Introduction 0000 Natural systems

Directed homotopy 000000 Time reversal invariance

Perspectives

Time-reversal and homotopical properties of concurrent systems

Joint work with: Eric Goubault & Philippe Malbos

Cameron Calk

Laboratoire d'Informatique de l'École Polytechnique (LIX)

 $18^{\rm th}$ of June 2019

Introduction	Directed homotopy	Time reversal invariance	Perspectives
0000			

Concurrent programs and directed topology

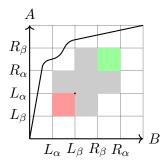
- Directed topology was introduced as a model of concurrent programs in computer science.
 - For *n* parallel threads, we consider an *n*-dimensional topological space in which points are states.
 - Paths in this space represent executions of the concurrent program.
 - Since an execution cannot be undone, these paths provide a notion of direction in the space.
 - States (points) are removed when they are unattainable by any execution, creating obstructions (holes).
- We would like to classify executions with respect to obstructions.
 - As in classical topology, algebraic invariants are used as a means of classification.

Introduction $0 \bullet 00$	Natural systems 000	Directed homotopy 000000	Time reversal invariance 00000000	$\begin{array}{c} \text{Perspectives} \\ \text{o} \end{array}$
An exam	nle			

- For a mutex λ , consider operations
 - L_{λ} locking the mutex, and R_{λ} releasing the mutex.
- Given sequential programs

• $A = (L_{\beta}; L_{\alpha}; R_{\alpha}; R_{\beta})$ and $B = (L_{\alpha}; L_{\beta}; R_{\beta}; R_{\alpha})$ consider the concurrent program A||B.

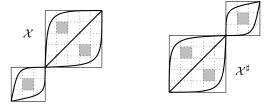
• We define a geometric realisation of this concurrent program endowed with the structure of a directed space.



Introduction	Natural systems	Directed homotopy	Time reversal invariance	Perspectives
0000				

Directed homotopy and time-reversal

- We consider directed homotopy $\overrightarrow{\Pi}_n$ (Dubut '17).
- The idea:
 - Consider the topological space consisting of directed paths between points x and y.
 - Apply classical algebraic invariants to these spaces.
 - Allow the end-points x and y to vary.
- Directed homotopy does not capture time-reversal (Hess & Fajstrup '17).



Introduction 0000	Natural systems	Directed homotopy	Time reversal invariance	Perspectives
	000	000000	00000000	o
Outline				

- Preliminaries : natural systems, directed spaces and directed homotopy.
- Problem : directed homotopy is time-symmetric, that is $\overrightarrow{\Pi}_n(\mathcal{X}) \cong \ \overrightarrow{\Pi}_n(\mathcal{X}^{\sharp}).$

Cause : the order of concatenation of dipaths is not witnessed.

- Sketch of solution :
 - Composition pairings (Porter '16) keep track of the effect of concatenation of dipaths on directed homotopy.
 - Directed homotopy can then be interpreted as a category :

 $\overrightarrow{\Pi}_n(\mathcal{X}) \quad \longleftrightarrow \quad \mathcal{C}^n_{\mathcal{X}}$

• Passage to the opposite category captures time-reversal :

 $(\mathcal{C}^n_{\mathcal{X}})^o \cong \mathcal{C}^n_{\mathcal{X}^\sharp}$

Introduction	Natural systems	Directed homotopy	Time reversal invariance	Perspectives
0000	●00	000000	00000000	0
Natural	systems on	a category		

• Given a category \mathcal{B} , we consider its factorisation category \mathcal{FB} ,

in which

- 0-cells are the 1-cells of \mathcal{B} .
- A 1-cell $f \to g$ is a pair (u, v) of 1-cells of \mathcal{B} such that g = ufv.

• A natural system on \mathcal{B} with values in \mathcal{V} is a functor

$$D: \mathcal{FB} \longrightarrow \mathcal{V}.$$

Introduction	Natural systems	Directed homotopy	Time reversal invariance	$\begin{array}{c} \text{Perspectives} \\ \text{o} \end{array}$
0000	0●0	000000	00000000	
Natural	systems			

- We define **Nat**(\mathcal{V}) the category of natural systems with values in \mathcal{V} , whose
 - objects are pairs (\mathcal{B}, D) , where

 $D: \mathcal{FB} \to \mathcal{V},$

• morphisms $(\mathcal{B}, D) \to (\mathcal{B}', D')$ are pairs (Φ, α) , where

 $\Phi: \mathcal{B} \to \mathcal{B}'$

is a functor and $\alpha:D\Rightarrow \Phi^*D'$ is a natural transformation, with

 $\Phi^*D'(f) = D'(\Phi(f))$ and $\Phi^*D'(u,v) = D'(\Phi(u),\Phi(v)),$

for f (resp. (u, v)) a 0-cell (resp. 1-cell) of \mathcal{FB} .

	Natural systems	Directed homotopy	Time reversal invariance	Perspectives
0000	000	000000	0000000	

From modules to natural systems

• In the abelian (co-)homology theory of a category \mathcal{C} the following are used as coefficients:

left modules	bi-modules	right modules
$\mathcal{C}^{op} \longrightarrow \mathbf{Ab}$	$\mathcal{C}^{op} imes \mathcal{C} \longrightarrow \mathbf{Ab}$	$\mathcal{C} \longrightarrow \mathbf{Ab}$

- Natural systems generalize the notions of module and capture the action of composition by morphisms of the category.
- Furthermore, there is an equivalence between the different choices of coefficients in abelian (co-)homology theories:

 $NatSys(\mathcal{C}, \mathbf{Ab}) \longleftrightarrow Ab(\mathbf{Cat}/\mathcal{C})$

(Quillen, Baues-Wirsching, Jibladze-Pirashvili, \dots)

Introduction	Natural systems	Directed homotopy	Time reversal invariance	Perspectives
0000	000	•00000	00000000	0
Directed	spaces			

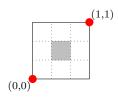
- A directed space \mathcal{X} consists of a pair (X, dX), where
 - X is a topological space,
 - $dX \subseteq X^{[0,1]}$ is the set of directed paths:
 - Every constant path is directed,
 - dX is closed under monotonic reparametrisation,
 - dX is closed under concatenation.
- A dicontinuous map $\mathcal{X} \to \mathcal{Y}$ is a continuous map $\phi : X \to Y$ such that for every path $p : [0, 1] \longrightarrow X$ in dX, we have

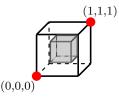
$$(\phi_*p:[0,1]\longrightarrow Y)\in dY.$$

• We denote by **dTop** the category of directed spaces.

Introduction	Natural systems	Directed homotopy	Time reversal invariance	Perspectives
0000	000	o●oooo	00000000	0
Trace Sr	aces			

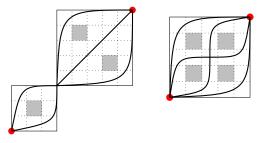
- For \mathcal{X} a directed space and $x, y \in X$, $\overrightarrow{Di}(\mathcal{X})(x, y)$ denotes the space of dipaths in dX from x to y equipped with the compact-open topology.
- The trace space of \mathcal{X} from x to y is the quotient of $\overrightarrow{Di}(\mathcal{X})(x,y)$ by monotonic reparametrisation, given the quotient topology. It is denoted by $\overrightarrow{\mathfrak{T}}(\mathcal{X})(x,y)$.
- Two partially ordered spaces with non-homeomorphic trace spaces.





Introduction 0000	Natural systems 000	Directed homotopy oo●ooo	Time reversal invariance 00000000	Perspectives 0
TTTT1		0		

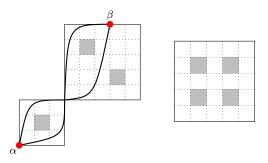
Why natural systems?



• Non-dihomeomorphic directed spaces with homotopy-equivalent trace spaces between extremal points.

Introduction 0000	Natural systems 000	Directed homotopy	Time reversal invariance 00000000	$\mathbf{Perspectives}$

Why natural systems?



- Changing the base points distinguishes these directed spaces.
- Specifying a trace chooses a beginning and end point for loops.

Introduction	Natural systems	Directed homotopy	Time reversal invariance	Perspectives
0000	000	0000●0	00000000	0
The trac	e diagram			

- For a dispace $\mathcal{X} = (X, dX)$, define the category of traces $\overrightarrow{P}(\mathcal{X})$:
 - 0-cells are points of X,
 - 1-cells are given by $\overrightarrow{P}(\mathcal{X})(x,y) = |\overrightarrow{\mathfrak{T}}(\mathcal{X})(x,y)|$,
 - composition is concatenation of dipaths.
- The trace diagram associated to \mathcal{X} is the natural system of pointed topological spaces:

Introduction	Natural systems	Directed homotopy	Time reversal invariance	Perspectives
0000	000	00000●	00000000	0
Directed	homotopy			

For n ≥ 1, we define the nth directed homotopy functor of X as follows :

$$\overrightarrow{\Pi}_n(\mathcal{X}): \mathcal{F}\overrightarrow{P}(\mathcal{X}) \stackrel{\overrightarrow{T}_*(\mathcal{X})}{\longrightarrow} \mathbf{Top}_* \stackrel{\pi_{n-1}}{\longrightarrow} \mathcal{V}$$

where \mathcal{V} is **Set**_{*}, **Gp** or **Ab**, by composing $\overrightarrow{T}_*(X)$ with the $(n-1)^{th}$ homotopy functor π_{n-1} .

• This induces the n^{th} directed homotopy functor

$$\overrightarrow{\Pi}_n : \mathbf{dTop} \to \mathbf{Nat}(\mathcal{V})$$

associating the pair $(\overrightarrow{P}(\mathcal{X}), \overrightarrow{\Pi}_n(\mathcal{X}))$ to a dispace \mathcal{X} .

Introduction 0000	Natural systems	Directed homotopy	Time reversal invariance	Perspectives
	000	000000	●0000000	0
Time rev	versal of a d	irected space		

• Given a directed space \mathcal{X} , we consider its time-reversal or *opposite dispace*,

$$\mathcal{X}^{\sharp} := (X, dX^{\sharp}).$$

• This is the directed space in which the direction has been inverted:

$$dX^{\sharp} := \{t \mapsto f(1-t) | f \in dX\}.$$

• The passage to the opposite dispace is functorial

$$\mathbf{dTop} \stackrel{(-)\sharp}{\longrightarrow} \mathbf{dTop}.$$

Introduction	Natural systems	Directed homotopy	Time reversal invariance	Perspectives
			0000000	

The category of diagrams

• $\overrightarrow{\Pi}_n(\mathcal{X})$ and $\overrightarrow{\Pi}_n(\mathcal{X}^{\sharp})$ are in general not comparable in $\mathbf{Nat}(\mathcal{V})$:

$$\overrightarrow{P}(\mathcal{X})^o = \overrightarrow{P}(\mathcal{X}^\sharp).$$

- The category of diagrams in \mathcal{V} , denoted by by $\mathbf{Diag}(\mathcal{V})$, has
 - objects pairs (\mathcal{C}, F) where

 $F: \mathcal{C} \to \mathcal{V}.$

• morphisms $(\mathcal{C},F) \to (\mathcal{C}',F')$ are pairs (Φ,α) where

 $\Phi:\mathcal{C}\to\mathcal{C}'$

is a functor and $\alpha: F \Rightarrow F' \circ \Phi$ is a natural transformation.

• Abusing notation, we have $\overrightarrow{\Pi}_n : \mathbf{dTop} \to \mathbf{Diag}(\mathcal{V})$, sending \mathcal{X} to $(\mathcal{F}\overrightarrow{P}(\mathcal{X}), \overrightarrow{\Pi}_n(\mathcal{X}))$.

Introduction	Natural systems	Directed homotopy	Time reversal invariance	Perspectives
0000	000	000000	00●00000	0

Directed homotopy is time-symmetric

• Consider the covariant functor

$$\begin{array}{ccc} & & & \\ & & & \\ & &$$

• For all $x, y \in X$, there exists a homeomorphism $\alpha_{x,y} : \overrightarrow{\mathfrak{T}}(\mathcal{X})(x,y) \longrightarrow \overrightarrow{\mathfrak{T}}(\mathcal{X}^{\sharp})(y,x)$ $(t \mapsto f(t)) \longmapsto (t \mapsto f(1-t)).$

• These give the components of a natural isomorphism $\alpha_f : \overrightarrow{\Pi}_n(\mathcal{X})_f \longrightarrow (\mathcal{F}({}^{\sharp})^* \overrightarrow{\Pi}_n(\mathcal{X}^{\sharp}))_f$ $\sigma = [(s,t) \mapsto \sigma_s(t)] \longmapsto [(s,t) \mapsto \sigma_s(1-t)] =: \sigma^{\sharp}$

Natural systems 000	Time reversal invariance 00000000	Perspectives 0

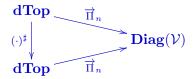
Time reversal and homotopy

• The pair $(\mathcal{F}(^{\sharp}), \alpha)$ is then an isomorphism

$$(\mathcal{F}\overrightarrow{P}(\mathcal{X}),\overrightarrow{\Pi}_n(\mathcal{X})) \overset{\cong}{\longrightarrow} (\mathcal{F}\overrightarrow{P}(\mathcal{X}^\sharp),\overrightarrow{\Pi}_n(\mathcal{X}^\sharp))$$

in $\mathbf{Diag}(\mathcal{V})$.

• The diagram



thus commutes up to isomorphism (Hess & Fajstrup '17).

Natural systems 000	Time reversal invariance 00000000	Perspectives 0

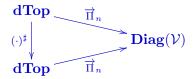
Time reversal and homotopy

• The pair $(\mathcal{F}(^{\sharp}), \alpha)$ is then an isomorphism

$$(\mathcal{F}\overrightarrow{P}(\mathcal{X}),\overrightarrow{\Pi}_n(\mathcal{X})) \overset{\cong}{\longrightarrow} (\mathcal{F}\overrightarrow{P}(\mathcal{X}^\sharp),\overrightarrow{\Pi}_n(\mathcal{X}^\sharp))$$

in $\mathbf{Diag}(\mathcal{V})$.

• The diagram



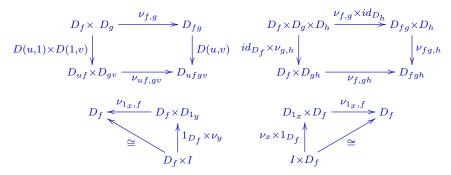
thus commutes up to isomorphism (Hess & Fajstrup '17).

• The functor $\overrightarrow{\Pi}_n$ is time-symmetric with respect to $\mathbf{Diag}(\mathcal{V})!$

• A composition pairing for a natural system $D: \mathcal{FB} \to (\mathcal{V}, \times)$ is a collection of 1-cells of \mathcal{V} :

$$u_{f,g}: D_f \times D_g \to D_{fg} \quad \text{and} \quad \nu_x: I \to D_{1_x}$$

for all pairs of composable 1-cells and every 0-cell of \mathcal{B} , satisfying coherence axioms:



	Directed homotopy	Time reversal invariance	Perspectiv
		00000000	

Composition pairing for natural homotopy

Proposition (C., Goubault, Malbos)

For a dispace \mathcal{X} and all $n \geq 2$, $\overrightarrow{\Pi}_n(\mathcal{X})$ admits a composition pairing:

 $\nu_{f,g}(\sigma,\tau) = \sigma \star \tau.$

Furthermore, $\overrightarrow{\Pi}_1(\mathcal{X})$ admits a composition pairing:

 $\nu_{f,g}([f'], [g']) = [f' \star g']$

Introduction	Natural systems	Directed homotopy	Time reversal invariance	Perspectives
0000	000	000000	000000000	0
Natural	systems as	categories		

- Now we construct a category $C^n_{\mathcal{X}}$ from the natural system $\overrightarrow{\Pi}_n(\mathcal{X})$ as follows:
 - 0-cells are points of \mathcal{X}
 - 1-cells from x to y are given by

$$\mathcal{C}^n_{\mathcal{X}}(x,y) := \coprod_{f \in \overrightarrow{\mathfrak{T}}(\mathcal{X})(x,y)} \overrightarrow{\Pi}_n(\mathcal{X})_f$$

• The composition in ${\mathcal C}$ is defined by

 $(\sigma,f)\cdot(\tau,g):=(\nu_{f,g}(\sigma,\tau),f\star g)=(\sigma\star\tau,f\star g)$

- (When n ≥ 2, this defines an internal group in the slice category Cat_{B0}/B!)
- The above assignment is functorial

Introduction	Natural systems	Directed homotopy	Time reversal invariance	Perspectives
0000	000	000000	00000000	0

Time reversal of natural homotopy

• We thus have a functorial assignment

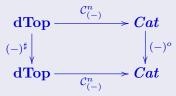
$$\overrightarrow{\Pi}_n(\mathcal{X}) \longmapsto \mathcal{C}_{\mathcal{X}}^n$$

• This induces a functor

$$\mathcal{C}^n_{(-)}: \mathbf{dTop} \longrightarrow \mathbf{Cat}$$

Theorem (C., Goubault, Malbos)

For a directed space \mathcal{X} , $(\mathcal{C}^n_{\mathcal{X}})^o \cong \mathcal{C}^n_{\mathcal{X}^{\sharp}}$. Thus $\mathcal{C}^n_{(-)}$ is time-reversal, i.e. the following diagram commutes up to isomorphism



- Explore the effect of time-reversal on rewriting systems via an interpretation of these as directed spaces.
- Explore a notion of relative directed homotopy, and the induced long exact sequence of natural systems

$$\cdots \to \overrightarrow{\Pi}_{n}(\mathcal{A}) \to \overrightarrow{\Pi}_{n}(\mathcal{X}) \to \overrightarrow{\Pi}_{n}(\mathcal{X}, \mathcal{A}) \xrightarrow{\partial_{n}} \overrightarrow{\Pi}_{n-1}(\mathcal{A}) \to \dots$$
$$\cdots \xrightarrow{v} \overrightarrow{\Pi}_{2}(\mathcal{X}) \xrightarrow{f} (\overrightarrow{\Pi}_{2}(\mathcal{X}, \mathcal{A}), \overrightarrow{\Pi}_{2}(\mathcal{X}, \mathcal{A})) \xrightarrow{g} \overrightarrow{\Pi}_{1}(\mathcal{A}) \xrightarrow{h} \overrightarrow{\Pi}_{1}(\mathcal{X}) \to \overrightarrow{\Pi}_{1}(\mathcal{X}, \mathcal{A}) \to 0,$$

- Explore the effect of time-reversal on rewriting systems via an interpretation of these as directed spaces.
- Explore a notion of relative directed homotopy, and the induced long exact sequence of natural systems

$$\cdots \to \overrightarrow{\Pi}_{n}(\mathcal{A}) \to \overrightarrow{\Pi}_{n}(\mathcal{X}) \to \overrightarrow{\Pi}_{n}(\mathcal{X}, \mathcal{A}) \xrightarrow{\partial_{n}} \overrightarrow{\Pi}_{n-1}(\mathcal{A}) \to \dots$$
$$\cdots \xrightarrow{v} \overrightarrow{\Pi}_{2}(\mathcal{X}) \xrightarrow{f} (\overrightarrow{\Pi}_{2}(\mathcal{X}, \mathcal{A}), \overrightarrow{\Pi}_{2}(\mathcal{X}, \mathcal{A})) \xrightarrow{g} \overrightarrow{\Pi}_{1}(\mathcal{A}) \xrightarrow{h} \overrightarrow{\Pi}_{1}(\mathcal{X}) \to \overrightarrow{\Pi}_{1}(\mathcal{X}, \mathcal{A}) \to 0,$$

Thank you