The continuous weak (Bruhat) order and mix \star-autonomous quantale(oid)s

Maria João Gouveia ${ }^{1}$ and Luigi Santocanale ${ }^{2}$

TACL@Nice, June 18, 2019
${ }^{1}$ Faculdade de Ciências da Universidade de Lisboa, Portugal ${ }^{2}$ LIS, Aix-Marseille Université, France

Plan

Permutations, words, paths

The quantaloid of discrete paths

Adding the continuum

The continuous Bruhat order

Idempotents, a dive into combinatorics

Plan

Permutations, words, paths

The quantaloid of discrete paths

Adding the continuum

The continuous Bruhat order

Idempotents, a dive into combinatorics

The weak Bruhat order, i.e. the permutohedron $\mathrm{P}(n)$

Theorem (Santocanale \& Wehrung, 2018)
The equational theory of the lattices $\mathrm{P}(n)$ is non-trivial and decidable.

The weak Bruhat order, i.e. the permutohedron $\mathrm{P}(n)$

Theorem (Santocanale \& Wehrung, 2018)
The equational theory of the lattices $\mathrm{P}(n)$ is non-trivial and decidable.

The multinomial lattice $\mathrm{P}(2,1,1)$

Are there continuous multinomial lattices?

Are there continuous multinomial lattices?

Motivations: discrete geometry and Christoffel words

Christoffel words are images of the diagonal via right/left adjoints:

Are there generalizations of these ideas in dimensions ≥ 3 ?

Motivations: discrete geometry and Christoffel words

Christoffel words are images of the diagonal via right/left adjoints:

Motivations: discrete geometry and Christoffel words

Christoffel words are images of the diagonal via right/left adjoints:

Are there generalizations of these ideas in dimensions ≥ 3 ?

Plan

Permutations, words, paths

The quantaloid of discrete paths

Adding the continuum

The continuous Bruhat order

Idempotents, a dive into combinatorics

The category P of discrete words/paths

- Objects : natural numbers $0,1, \ldots, n, \ldots$
- Arrows:

$$
\mathrm{P}(n, m):=\left\{\left.w \in\{x, y\}^{*}| | w\right|_{x}=n,|w|_{y}=m\right\}
$$

- Composition:
xyxyyx $\otimes y x x y x y:$

It is a category

Let $[n]:=\{1, \ldots, n\}, \mathbb{I}_{n}:=\{0,1 \ldots, n\}\left(=[2]^{[n]}\right)$. Standard bijections:

$$
\mathrm{P}(n, m) \simeq \operatorname{Pos}\left([n], \mathbb{I}_{m}\right) \simeq \operatorname{SLat}_{\mathrm{V}}\left(\mathbb{I}_{n}, \mathbb{1}_{m}\right) .
$$

It is a category

Let $[n]:=\{1, \ldots, n\}, \mathbb{I}_{n}:=\{0,1 \ldots, n\}\left(=[2]^{[n]}\right)$. Standard bijections:

$$
\operatorname{P}(n, m) \simeq \operatorname{Pos}\left([n], \mathbb{I}_{m}\right) \simeq \operatorname{SLat}_{V}\left(\mathbb{I}_{n}, \mathbb{I}_{m}\right)
$$

$y x x x y z y y x y \in \mathrm{P}(5,5):$

$$
\begin{aligned}
& f(1)=f(2)=f(3)=1 \\
& f(4)=2 \\
& f(5)=4
\end{aligned}
$$

Under the bijection, composition is function composition. Thus:

It is a category

Let $[n]:=\{1, \ldots, n\}, \mathbb{I}_{n}:=\{0,1 \ldots, n\}\left(=[2]^{[n]}\right)$. Standard bijections:

$$
\mathrm{P}(n, m) \simeq \operatorname{Pos}\left([n], \mathbb{I}_{m}\right) \simeq \operatorname{SLat}_{\mathrm{V}}\left(\mathbb{I}_{n}, \mathbb{I}_{m}\right)
$$

$y x x x y z y y x y \in \mathrm{P}(5,5):$

$$
\begin{aligned}
& f(1)=f(2)=f(3)=1 \\
& f(4)=2 \\
& f(5)=4
\end{aligned}
$$

Under the bijection, composition is function composition. Thus:

It is a category

Let $[n]:=\{1, \ldots, n\}, \mathbb{I}_{n}:=\{0,1 \ldots, n\}\left(=[2]^{[n]}\right)$. Standard bijections:

$$
\mathrm{P}(n, m) \simeq \operatorname{Pos}\left([n], \mathbb{I}_{m}\right) \simeq \operatorname{SLat}_{\mathrm{V}}\left(\mathbb{I}_{n}, \mathbb{I}_{m}\right)
$$

$y x x x y z y y x y \in \mathrm{P}(5,5):$

$$
\begin{aligned}
& f(1)=f(2)=f(3)=1 \\
& f(4)=2 \\
& f(5)=4
\end{aligned}
$$

Under the bijection, composition is function composition. Thus:
$\mathrm{P} \simeq \operatorname{Kleisli}(\Delta, \mathbb{I}) \simeq$ weakening relations over finite chains.

Counting factorizations

$$
\left(\begin{array}{c}
n+m
\end{array}\right)\binom{m+k}{k}=\sum\binom{n+m+k-i}{m-i}\binom{n}{i}\binom{k}{i}
$$

Counting factorizations

$$
\binom{n+m}{n}\binom{m+k}{k}=\sum_{i=0}^{m}\binom{n+m+k-i}{m-i}\binom{n}{i}\binom{k}{i}
$$

Counting factorizations

$$
\binom{n+m}{n}\binom{m+k}{k}=\sum_{i=0}^{m}\binom{n+m+k-i}{m-i}\binom{n}{i}\binom{k}{i}
$$

Counting factorizations

$$
\binom{n+m}{n}\binom{m+k}{k}=\sum_{i=0}^{m}\binom{n+m+k-i}{m-i}\binom{n}{i}\binom{k}{i}
$$

In particular

$$
\binom{2 n}{n}^{2}=\sum_{i=0}^{n}\binom{3 n-i}{n-i}\binom{n}{i}^{2} .
$$

Properties of P

- P is a quantaloid (sup-lattice enriched):

$$
\mathrm{P}(n, m) \simeq \operatorname{SLat} \bigvee\left(\mathbb{I}_{n}, \mathbb{I}_{m}\right)
$$

- The correspondence

$$
f \mapsto f^{\wedge}, \quad f^{\wedge}(x):=\bigwedge_{x<y} f(y)
$$

yields isos

$$
\operatorname{SLat}_{\bigvee}\left(\mathbb{I}_{n}, \mathbb{I}_{m}\right) \simeq \operatorname{SLat}\left(\mathbb{I}_{n}, \mathbb{I}_{m}\right) \simeq \operatorname{SLat}_{V}\left(\mathbb{I}_{m}, \mathbb{I}_{n}\right)
$$

Properties of P

- P is a quantaloid (sup-lattice enriched):

$$
\mathrm{P}(n, m) \simeq \operatorname{SLat} \bigvee\left(\mathbb{I}_{n}, \mathbb{I}_{m}\right)
$$

- The correspondence

$$
f \mapsto f^{\wedge}, \quad f^{\wedge}(x):=\bigwedge_{x<y} f(y),
$$

yields isos

$$
\operatorname{SLat}_{\bigvee}\left(\mathbb{I}_{n}, \mathbb{I}_{m}\right) \simeq \operatorname{SLat}^{\prime} \wedge\left(\mathbb{I}_{n}, \mathbb{I}_{m}\right) \simeq \operatorname{SLat}_{\bigvee}^{o p}\left(\mathbb{I}_{m}, \mathbb{I}_{n}\right)
$$

*-autonomous structure

$$
f^{*}:=\text { left-adjoint-of }\left(f^{\wedge}\right) \quad\left(=(\text { right-adjoint-of }(f))^{\vee} \quad\right) .
$$

On words: exchanges x s and y s.
Dual composition:

$$
g \oplus f:=\left(f^{*} \circ g^{*}\right)^{*}
$$

That is:

Proposition

P is a *-autonomous quantaloid (involutive residuated latticoid?). For each $n, \mathrm{P}(n, n)$ is \star-autonomous quantale, and an involutive residuated lattice.

Clopens

Let $[d]_{2}:=\{(i, j) \mid 1 \leq i<j \leq d\}$.
Let $\vec{v}=\left(v_{1}, \ldots, v_{d}\right)$ with $v_{i} \in \mathbb{N}$, so $\vec{v}:[d] \rightarrow P_{0}$.

Clopens

Let $[d]_{2}:=\{(i, j) \mid 1 \leq i<j \leq d\}$.
Let $\vec{v}=\left(v_{1}, \ldots, v_{d}\right)$ with $v_{i} \in \mathbb{N}$, so $\vec{v}:[d] \rightarrow \mathrm{P}_{0}$.
We say that $\delta:[d]_{2} \rightarrow P_{1}\left(\right.$ over $\left.P_{0}\right)$ is

Clopens

Let $[d]_{2}:=\{(i, j) \mid 1 \leq i<j \leq d\}$.
Let $\vec{v}=\left(v_{1}, \ldots, v_{d}\right)$ with $v_{i} \in \mathbb{N}$, so $\vec{v}:[d] \rightarrow \mathrm{P}_{0}$.
We say that $\delta:[d]_{2} \rightarrow \mathrm{P}_{1}$ (over P_{0}) is

- closed if

$$
\delta_{i, j} \otimes \delta_{j, k} \leq \delta_{i, k}
$$

for each $i<j<k$,

- open if

Clopens

Let $[d]_{2}:=\{(i, j) \mid 1 \leq i<j \leq d\}$.
Let $\vec{v}=\left(v_{1}, \ldots, v_{d}\right)$ with $v_{i} \in \mathbb{N}$, so $\vec{v}:[d] \rightarrow \mathrm{P}_{0}$.
We say that $\delta:[d]_{2} \rightarrow \mathrm{P}_{1}$ (over P_{0}) is

- closed if

$$
\delta_{i, j} \otimes \delta_{j, k} \leq \delta_{i, k},
$$

for each $i<j<k$,

- open if

$$
\delta_{i, k} \leq \delta_{i, j} \oplus \delta_{j, k}, \quad \text { for each } i<j<k
$$

- clopen if it is both closed and open.

Clopens

Let $[d]_{2}:=\{(i, j) \mid 1 \leq i<j \leq d\}$.
Let $\vec{v}=\left(v_{1}, \ldots, v_{d}\right)$ with $v_{i} \in \mathbb{N}$, so $\vec{v}:[d] \rightarrow \mathrm{P}_{0}$.
We say that $\delta:[d]_{2} \rightarrow \mathrm{P}_{1}$ (over P_{0}) is

- closed if

$$
\delta_{i, j} \otimes \delta_{j, k} \leq \delta_{i, k}, \quad \text { for each } i<j<k
$$

- open if

$$
\delta_{i, k} \leq \delta_{i, j} \oplus \delta_{j, k}, \quad \text { for each } i<j<k
$$

- clopen if it is both closed and open.

The poset of clopens

- Clopens form a poset: $\delta \leq \delta^{\prime}$ iff $\delta_{i, j} \leq \delta_{i, j}^{\prime}(1 \leq i<j \leq d)$
- The poset structure depends on the linear ordering of [d].
- Closed (resp., open) tuples form a lattice.
- Clopens form a lattice as well, because of MIX:

$$
g \otimes f \leq g \oplus f
$$

For every \star-autonomous quantale(oid) or involutive residuated lattice satisfuing MIX \cap (and each $d \geq 3$) the noset of clonens

The poset of clopens

- Clopens form a poset: $\delta \leq \delta^{\prime}$ iff $\delta_{i, j} \leq \delta_{i, j}^{\prime}(1 \leq i<j \leq d)$
- The poset structure depends on the linear ordering of [d].
- Closed (resp., open) tuples form a lattice.
- Clopens form a lattice as well, because of MIX:

$$
g \otimes f \leq g \oplus f
$$

Proposition

Clopens bijectively correspond to maximal chains in the product lattice $\prod_{i=1, \ldots, n} \mathbb{I}_{v_{i}}$. Under this bijection, the lattice of clopens is the mutlinomial lattice $\mathrm{P}\left(v_{1}, \ldots, v_{n}\right)$.

Proposition
For every \star-autonomous quantale(oid) or involutive residuated lattice satisfying MIX Q (and each $d \geq 3$), the poset of clopens $\mathrm{Q}(\mathrm{d})$ is a lattice.

The poset of clopens

- Clopens form a poset: $\delta \leq \delta^{\prime}$ iff $\delta_{i, j} \leq \delta_{i, j}^{\prime}(1 \leq i<j \leq d)$
- The poset structure depends on the linear ordering of [d].
- Closed (resp., open) tuples form a lattice.
- Clopens form a lattice as well, because of MIX:

$$
g \otimes f \leq g \oplus f
$$

Proposition

Clopens bijectively correspond to maximal chains in the product lattice $\prod_{i=1, \ldots, n} \mathbb{I}_{v_{i}}$. Under this bijection, the lattice of clopens is the mutlinomial lattice $\mathrm{P}\left(v_{1}, \ldots, v_{n}\right)$.

Proposition

For every \star-autonomous quantale(oid) or involutive residuated lattice satisfying MIX Q (and each $d \geq 3$), the poset of clopens $\mathrm{Q}(\mathrm{d})$ is a lattice.

Plan

Permutations, words, paths

The quantaloid of discrete paths

Adding the continuum

The continuous Bruhat order

Idempotents, a dive into combinatorics

A category P_{+}of words/paths

- Objects: natural numbers $0,1, \ldots, n, \ldots, \infty$.
- Arrows: $\mathrm{P}_{+}(n, m)=\operatorname{SLat}_{\mathrm{V}}\left(\mathbb{I}_{n}, \mathbb{I}_{m}\right)$, where

$$
\mathbb{I}_{\infty}:=[0,1]
$$

Join-continuous functions as continuous words

Lemma
Bijection/equality between the following kind of data:

- maximal chains in $[0,1]^{2}$,
- images of continuous monotone functions $\pi:[0,1] \rightarrow[0,1]^{2}$ preserving endpoints,
- join-continuous (or meet-continuous) functions from $[0,1]$ to $[0,1]$.

Join-continuous functions as continuous words

Lemma
Bijection/equality between the following kind of data:

- maximal chains in $[0,1]^{2}$,
- images of continuous monotone functions $\pi:[0,1] \rightarrow[0,1]^{2}$ preserving endpoints,
- join-continuous (or meet-continuous) functions from $[0,1]$ to $[0,1]$.

Join-continuous functions as continuous words

Lemma
Bijection/equality between the following kind of data:

- maximal chains in $[0,1]^{2}$,
- images of continuous monotone functions $\pi:[0,1] \rightarrow[0,1]^{2}$ preserving endpoints,
- join-continuous (or meet-continuous) functions from $[0,1]$ to $[0,1]$.

Generalized results

Proposition
P_{+}is a \star-autonomous quantaloid (satisfying mix: $\otimes \leq \oplus$).

Proposition
Clopens over \vec{v} bijectively correspond to maximal chains in the product lattice $\prod_{i=1, \ldots, n} \mathbb{I}_{v_{i}}$. Therefore, these maximal chains can be ordered so they form a lattice.

Remark. Bijection/equality between the following kind of data: preserving endpoints,

Generalized results

Proposition
P_{+}is a \star-autonomous quantaloid (satisfying mix: $\otimes \leq \oplus$).
Let $\vec{v}=\left(v_{1}, \ldots, v_{d}\right)$ with $v_{i} \in \mathbb{N} \cup\{\infty\}$, so $v:[d] \rightarrow\left(\mathrm{P}_{+}\right)_{0}$.
Proposition
Clopens over \vec{v} bijectively correspond to maximal chains in the product lattice $\prod_{i=1, \ldots, n} \mathbb{I}_{v_{i}}$. Therefore, these maximal chains can be ordered so they form a lattice.

Remark. Bijection/equality between the following kind of data:

- images of continuous monotone functions $\pi:[0,1] \rightarrow[0,1]^{d}$ preserving endpoints,
- maximal chains in $[0,1]^{d} /$ clopens over $\vec{v}=(\infty, \ldots, \infty)$.

Generalized results

Proposition

P_{+}is a \star-autonomous quantaloid (satisfying mix: $\otimes \leq \oplus$).
Let $\vec{v}=\left(v_{1}, \ldots, v_{d}\right)$ with $v_{i} \in \mathbb{N} \cup\{\infty\}$, so $v:[d] \rightarrow\left(\mathrm{P}_{+}\right)_{0}$.

Proposition

Clopens over \vec{v} bijectively correspond to maximal chains in the product lattice $\prod_{i=1, \ldots, n} \mathbb{I}_{v_{i}}$. Therefore, these maximal chains can be ordered so they form a lattice.

Remark. Bijection/equality between the following kind of data:

- images of continuous monotone functions $\pi:[0,1] \rightarrow[0,1]^{d}$ preserving endpoints,
- maximal chains in $[0,1]^{d} /$ clopens over $\vec{v}=(\infty, \ldots, \infty)$.

Plan

Permutations, words, paths
The quantaloid of discrete paths
Adding the continuum
The continuous Bruhat order

The continuous Bruhat order of dimension d

- The lattice structure of $P_{+}(\vec{\omega}), \vec{\omega}:=(\underbrace{\infty, \ldots, \infty}_{d-\text { times }})$,
- For every $\vec{v} \in \mathbb{N}^{d}$ and every collection of lattice embeddings $\iota=\left\{\mathbb{I}_{v_{i}} \rightarrow \mathbb{I}_{\infty} \mid i=1, \ldots, d\right\}$, there is a lattice embedding

$$
P(\vec{v}, \iota): \mathrm{P}(\vec{v}) \longrightarrow \mathrm{P}_{+}(\vec{\infty})
$$

- $P_{+}(\vec{\infty})$ is the Dedekind-MacNeille completion of the colomit of these embeddings.

Generation and discrete approximations

- Canonical cocone ι_{v}, with $\iota_{v_{i}}(k)=\frac{k}{v_{i}}$.
- $\mathrm{P}_{+}(\vec{\infty})$ is a $\bigvee \bigwedge$-completion of the colomit of the $\mathrm{P}(\vec{v})$.
- The diagonal lives in $P_{+}(\vec{\infty})$, it is a join of elements of thos colimit.
- Open problem: characterize those elements from $P_{+}(\vec{\infty})$ that are a join of elements of this colimit.

Open problems

- determine the largest set of chains extending P into a *-autonomous quantaloid...
- equational theories of $\mathrm{P}(\vec{n}), n=0,1, \ldots, n, \ldots \infty$ as a residuated lattices,
- determine congruences of $P(\vec{\omega})$ a residuated lattice,
- determine idempotents (actually a closed problem, see next slides),
- determine their Karoubi completion,
- . . .

Thank you（bis）！！！

Plan

Permutations, words, paths
The quantaloid of discrete paths
Adding the continuum
The continuous Bruhat order

Idempotents, a dive into combinatorics

Idempotents as emmentalers ${ }^{3}$

Definition

Le A be a complete join-semilattice. An emmentaler on A is a collection $\left\{\left[y_{i}, x_{i}\right] \mid i \in I\right\}$ of pairwise disjoint intervals of A such that

- $\left\{y_{i} \mid i \in I\right\}$ closed under meets,
- $\left\{x_{i} \mid i \in I\right\}$ closed under joins.

Lemma

Let A be a complete join-semilattice, let $f \in \operatorname{SLat} \vee(A, A)$ be idempotent, and let $f \dashv g$. Then $\{[f(x), g(f(x))] \mid x \in A\}$ is an emmentaler of A. This sets up a bijective correspondence between idempotents and emmentalers.

An emmentaler on \mathbb{I}_{n}

. . . is a sequence

$$
0=y_{0} \leq x_{0}<y_{1} \leq x_{1}<\ldots y_{k} \leq x_{k}=n
$$

An emmentaler on \mathbb{I}_{n}

... is a sequence

$$
0=y_{0} \leq x_{0}<y_{1} \leq x_{1}<\ldots y_{k} \leq x_{k}=n
$$

An emmentaler on \mathbb{I}_{n}

. . . is a sequence

$$
0=y_{0} \leq x_{0}<y_{1} \leq x_{1}<\ldots y_{k} \leq x_{k}=n
$$

Every NE-turn is above $y=x+\frac{1}{2}$, every EN-turn is below this line.

Counting idempotents

Let f_{n} be the sequence of Fibonacci numbers.

Proposition

The number of idempotents in $\operatorname{SLat}_{\bigvee}\left(\mathbb{I}_{n}, \mathbb{I}_{n}\right)$ equals $f_{2 n+1}$.
Remark:

$$
\operatorname{Pos}([n],[n])=\text { strict maps in SLat } \mathcal{V}\left(\mathbb{I}_{n}, \mathbb{I}_{n}\right)
$$

$\operatorname{Pos}([n],[n])$ is a submonoid of $\operatorname{SLat}_{V}\left(\mathbb{I}_{n}, \mathbb{I}_{n}\right)$.
Proposition (Howie 1971)
The number of idempotents in $\operatorname{Pos}([n],[n])$ equals $f_{2 n}$.
Proposition (Laradji and Umar 2006)
The number of idempotents in $f \in \operatorname{Pos}([n],[n])$ such that $f(n)=n$ equals $f_{2 n-1}$.

