$

yxxxyzyyxy $\in P(5,5)$:

$$f(1) = f(2) = f(3) = 1$$

f(4) = 2
f(5) = 4

Under the bijection, composition is function composition. Thus:

 $\mathsf{P}\simeq \operatorname{Kleisli}(\Delta,\mathbb{I})\simeq \text{weakening relations over finite chains}\,.$

$$\binom{n+m}{n}\binom{m+k}{k} = \sum_{i=0}^{m}\binom{n+m+k-i}{m-i}\binom{n}{i}\binom{k}{i}$$

In particular

$$\binom{2n}{n}^2 = \sum_{i=0}^n \binom{3n-i}{n-i} \binom{n}{i}^2.$$

$$\binom{n+m}{n}\binom{m+k}{k} = \sum_{i=0}^{m}\binom{n+m+k-i}{m-i}\binom{n}{i}\binom{k}{i}$$

In particular

$$\binom{2n}{n}^2 = \sum_{i=0}^n \binom{3n-i}{n-i} \binom{n}{i}^2.$$

$$\binom{n+m}{n}\binom{m+k}{k} = \sum_{i=0}^{m}\binom{n+m+k-i}{m-i}\binom{n}{i}\binom{k}{i}$$

In particular

$$\binom{2n}{n}^2 = \sum_{i=0}^n \binom{3n-i}{n-i} \binom{n}{i}^2.$$

$$\binom{n+m}{n}\binom{m+k}{k} = \sum_{i=0}^{m}\binom{n+m+k-i}{m-i}\binom{n}{i}\binom{k}{i}$$

In particular

$$\binom{2n}{n}^2 = \sum_{i=0}^n \binom{3n-i}{n-i} \binom{n}{i}^2.$$

Properties of P

• P is a quantaloid (sup-lattice enriched):

$$\mathsf{P}(n,m) \simeq \operatorname{SLat}_{\bigvee}(\mathbb{I}_n,\mathbb{I}_m).$$

• The correspondence

$$f \mapsto f^{\wedge}, \qquad f^{\wedge}(x) := \bigwedge_{x < y} f(y),$$

yields isos

$$\mathrm{SLat}_{\bigvee}(\mathbb{I}_n,\mathbb{I}_m)\simeq \mathrm{SLat}_{\bigwedge}(\mathbb{I}_n,\mathbb{I}_m)\simeq \mathrm{SLat}_{\bigvee}^{op}(\mathbb{I}_m,\mathbb{I}_n)$$

< □ ト < □ ト < ≧ ト < ≧ ト < ≧ ト ≧ の Q (~ 12/28

Properties of P

• P is a quantaloid (sup-lattice enriched):

$$\mathsf{P}(n,m) \simeq \operatorname{SLat}_{\bigvee}(\mathbb{I}_n,\mathbb{I}_m).$$

• The correspondence

$$f \mapsto f^{\wedge}, \qquad f^{\wedge}(x) := \bigwedge_{x < y} f(y),$$

yields isos

$$\operatorname{SLat}_{\bigvee}(\mathbb{I}_n,\mathbb{I}_m)\simeq \operatorname{SLat}_{\bigwedge}(\mathbb{I}_n,\mathbb{I}_m)\simeq \operatorname{SLat}_{\bigvee}^{op}(\mathbb{I}_m,\mathbb{I}_n).$$

*-autonomous structure

$$f^* := \text{left-adjoint-of}(f^{\wedge}) \quad (= (\text{right-adjoint-of}(f))^{\vee}).$$

On words: exchanges *x*s and *y*s.

Dual composition:

$$g\oplus f:=(f^*\circ g^*)^*$$
 .

That is:

Proposition

P is a \star -autonomous quantaloid (involutive residuated latticoid?). For each n, P(n, n) is \star -autonomous quantale, and an involutive residuated lattice.

Let $[d]_2 := \{ (i,j) \mid 1 \le i < j \le d \}.$

Let $\vec{v} = (v_1, \ldots, v_d)$ with $v_i \in \mathbb{N}$, so $\vec{v} : [d] \to \mathsf{P}_0$.

```
We say that \delta : [d]_2 \rightarrow \mathsf{P}_1 (over \mathsf{P}_0) is
```

closed if

 $\delta_{i,j} \otimes \delta_{j,k} \le \delta_{i,k}$, for each i < j < k,

open if

$\delta_{i,k} \leq \delta_{i,j} \oplus \delta_{j,k+1}$ for each $i < j < k_i$

clopen if it is both closed and open.

Let
$$[d]_2 := \{ (i,j) \mid 1 \le i < j \le d \}.$$

Let $\vec{v} = (v_1, \ldots, v_d)$ with $v_i \in \mathbb{N}$, so $\vec{v} : [d] \to \mathsf{P}_0$.

We say that $\delta : [d]_2 \to \mathsf{P}_1$ (over P_0) is

closed if

 $\delta_{i,j} \otimes \delta_{j,k} \leq \delta_{i,k}$, for each i < j < k,

• open if

$\delta_{i,k} \leq \delta_{i,j} \oplus \delta_{j,k} \,, \qquad \qquad$ for each i < j < k

clopen if it is both closed and open

Let
$$[d]_2 := \{ (i, j) \mid 1 \le i < j \le d \}.$$

Let
$$\vec{v} = (v_1, \ldots, v_d)$$
 with $v_i \in \mathbb{N}$, so $\vec{v} : [d] \to \mathsf{P}_0$.

We say that
$$\delta : [d]_2 \to \mathsf{P}_1$$
 (over P_0) is

• closed if

$$\delta_{i,j} \otimes \delta_{j,k} \leq \delta_{i,k}$$
, for each $i < j < k$,

• open if

$$\delta_{i,k} \leq \delta_{i,j} \oplus \delta_{j,k} \,, \qquad \qquad$$
 for each $i < j < k,$

clopen if it is both closed and open.

Let
$$[d]_2 := \{ (i, j) \mid 1 \le i < j \le d \}.$$

Let
$$\vec{v} = (v_1, \ldots, v_d)$$
 with $v_i \in \mathbb{N}$, so $\vec{v} : [d] \to \mathsf{P}_0$.

We say that
$$\delta : [d]_2 \to \mathsf{P}_1$$
 (over P_0) is

• closed if

$$\delta_{i,j} \otimes \delta_{j,k} \leq \delta_{i,k}$$
, for each $i < j < k$,

• open if

$$\delta_{i,k} \leq \delta_{i,j} \oplus \delta_{j,k}\,, \qquad \qquad ext{for each } i < j < k,$$

• *clopen* if it is both closed and open.

Let
$$[d]_2 := \{ (i, j) \mid 1 \le i < j \le d \}.$$

Let
$$\vec{v} = (v_1, \ldots, v_d)$$
 with $v_i \in \mathbb{N}$, so $\vec{v} : [d] \to \mathsf{P}_0$.

We say that
$$\delta : [d]_2 \to \mathsf{P}_1$$
 (over P_0) is

• closed if

$$\delta_{i,j} \otimes \delta_{j,k} \leq \delta_{i,k}$$
, for each $i < j < k$,

• open if

$$\delta_{i,k} \leq \delta_{i,j} \oplus \delta_{j,k} \,, \qquad \qquad ext{for each } i < j < k,$$

• clopen if it is both closed and open.

The poset of clopens

- Clopens form a poset: $\delta \leq \delta'$ iff $\delta_{i,j} \leq \delta'_{i,j} \ (1 \leq i < j \leq d)$
- The poset structure depends on the linear ordering of [d].
- Closed (resp., open) tuples form a lattice.
- Clopens form a lattice as well, because of MIX:

$$g\otimes f\leq g\oplus f$$
.

Proposition

Clopens bijectively correspond to maximal chains in the product lattice $\prod_{i=1,...,n} \mathbb{I}_{v_i}$. Under this bijection, the lattice of clopens is the mutlinomial lattice $P(v_1,...,v_n)$.

Proposition

For every \star -autonomous quantale(oid) or involutive residuated lattice satisfying MIX Q (and each $d \ge 3$), the poset of clopens Q(d) is a lattice.

The poset of clopens

- Clopens form a poset: $\delta \leq \delta'$ iff $\delta_{i,j} \leq \delta'_{i,j} \ (1 \leq i < j \leq d)$
- The poset structure depends on the linear ordering of [d].
- Closed (resp., open) tuples form a lattice.
- Clopens form a lattice as well, because of MIX:

$$g\otimes f\leq g\oplus f$$
.

Proposition

Clopens bijectively correspond to maximal chains in the product lattice $\prod_{i=1,...,n} \mathbb{I}_{v_i}$. Under this bijection, the lattice of clopens is the mutlinomial lattice $P(v_1,...,v_n)$.

Proposition

For every \star -autonomous quantale(oid) or involutive residuated lattice satisfying MIX Q (and each $d \ge 3$), the poset of clopens Q(d) is a lattice.

The poset of clopens

- Clopens form a poset: $\delta \leq \delta'$ iff $\delta_{i,j} \leq \delta'_{i,j} \ (1 \leq i < j \leq d)$
- The poset structure depends on the linear ordering of [d].
- Closed (resp., open) tuples form a lattice.
- Clopens form a lattice as well, because of MIX:

$$g\otimes f\leq g\oplus f$$
.

Proposition

Clopens bijectively correspond to maximal chains in the product lattice $\prod_{i=1,...,n} \mathbb{I}_{v_i}$. Under this bijection, the lattice of clopens is the mutlinomial lattice $P(v_1,...,v_n)$.

Proposition

For every \star -autonomous quantale(oid) or involutive residuated lattice satisfying MIX Q (and each $d \ge 3$), the poset of clopens Q(d) is a lattice. Permutations, words, and paths The quantaloid of discrete paths Adding the continuum The continuous Bruhat order Idempoten

Plan

Permutations, words, paths

The quantaloid of discrete paths

Adding the continuum

The continuous Bruhat order

Idempotents, a dive into combinatorics

A category P_+ of words/paths

- Objects: natural numbers $0, 1, \ldots, n, \ldots, \infty$.
- Arrows: $P_+(n,m) = \text{SLat}_{\bigvee}(\mathbb{I}_n,\mathbb{I}_m)$, where

$$\mathbb{I}_\infty:=\left[0,1\right].$$

Join-continuous functions as continuous words

Lemma

Bijection/equality between the following kind of data:

- maximal chains in $[0,1]^2$,
- images of continuous monotone functions $\pi : [0,1] \rightarrow [0,1]^2$ preserving endpoints,
- join-continuous (or meet-continuous) functions from [0,1] to [0,1].

Join-continuous functions as continuous words

Lemma

Bijection/equality between the following kind of data:

- maximal chains in $[0,1]^2$,
- images of continuous monotone functions $\pi : [0,1] \rightarrow [0,1]^2$ preserving endpoints,
- join-continuous (or meet-continuous) functions from [0,1] to [0,1].

Join-continuous functions as continuous words

Lemma

Bijection/equality between the following kind of data:

- maximal chains in $[0,1]^2$,
- images of continuous monotone functions $\pi : [0,1] \rightarrow [0,1]^2$ preserving endpoints,
- join-continuous (or meet-continuous) functions from [0,1] to [0,1].

Generalized results

Proposition

P_+ is a \star -autonomous quantaloid (satisfying mix: $\otimes \leq \oplus$).

Let $\vec{v} = (v_1, \dots, v_d)$ with $v_i \in \mathbb{N} \cup \{\infty\}$, so $v : [d] \to (P_+)_0$. Proposition

Clopens over \vec{v} bijectively correspond to maximal chains in the product lattice $\prod_{i=1,...,n} \mathbb{I}_{v_i}$. Therefore, these maximal chains can be ordered so they form a lattice.

Remark. Bijection/equality between the following kind of data:

- images of continuous monotone functions $\pi:[0,1] \rightarrow [0,1]^d$ preserving endpoints,
- maximal chains in $[0,1]^d/$ clopens over $ec{v}=(\infty,\ldots,\infty).$

Generalized results

Proposition

 P_+ is a *-autonomous quantaloid (satisfying mix: $\otimes \leq \oplus$).

Let
$$\vec{v} = (v_1, \dots, v_d)$$
 with $v_i \in \mathbb{N} \cup \{\infty\}$, so $v : [d] \to (P_+)_0$.
Proposition

Clopens over \vec{v} bijectively correspond to maximal chains in the product lattice $\prod_{i=1,...,n} \mathbb{I}_{v_i}$. Therefore, these maximal chains can be ordered so they form a lattice.

Remark. Bijection/equality between the following kind of data:

- images of continuous monotone functions $\pi:[0,1] \rightarrow [0,1]^d$ preserving endpoints,
- maximal chains in $[0,1]^d$ /clopens over $\vec{v} = (\infty, \dots, \infty)$.

Generalized results

Proposition

 P_+ is a \star -autonomous quantaloid (satisfying mix: $\otimes \leq \oplus$).

Let
$$\vec{v} = (v_1, \dots, v_d)$$
 with $v_i \in \mathbb{N} \cup \{\infty\}$, so $v : [d] \to (P_+)_0$.
Proposition

Clopens over \vec{v} bijectively correspond to maximal chains in the product lattice $\prod_{i=1,...,n} \mathbb{I}_{v_i}$. Therefore, these maximal chains can be ordered so they form a lattice.

Remark. Bijection/equality between the following kind of data:

- images of continuous monotone functions $\pi:[0,1] \rightarrow [0,1]^d$ preserving endpoints,
- maximal chains in $[0,1]^d$ /clopens over $\vec{v} = (\infty, \dots, \infty)$.

Plan

Permutations, words, paths

The quantaloid of discrete paths

Adding the continuum

The continuous Bruhat order

Idempotents, a dive into combinatorics

The continuous Bruhat order of dimension d

• The lattice structure of P₊(
$$\vec{\omega}$$
), $\vec{\omega} := (\underbrace{\infty, \dots, \infty}_{d-\text{times}})$,

• For every $\vec{v} \in \mathbb{N}^d$ and every collection of lattice embeddings $\iota = \{ \mathbb{I}_{v_i} \to \mathbb{I}_{\infty} \mid i = 1, \dots, d \}$, there is a lattice embedding

$$P(ec{v},\iota):\mathsf{P}(ec{v})\longrightarrow\mathsf{P}_{\!+}(ec{\infty})$$

 P₊(∞) is the Dedekind-MacNeille completion of the colomit of these embeddings.

Generation and discrete approximations

- Canonical cocone ι_v , with $\iota_{v_i}(k) = \frac{k}{v_i}$.
- $P_+(\vec{\infty})$ is a $\bigvee \bigwedge$ -completion of the colomit of the $P(\vec{v})$.
- The diagonal lives in $P_{\!+}(\vec{\infty}),$ it is a join of elements of thos colimit.
- Open problem: characterize those elements from $P_+(\vec{\infty})$ that are a join of elements of this colimit.

(ロ) (四) (主) (主) (三) (2)

Open problems

- determine the largest set of chains extending P into a *-autonomous quantaloid ...
- equational theories of $\mathsf{P}(\vec{n}), n = 0, 1, \dots, n, \dots \infty$ as a residuated lattices,
- determine congruences of $P(\vec{\omega})$ a residuated lattice,
- determine idempotents (actually a closed problem, see next slides),
- determine their Karoubi completion,
- . . .

Permutations, words, and paths The quantaloid of discrete paths Adding the continuum The continuous Bruhat order Idempoten

Thank you (bis) !!!

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = のへで 24/28

Plan

Permutations, words, paths

The quantaloid of discrete paths

Adding the continuum

The continuous Bruhat order

Idempotents, a dive into combinatorics

Idempotents as emmentalers³

Definition

Le A be a complete join-semilattice. An emmentaler on A is a collection $\{ [y_i, x_i] \mid i \in I \}$ of pairwise disjoint intervals of A such that

- $\{ y_i \mid i \in I \}$ closed under meets,
- $\{x_i \mid i \in I\}$ closed under joins.

Lemma

Let A be a complete join-semilattice, let $f \in \text{SLat}_V(A, A)$ be idempotent, and let $f \dashv g$. Then $\{ [f(x), g(f(x))] \mid x \in A \}$ is an emmentaler of A. This sets up a bijective correspondence between idempotents and emmentalers.

³Thanks to Daniela Muresan

An emmentaler on \mathbb{I}_n

... is a sequence

$$0 = y_0 \leq x_0 < y_1 \leq x_1 < \ldots y_k \leq x_k = n$$

Every NE-turn is above $y = x + \frac{1}{2}$, every EN-turn is below this line.

27/28

An emmentaler on \mathbb{I}_n

... is a sequence

$$0 = y_0 \le x_0 < y_1 \le x_1 < \ldots y_k \le x_k = n$$

Every NE-turn is above $y = x + \frac{1}{2}$, every EN-turn is below this line.

27/28

An emmentaler on \mathbb{I}_n

... is a sequence

$$0 = y_0 \le x_0 < y_1 \le x_1 < \ldots y_k \le x_k = n$$

Every NE-turn is above $y = x + \frac{1}{2}$, every EN-turn is below this line.

27/28

Counting idempotents

Let f_n be the sequence of Fibonacci numbers.

Proposition

equals f_{2n-1} .

The number of idempotents in $\text{SLat}_{\mathcal{V}}(\mathbb{I}_n, \mathbb{I}_n)$ equals f_{2n+1} .

Remark:

Pos([n], [n]) =strict maps in $SLat_{V}(\mathbb{I}_{n}, \mathbb{I}_{n})$

Pos([n], [n]) is a submonoid of $SLat_{V}(\mathbb{I}_{n}, \mathbb{I}_{n})$. Proposition (Howie 1971) The number of idempotents in Pos([n], [n]) equals f_{2n} . Proposition (Laradji and Umar 2006) The number of idempotents in $f \in Pos([n], [n])$ such that f(n) = n

<ロ><合>、<</td><</td><</td>28/28