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Algebraic proof theory: Cuts and completions

There is a close connection between the admissibility of the cut-rule
in sequent calculi for substructural logics and closure under
MacNeille completions of the corresponding algebraic semantics.
(Ciabattoni, Galatos, & Terui 2012, Belardinelli, Jipsen, & Ono
2004, …)

There is a close connection between the admissibility of the cut-rule
in hypersequent calculi for substructural logics and closure under
hyper-MacNeille completions of the corresponding algebraic
semantics. (Ciabattoni, Galatos, & Terui 2017)
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Hypersequent calculi

A hypersequent is a finite multi-set of sequents

Γ1 ⇒ Π1 | . . . | Γn ⇒ Πn.

Hypersequent calculi let us manipulated sequents in parallel.

Theorem (Ciabattoni, Galatos, & Terui 2008, 2017)
Let E be a set of P3-equations.

1. The set E is (effectively) equivalent to a set of hypersequent rules
R such that the cut-rule is redundant in the calculus HLJ +R.

2. The variety of Heyting algebras axiomatized by E is closed under
hyper-MacNeille completions.
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A general template for obtaining complete lattices

1. A polarity is a triple P = (W0,W1, N) such thatN ⊆ W0×W1.
2. Determine L : ℘(W1) → ℘(W0) and U : ℘(W0) → ℘(W1)

L(Y ) = {w0 ∈ W0 : ∀w1 ∈ Y w0Nw1},
U(X) = {w1 ∈ W1 : ∀w0 ∈ X w0Nw1}.

3. The composition LU : ℘(W0) → ℘(W0) is a closure operation
on ⟨℘(W0),⊆⟩ and so determines a complete lattice P+, with

∧
I

Zi =
∩
I

Zi and
∨
I

Zi = LU

(∪
I

Zi

)
.

Example
Let L be a lattice. Then PL = (L,L,≤) is a polarity and P+

L is the
MacNeille completion of L of L.
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Heyting frames and complete Heyting algebras

Definition (Terui 2018, Galatos & Jipsen 2013)
A Heyting frame is a tuple F = ⟨W0,W1, N, ◦,⇝, ϵ⟩ such that
1. the triple ⟨W0,W1, N⟩ is a polarity,
2. the triple ⟨W0, ◦, ϵ⟩ is a monoid,
3. ⇝ : W0 ×W1 → W1 is a function satisfying:

(Res) (w0 ◦ w′
0)Nw1 ⇐⇒ w′

0N(w0 ⇝ w1),
(e) (w0 ◦ w′

0)Nw1 =⇒ (w′
0 ◦ w0)Nw1,

(w) ϵNw1 =⇒ w0Nw1,
(c) (w0 ◦ w0)Nw1 =⇒ w0Nw1.

Proposition (Terui 2018, Galatos & Jipsen 2013)
If F = ⟨W0,W1, N, ◦,⇝, ϵ⟩ is a Heyting frame, then the induced
lattice F+ is a complete Heyting algebra with

Z1 → Z2 = {w ∈ W0 : ∀w′ ∈ Z1 w
′ ◦ w ∈ Z2}.
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Cut-admissibility and completions I

The structure Gcf
LJ = ⟨Fm<ω,Seq, N, ◦,⇝, ϵ⟩

ΓN(Σ ⇒ Π) iff ⊢cf
LJ Σ,Γ ⇒ Π

Γ1 ◦ Γ2 = Γ1,Γ2

Γ⇝ (Σ ⇒ Π) = Σ,Γ ⇒ Π,

is a Heyting frame. If ̸⊢cf
LJ Γ ⇒ Π, then (Gcf

LJ )
+ ̸|= Γ ⇒ Π.

If A is a Heyting algebra, then GA = ⟨A,A,≤,∧,→, 1⟩ is a Heyting
frame, and G+

A = A, the MacNeille completion of A.

6
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Cut-admissibility and completions II

Hcf
HLJ = ⟨HypSeq × Fm<ω,HypSeq × Seq, N, ◦,⇝, (∅, ϵ)⟩

(H1; Γ)N(H2; Σ ⇒ Π) iff ⊢cf
HLJ H1 | H2 | Σ,Γ ⇒ Π

(H1; Γ1) ◦ (H2; Γ2) = (H1 | H2; Γ1,Γ2)

(H1; Γ)⇝ (H2; Σ ⇒ Π) = (H1 | H2; Σ,Γ ⇒ Π),

is a Heyting frame. If ̸⊢cf
HLJ H , then (Hcf

HLJ)
+ ̸|= H .

If A is a Heyting algebra, then HA = ⟨A2, A2, N, ◦,⇝, (0, 1)⟩

(s, a)N(t, b) ⇐⇒ s ∨ t ∨ (a → b) = 1,

(s1, a2) ◦ (s2, a2) = (s1 ∨ s2, a1 ∧ a2),

(s, a)⇝ (t, b) = (s ∨ t, a → b).

is a Heyting frame. Thus H+
A := A+ is a complete Heyting algebra.
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Hyper-MacNeille completions

Proposition (Ciabattoni, Galatos, & Terui 2017)
For each Heyting algebra A there is an embedding of Heyting algebras
A ↪→ A+ given by b 7→ L(0, b) = {(s, a) ∈ A2 : s ∨ (a → b) = 1}.

We call A ↪→ A+ the hyper-MacNeille completion of A.

Theorem (Ciabattoni, Galatos, & Terui 2017)

1. If A is a subdirectly irreducible Heyting algebra, then A+ ∼= A.
2. If V is a variety of Heyting algebras axiomatized by P3-equations,

then V is closed under hyper-MacNeille completions.

3. If A is externally distributive, i.e., for all {a} ∪ S ⊆ A with S
having a greatest lower bound in A,

∀s ∈ S (a ∨ s = 1) =⇒ a ∨
∧

S = 1,

then A ↪→ A+ is a regular completion.
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De Morgan supplemented Heyting algebras

Definition
A De Morgan supplemented Heyting algebra is an algebra
A = ⟨A,∧,∨,→,∼, 0, 1⟩ of type ⟨2, 2, 2, 1, 0, 0⟩ such that
1. the structure ⟨A,∧,∨,→, 0, 1⟩ is a Heyting algebra,
2. the algebra A satisfies

x ∨ y ≈ 1 ⇐⇒ ∼x ≤ y,

3. the algebra A satisfies

∼(x ∨ y) ≈ ∼x ∧ ∼ y (or equivalently, ∼∼x ∧ ∼x ≈ 0)

Examples
1. Boolean algebras,
2. finitely subdirectly irreducible (fsi) Heyting algebras,

1 ≈ x ∨ y =⇒ 1 ≈ x or 1 ≈ y.
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MacNeille ∼= hyper-MacNeille completion?

Proposition
If A is a De Morgan supplemented Heyting algebra, then the embedding
A ↪→ A+ is both meet- and join-dense. Consequently, A+ ∼= A.

In particular, A+ ∼= A, for A any of the following types of algebras
1. Boolean algebras,
2. subdirectly irreducible Heyting algebras,
3. finitely subdirectly irreducible Heyting algebras,
4. Direct product of fsi Heyting algebras.
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Boolean products of fsi Heyting algebras

Recall that a subdirect product A ≤
∏

x∈X Ax is a Boolean product if
1. X is a Boolean (Stone) space,
2. Ja = bK = {x ∈ X : a(x) = b(x)} is clopen, for all a, b ∈ A,
3. a↾U ∪ b↾(X\U) ∈ A, for all clopen U ⊆ X and all a, b ∈ A.

Theorem (Vaggione 1995)
Let A be a Heyting algebra. Then the following are equivalent.

1. A is a (reduct of a) De Morgan supplemented Heyting algebra.

2. A is (isomorphic to) a Boolean product of fsi Heyting algebras.

(i) Thus A+ ∼= A, if A is a Boolean product of fsi Heyting algebras.
(ii) MacNeille completions of Boolean product have been looked at

before (Harding 1993; Crown, Harding, & Janowitz 1996).
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Minimal prime filters

Let A be a Heyting algebra with dual Esakia space X . For each
x ∈ X there is a congruence θx on A given by

aθxb ⇐⇒ a ↔ b ∈ x,

which makes the quotient A/θx a fsi Heyting algebra.

Proposition
Any Heyting algebra A is (isomorphic to) a subdirect product of the
family of fsi Heyting algebras {A/θx : x ∈ min(X)}.

If A is a De Morgan supplemented Heyting algebra, then the
embedding A ↪→

∏
x∈min(X) A/θx gives a Boolean product

representation.
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Algebras of dense open sections

Let A be a Heyting algebra with dual Esakia space X .
1. We consider min(X) with the subspace topology from X .
2. For (s, a) ∈ A2 let O(a, s) = {a/θx ∈ A/θx : s ̸∈ x}
3. The sets O(a, s) determine a topology on the (disjoint) union of

the family {A/θx : x ∈ min(X)}.
4. Let D(A) be the subalgebra of

∏
min(X) A/θx consisting of

elements which are continuous on a dense open U ⊆ min(X).
5. Let Θ be the congruence on D(A) given by f Θ g iff f and g

agree on a dense open U ⊆ min(X).
6. Let Q(A) be the quotient D(A)/Θ. We call this the algebra of

dense open sections of A.
7. Note that Q(A) ∈ V(A).
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Hyper-MacNeille as MacNeille completions

Theorem
For all Heyting algebras A there is an embedding Q(A) ↪→ A+, which
is both meet- and join-dense. Consequently, A+ ∼= Q(A).

We note that the algebra Q(A) is always De Morgan supplemented.
Consequently, A+ is also De Morgan supplemented.

Corollary
Let V be a variety of Heyting algebras. The following are equivalent.

1. The variety V is closed under hyper-MacNeille completions.

2. The class of De Morgan supplemented members of V is closed
under MacNeille completions.
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Varieties closed under hyper-MacNeille completions

Theorem (cf. Harding 1993)
Let A be a Heyting algebra with dual Esakia space X . If there is
n ∈ ω, such that |A/θx| ≤ n for all x ∈ min(X), then the algebra
Q(A) is complete. In particular, A+ ∼= Q(A).

Corollary
Any finitely generated variety of Heyting algebras is closed under
hyper-MacNeille completions.

Proposition
The variety axiomatized by the equation

x2 ∨ (x2 → (x1 ∨ ¬x1)) ≈ 1 (bd2)

is closed under hyper-MacNeille completions, but not axiomatizable by
P3-equations nor finitely generated.
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Regular hyper-MacNeille completions

Recall that a Heyting algebra is externally distributive, provided that

∀s ∈ S (a ∨ s = 1) =⇒ a ∨
∧

S = 1,

for all {a} ∪ S ⊆ A with S having a greatest lower bound in A.

Proposition (cf. Ciabattoni, Galatos, & Terui 2017)
Let A be a Heyting algebra. Then the following are equivalent.

1. The completion A ↪→ A+ is regular.

2. The algebra A is externally distributive.

Note that every variety of Heyting algebras V ⊋ BA contains an
incomplete algebra which is not externally distributive.
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Concluding remarks

1. Can we find a “simpler” De Morgan supplemented Heyting
algebra S(A) ∈ V(A) such that A+ = S(A)?

2. How to use our methods to show that varieties axiomatized by
P3-equations are closed under hyper-MacNeille completions?

3. How to find Boolean product representations of A+ and Q(A)?
4. Can we find workable descriptions of MacNeille completions of

Boolean products of (fsi) Heyting algebras?
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Thank you very much for your time and attention


