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Definitions

Definition

A binary relation on a set X is a subset f of X × X .

There are various ‘concrete’ operations on binary relations (composition,
union...)

Definition

An algebra of binary relations of the signature σ is:
an algebra A of the signature σ for which. . .
. . . there is some set X such that. . .

every element of A is a binary relation on X

the symbols of σ are interpreted as the intended operations

Definition

Let A be an algebra of the signature σ.
A representation of A is a isomorphism from A to an algebra of binary
relations
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Operations

Composition
R ; S = {(x , z) ∈ X 2 | ∃y ∈ X : (x , y) ∈ R and (y , z) ∈ S}

Union
R + S = {(x , y) ∈ X 2 | (x , y) ∈ R or (x , y) ∈ S}

Reflexive transitive closure

R* := {(x , y) ∈ X 2 | ∃n ∈ N ∃x0 . . . xn :

(x0 = x) ∧ (xn = y) ∧ (x0, x1) ∈ R ∧ . . . ∧ (xn−1, xn) ∈ R}

Zero 0 = ∅
Identity 1 = {(x , x) ∈ X 2}

—the Kleene algebra signature {;,+, *, 0, 1}
Domain

D(R) = {(x , x) ∈ X 2 | ∃y ∈ X : (x , y) ∈ R}
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The class Rel(;,+, *, 0, 1)

Let Rel(;,+, *, 0, 1) denote the isomorphic closure of the class of all
algebras of binary relations of the signature {;,+, *, 0, 1}.

Rel(;,+, *, 0, 1) is not a first-order axiomatisable class (not closed
under ultrapowers).

The variety HSP Rel(;,+, *, 0, 1) has no finite equational
axiomatisation (Redko 1964).

But Kozen defined Kleene algebras using a finite number of
quasiequations, and

Rel(;,+, *, 0, 1) ⊆ Kleene algebras ⊆ HSP Rel(;,+, *, 0, 1)

In this variety, the free algebra over a finite set Σ is the set of regular
languages over Σ.
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Free algebra ≡ regular languages

Ls = Lt =⇒ Rel(;,+, *, 0, 1) |= s = t

In an algebra of relations (together with assigment to variables)

the term t holds holds on a pair (x , y)
⇐⇒

there is a path from x to y labelled with an string from Lt

Rel(;,+, *, 0, 1) |= s = t =⇒ Ls = Lt
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Free algebras for the class Rel(;,+, *, 0, 1,D)
. . . finite labelled rooted trees. . .

Definition

Given a set Σ of labels, a labelled rooted tree is defined recursively as a
set of pairs (a,T ), where a ∈ Σ and T is a labelled rooted tree.

a

a a

b

Figure: The labelled rooted trees encoded as ∅, {(a, ∅)}, and
{(a, ∅), (a, {(b, ∅)})}, respectively (with roots at the top)
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Free algebras for the class Rel(;,+, *, 0, 1,D)

Definition

A pointed tree is a tree with a distinguished vertex called the point.

Definition

The preorder � on (possibly pointed) labelled rooted trees is defined
recursively as follows. For trees T1 and T2 with roots r1 and r2
respectively, T1 � T2 if and only if

1 r2 is not the point vertex,
2 for each child v2 of r2, there is a child v1 of r1 such that

I the labels of the edges r1v1 and r2v2 are equal,
I Tv1 � Tv2 , where Tv1 and Tv2 are the v1-rooted and v2-rooted subtrees

respectively.

T1 � T2 ⇐⇒ there exists a homomorphim θ : T2 → T1.
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Definition

Let T be a labelled tree with root r . The reduced form of T is the tree
formed recursively as follows.

1 For each child v of r , replace the v -rooted subtree with its reduced
form.

2 Remove all but the �-minimal child subtrees of the tree obtained
after the first step.

Example

a a

b

;

a

b

a a

b

18 June 2019 8 / 13



Free algebras for the class Rel(;,+, *, 0, 1,D)

Definition

Let Σ be a set and let T and S be reduced pointed Σ-labelled rooted trees.

The pointed tree concatenation T ; S of T and S is the tree
formed by

1 identifying the point of T and the root of S (the root is now the root
of T and the point is the point of S),

2 reducing the resulting tree to its reduced form.

The domain D(T ) of T is the tree formed by
1 reassigning the point of T to the current root of T ,
2 reducing the resulting tree to its reduced form.

For +, ∗, and 0, lift to sets of reduced pointed Σ-labelled rooted trees, but
only retain �-maximal elements.
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Free algebra is in Rel(;,+, *, 0, 1)

Two steps

1 Represent the free algebra for the signature (;, 1) (the free monoid).

2 Include +, ∗, and 0 by lifting to the powerset.

wθ ⊆ Σ∗ × Σ∗

wθ = {(w ′,w ′w) | w ′ ∈ Σ}

Lθ =
⋃
w∈L

wθ
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Free algebra is in Rel(;,+, *, 0, 1,D)

T θ = {(S ; D(T ),S ; T ) | S a reduced tree}?

T θ = {(S , S ;φ T ) | S a labelled rooted tree}
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Closure properties

The regular sets of trees are closed under the following ‘intersection’
operation.

L1 · L2 := maximal(↓ L1 ∩ ↓ L2)

Problem

Are the regular sets of reduced trees closed under the following residuation
operations?

L1 \ L2 := maximal{T ∈ RΣ | ∀S ∈ ↓ L1, S ; T ∈ ↓ L2}
L1 / L2 := maximal{T ∈ RΣ | ∀S ∈ ↓ L2, T ; S ∈ ↓ L1}
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