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Concurrent programs and directed topology

Directed topology was introduced as a model of concurrent
programs in computer science.

For n parallel threads, we consider an n-dimensional
topological space in which points are states.
Paths in this space represent executions of the concurrent
program.
Since an execution cannot be undone, these paths provide a
notion of direction in the space.
States (points) are removed when they are unattainable by
any execution, creating obstructions (holes).

We would like to classify executions with respect to
obstructions.

As in classical topology, algebraic invariants are used as a
means of classification.
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An example

For a mutex λ, consider operations
Lλ locking the mutex, and Rλ releasing the mutex.

Given sequential programs
A = (Lβ ;Lα;Rα;Rβ) and B = (Lα;Lβ ;Rβ ;Rα)

consider the concurrent program A||B.
We define a geometric realisation of this concurrent
program endowed with the structure of a directed space.

Lβ

Lα

Rα

Rβ

A

Lα Lβ Rβ Rα
B
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Directed homotopy and time-reversal

We consider directed homotopy
−→
Πn (Dubut ’17).

The idea:
Consider the topological space consisting of directed paths
between points x and y.
Apply classical algebraic invariants to these spaces.
Allow the end-points x and y to vary.

Directed homotopy does not capture time-reversal (Hess &
Fajstrup ’17).

X

X ]
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Outline

Preliminaries : natural systems, directed spaces and
directed homotopy.
Problem : directed homotopy is time-symmetric, that is

−→
Πn(X ) ∼=

−→
Πn(X ]).

Cause : the order of concatenation of dipaths is not
witnessed.

Sketch of solution :

Composition pairings (Porter ’16) keep track of the effect of
concatenation of dipaths on directed homotopy.
Directed homotopy can then be interpreted as a category :

−→
Πn(X ) ←→ CnX

Passage to the opposite category captures time-reversal :

(CnX )o ∼= CnX ]
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Natural systems on a category

Given a category B, we consider its factorisation category
FB,
in which

0-cells are the 1-cells of B.
A 1-cell f → g is a pair (u, v) of 1-cells of B such that
g = ufv.

. .

. .
u

g

f

v A factorisation
(u, v) : f −→ g.

A natural system on B with values in V is a functor

D : FB −→ V.
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Natural systems

We define Nat(V) the category of natural systems with
values in V , whose

objects are pairs (B, D), where

D : FB → V,

morphisms (B, D)→ (B′, D′) are pairs (Φ, α), where

Φ : B → B′

is a functor and α : D ⇒ Φ∗D′ is a natural transformation,
with

Φ∗D′(f) = D′(Φ(f)) and Φ∗D′(u, v) = D′(Φ(u),Φ(v)),

for f (resp. (u, v)) a 0-cell (resp. 1-cell) of FB.
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From modules to natural systems

In the abelian (co-)homology theory of a category C the
following are used as coefficients:

left modules bi-modules right modules
Cop −→ Ab Cop × C −→ Ab C −→ Ab

Natural systems generalize the notions of module and
capture the action of composition by morphisms of the
category.
Furthermore, there is an equivalence between the different
choices of coefficients in abelian (co-)homology theories:

NatSys(C,Ab) ←→ Ab(Cat/C)

(Quillen, Baues-Wirsching, Jibladze-Pirashvili, . . . )
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Directed spaces

A directed space X consists of a pair (X, dX), where

X is a topological space,
dX ⊆ X [0,1] is the set of directed paths:

Every constant path is directed,
dX is closed under monotonic reparametrisation,
dX is closed under concatenation.

A dicontinuous map X → Y is a continuous map φ : X → Y
such that for every path p : [0, 1] −→ X in dX, we have

(φ∗p : [0, 1] −→ Y ) ∈ dY .

We denote by dTop the category of directed spaces.
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Trace Spaces

For X a directed space and x,y ∈ X,
−→
Di(X )(x, y) denotes

the space of dipaths in dX from x to y equipped with the
compact-open topology.
The trace space of X from x to y is the quotient of−→
Di(X )(x, y) by monotonic reparametrisation, given the
quotient topology. It is denoted by

−→
T (X )(x, y).

Two partially ordered spaces with non-homeomorphic trace
spaces.

(0,0)

(1,1)

(0,0,0)

(1,1,1)
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Why natural systems?

Non-dihomeomorphic directed spaces with
homotopy-equivalent trace spaces between extremal points.
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Why natural systems?

α

β

Changing the base points distinguishes these directed
spaces.

Specifying a trace chooses a beginning and end point for
loops.
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The trace diagram

For a dispace X = (X, dX), define the category of traces
−→
P (X ):

0-cells are points of X,
1-cells are given by

−→
P (X )(x, y) = |

−→
T (X )(x, y)|,

composition is concatenation of dipaths.

The trace diagram associated to X is the natural system of
pointed topological spaces:

−→
T ∗(X ) : F

−→
P (X )−−−−−−−−−−−−−−→ Top∗

f 7−−−−−−−−−−−−−−→ (
−→
T (X )(x, y), f)

(u, v)7−−−−−−−−−−−−−−→ (f ′ 7→ uf ′v)
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Directed homotopy

For n ≥ 1, we define the nth directed homotopy functor of
X as follows :

−→
Πn(X ) : F

−→
P (X )

−→
T ∗(X )−→ Top∗

πn−1−→ V

where V is Set∗, Gp or Ab, by composing
−→
T ∗(X) with the

(n− 1)th homotopy functor πn−1.

This induces the nth directed homotopy functor

−→
Πn : dTop→ Nat(V)

associating the pair (
−→
P (X ),

−→
Πn(X )) to a dispace X .
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Time reversal of a directed space

Given a directed space X , we consider its time-reversal or
opposite dispace,

X ] := (X, dX]).

This is the directed space in which the direction has been
inverted:

dX] := {t 7→ f(1− t)|f ∈ dX}.

The passage to the opposite dispace is functorial

dTop
(−)]−→ dTop.
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The category of diagrams
−→
Πn(X ) and

−→
Πn(X ]) are in general not comparable in

Nat(V):
−→
P (X )o =

−→
P (X ]).

The category of diagrams in V, denoted by by Diag(V),
has

objects pairs (C, F ) where

F : C → V.

morphisms (C, F )→ (C′, F ′) are pairs (Φ, α) where

Φ : C → C′

is a functor and α : F ⇒ F ′ ◦ Φ is a natural transformation.

Abusing notation, we have
−→
Πn : dTop→ Diag(V), sending

X to (F
−→
P (X ),

−→
Πn(X )).
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Directed homotopy is time-symmetric

Consider the covariant functor

· // ·
""·

<<
// ·
F(]) : F

−→
P (X )−→ F(

−→
P (X ]))

f 7−→ f ]

(u, v)7−→ (v], u]).

·
||

·oo

· ·
bb

oo

For all x, y ∈ X, there exists a homeomorphism

αx,y :
−→
T (X )(x, y)−→

−→
T (X ])(y, x)

(t 7→ f(t))7−→ (t 7→ f(1− t)).

These give the components of a natural isomorphism

αf :
−→
Πn(X )f −−−−−−−−−−−−−−→ (F(])∗

−→
Πn(X ]))f

σ = [(s, t) 7→ σs(t)] 7−−−−−−−−−−−−−−→ [(s, t) 7→ σs(1− t)] =: σ]
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Time reversal and homotopy

The pair (F(]), α) is then an isomorphism

(F
−→
P (X ),

−→
Πn(X ))

∼=−→ (F
−→
P (X ]),

−→
Πn(X ]))

in Diag(V).

The diagram

dTop

(·)]

��

−→
Πn

++
Diag(V)

dTop
−→
Πn

33

thus commutes up to isomorphism (Hess & Fajstrup ’17).

The functor
−→
Πn is time-symmetric with respect to

Diag(V)!
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Time reversal and homotopy
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Composition pairing

A composition pairing for a natural system
D : FB → (V,×) is a collection of 1-cells of V:

νf,g : Df ×Dg → Dfg and νx : I → D1x

for all pairs of composable 1-cells and every 0-cell of B,
satisfying coherence axioms:

Df× Dg

νf,g //

D(u,1)×D(1,v)
��

Dfg

D(u,v)
��

Df×Dg×Dh

idDf
×νg,h

��

νf,g×idDh // Dfg×Dh

νfg,h
��

Duf×Dgv νuf,gv
// Dufgv Df×Dgh νf,gh

// Dfgh

Df Df×D1y

ν1x,foo

Df×I

1Df
×νy

OO

∼=

ff D1x×Df

ν1x,f // Df

I×Df

νx×1Df

OO

∼=

88
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Composition pairing for natural homotopy

Proposition (C., Goubault, Malbos)

For a dispace X and all n ≥ 2,
−→
Πn(X ) admits a composition

pairing:
νf,g(σ, τ) = σ ? τ.

Furthermore,
−→
Π 1(X ) admits a composition pairing:

νf,g([f
′], [g′]) = [f ′ ? g′]
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Natural systems as categories

Now we construct a category CnX from the natural system
−→
Πn(X ) as follows:

0-cells are points of X
1-cells from x to y are given by

CnX (x, y) :=
∐

f∈
−→
T (X )(x,y)

−→
Πn(X )f

The composition in C is defined by

(σ, f) · (τ, g) := (νf,g(σ, τ), f ? g) = (σ ? τ, f ? g)

(When n ≥ 2, this defines an internal group in the slice
category CatB0

/B!)
The above assignment is functorial
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Time reversal of natural homotopy

We thus have a functorial assignment
−→
Πn(X ) 7−−−−−−−−−→ CnX

This induces a functor

Cn(−) : dTop −→ Cat

Theorem (C., Goubault, Malbos)

For a directed space X , (CnX )o ∼= CnX ] . Thus Cn(−) is
time-reversal, i.e. the following diagram commutes up to
isomorphism

dTop

(−)]

��

Cn
(−) // Cat

(−)o

��
dTop

Cn
(−)

// Cat
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Perspectives

Explore the effect of time-reversal on rewriting systems via
an interpretation of these as directed spaces.

Explore a notion of relative directed homotopy, and
the induced long exact sequence of natural systems

· · · →
−→
Πn(A)→

−→
Πn(X )→

−→
Πn(X ,A)

∂n→
−→
Πn−1(A)→ . . .

. . .
v→
−→
Π 2(X )

f→ (
−→
Π 2(X ,A),

−→
Π 2(X ,A))

g→
−→
Π 1(A)

h→
−→
Π 1(X )→

−→
Π 1(X ,A)→ 0,

Thank you
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