Hyper-MacNeille Completions of Heyting Algebras

Frederik Möllerström Lauridsen joint work with John Harding

University of Amsterdam (ILLC)

Topology, Algebra, and Categories in Logic Nice, June 17–21 2019 Algebraic proof theory: Cuts and completions

Algebraic proof theory: Cuts and completions

There is a close connection between the *admissibility* of the *cut-rule* in sequent calculi for substructural logics and closure under *MacNeille completions* of the corresponding algebraic semantics. (CIABATTONI, GALATOS, & TERUI 2012, BELARDINELLI, JIPSEN, & ONO 2004, ...)

Algebraic proof theory: Cuts and completions

There is a close connection between the *admissibility* of the *cut-rule* in sequent calculi for substructural logics and closure under *MacNeille completions* of the corresponding algebraic semantics. (CIABATTONI, GALATOS, & TERUI 2012, BELARDINELLI, JIPSEN, & ONO 2004, ...)

There is a close connection between the *admissibility* of the *cut-rule* in hypersequent calculi for substructural logics and closure under *hyper-MacNeille completions* of the corresponding algebraic semantics. (CIABATTONI, GALATOS, & TERUI 2017)

A *hypersequent* is a finite multi-set of sequents

 $\Gamma_1 \Rightarrow \Pi_1 \mid \ldots \mid \Gamma_n \Rightarrow \Pi_n.$

A *hypersequent* is a finite multi-set of sequents

 $\Gamma_1 \Rightarrow \Pi_1 \mid \ldots \mid \Gamma_n \Rightarrow \Pi_n.$

Hypersequent calculi let us manipulated sequents in parallel.

A hypersequent is a finite multi-set of sequents

 $\Gamma_1 \Rightarrow \Pi_1 \mid \ldots \mid \Gamma_n \Rightarrow \Pi_n.$

Hypersequent calculi let us manipulated sequents in parallel.

Theorem (CIABATTONI, GALATOS, & TERUI 2008, 2017) Let E be a set of \mathcal{P}_3 -equations.

A *hypersequent* is a finite multi-set of sequents

 $\Gamma_1 \Rightarrow \Pi_1 \mid \ldots \mid \Gamma_n \Rightarrow \Pi_n.$

Hypersequent calculi let us manipulated sequents in parallel.

Theorem (CIABATTONI, GALATOS, & TERUI 2008, 2017) Let E be a set of \mathcal{P}_3 -equations.

1. The set E is (effectively) equivalent to a set of hypersequent rules R such that the cut-rule is redundant in the calculus HLJ + R.

A *hypersequent* is a finite multi-set of sequents

 $\Gamma_1 \Rightarrow \Pi_1 \mid \ldots \mid \Gamma_n \Rightarrow \Pi_n.$

Hypersequent calculi let us manipulated sequents in parallel.

Theorem (Ciabattoni, Galatos, & Terui 2008, 2017)

Let E be a set of \mathcal{P}_3 -equations.

- 1. The set E is (effectively) equivalent to a set of hypersequent rules R such that the cut-rule is redundant in the calculus HLJ + R.
- 2. The variety of Heyting algebras axiomatized by E is closed under hyper-MacNeille completions.

1. A *polarity* is a triple $\mathbb{P} = (W_0, W_1, N)$ such that $N \subseteq W_0 \times W_1$.

- 1. A *polarity* is a triple $\mathbb{P} = (W_0, W_1, N)$ such that $N \subseteq W_0 \times W_1$.
- 2. Determine $L: \wp(W_1) \to \wp(W_0)$ and $U: \wp(W_0) \to \wp(W_1)$

$$L(Y) = \{ w_0 \in W_0 : \forall w_1 \in Y \ w_0 N w_1 \},\$$

$$U(X) = \{ w_1 \in W_1 : \forall w_0 \in X \ w_0 N w_1 \}.$$

- 1. A *polarity* is a triple $\mathbb{P} = (W_0, W_1, N)$ such that $N \subseteq W_0 \times W_1$.
- 2. Determine $L: \wp(W_1) \to \wp(W_0)$ and $U: \wp(W_0) \to \wp(W_1)$

$$L(Y) = \{ w_0 \in W_0 : \forall w_1 \in Y \ w_0 N w_1 \},\$$

$$U(X) = \{ w_1 \in W_1 : \forall w_0 \in X \ w_0 N w_1 \}.$$

3. The composition $LU: \wp(W_0) \to \wp(W_0)$ is a closure operation on $\langle \wp(W_0), \subseteq \rangle$ and so determines a complete lattice \mathbb{P}^+ , with

$$\bigwedge_{I} Z_{i} = \bigcap_{I} Z_{i}$$
 and $\bigvee_{I} Z_{i} = LU\left(\bigcup_{I} Z_{i}\right)$.

- 1. A *polarity* is a triple $\mathbb{P} = (W_0, W_1, N)$ such that $N \subseteq W_0 \times W_1$.
- 2. Determine $L: \wp(W_1) \to \wp(W_0)$ and $U: \wp(W_0) \to \wp(W_1)$

$$L(Y) = \{ w_0 \in W_0 : \forall w_1 \in Y \ w_0 N w_1 \},\$$

$$U(X) = \{ w_1 \in W_1 : \forall w_0 \in X \ w_0 N w_1 \}.$$

3. The composition $LU: \wp(W_0) \to \wp(W_0)$ is a closure operation on $\langle \wp(W_0), \subseteq \rangle$ and so determines a complete lattice \mathbb{P}^+ , with

$$\bigwedge_{I} Z_{i} = \bigcap_{I} Z_{i} \quad \text{and} \quad \bigvee_{I} Z_{i} = LU\left(\bigcup_{I} Z_{i}\right).$$

Example

Let L be a lattice. Then $\mathbb{P}_{L} = (L, L, \leq)$ is a polarity and \mathbb{P}_{L}^{+} is the MacNeille completion of \overline{L} of L.

Definition (TERUI 2018, GALATOS & JIPSEN 2013)

A Heyting frame is a tuple $\mathbb{F}=\langle W_0,W_1,N,\circ,\leadsto,\epsilon\rangle$ such that

Definition (Terui 2018, Galatos & Jipsen 2013)

A *Heyting frame* is a tuple $\mathbb{F} = \langle W_0, W_1, N, \circ, \rightsquigarrow, \epsilon \rangle$ such that

1. the triple $\langle W_0, W_1, N \rangle$ is a polarity,

Definition (TERUI 2018, GALATOS & JIPSEN 2013)

A *Heyting frame* is a tuple $\mathbb{F} = \langle W_0, W_1, N, \circ, \rightsquigarrow, \epsilon \rangle$ such that

- 1. the triple $\langle W_0, W_1, N \rangle$ is a polarity,
- 2. the triple $\langle W_0, \circ, \epsilon \rangle$ is a monoid,

Definition (TERUI 2018, GALATOS & JIPSEN 2013)

A *Heyting frame* is a tuple $\mathbb{F} = \langle W_0, W_1, N, \circ, \rightsquigarrow, \epsilon \rangle$ such that

- 1. the triple $\langle W_0, W_1, N \rangle$ is a polarity,
- 2. the triple $\langle W_0, \circ, \epsilon \rangle$ is a monoid,
- 3. $\rightsquigarrow: W_0 \times W_1 \to W_1$ is a function satisfying:

Definition (TERUI 2018, GALATOS & JIPSEN 2013)

A *Heyting frame* is a tuple $\mathbb{F} = \langle W_0, W_1, N, \circ, \rightsquigarrow, \epsilon \rangle$ such that

- 1. the triple $\langle W_0, W_1, N \rangle$ is a polarity,
- 2. the triple $\langle W_0, \circ, \epsilon \rangle$ is a monoid,
- 3. $\rightsquigarrow \colon W_0 \times W_1 \to W_1$ is a function satisfying:

(Res) $(w_0 \circ w'_0)Nw_1 \iff w'_0N(w_0 \rightsquigarrow w_1),$

Definition (TERUI 2018, GALATOS & JIPSEN 2013)

A Heyting frame is a tuple $\mathbb{F}=\langle W_0,W_1,N,\circ,\leadsto,\epsilon\rangle$ such that

- 1. the triple $\langle W_0, W_1, N \rangle$ is a polarity,
- 2. the triple $\langle W_0, \circ, \epsilon \rangle$ is a monoid,
- 3. $\rightsquigarrow : W_0 \times W_1 \to W_1$ is a function satisfying: (Res) $(w_0 \circ w'_0)Nw_1 \iff w'_0N(w_0 \rightsquigarrow w_1)$,

(e) $(w_0 \circ w'_0)Nw_1 \implies (w'_0 \circ w_0)Nw_1$,

Definition (TERUI 2018, GALATOS & JIPSEN 2013)

A *Heyting frame* is a tuple $\mathbb{F} = \langle W_0, W_1, N, \circ, \rightsquigarrow, \epsilon \rangle$ such that

- 1. the triple $\langle W_0, W_1, N \rangle$ is a polarity,
- 2. the triple $\langle W_0, \circ, \epsilon \rangle$ is a monoid,

3. $\rightsquigarrow: W_0 \times W_1 \to W_1$ is a function satisfying: (Res) $(w_0 \circ w'_0)Nw_1 \iff w'_0N(w_0 \rightsquigarrow w_1)$, (e) $(w_0 \circ w'_0)Nw_1 \implies (w'_0 \circ w_0)Nw_1$, (w) $\epsilon Nw_1 \implies w_0Nw_1$.

Definition (TERUI 2018, GALATOS & JIPSEN 2013)

A *Heyting frame* is a tuple $\mathbb{F} = \langle W_0, W_1, N, \circ, \rightsquigarrow, \epsilon \rangle$ such that

- 1. the triple $\langle W_0, W_1, N \rangle$ is a polarity,
- 2. the triple $\langle W_0, \circ, \epsilon \rangle$ is a monoid,

3.
$$\rightsquigarrow: W_0 \times W_1 \to W_1$$
 is a function satisfying:
(Res) $(w_0 \circ w'_0)Nw_1 \iff w'_0N(w_0 \rightsquigarrow w_1)$,
(e) $(w_0 \circ w'_0)Nw_1 \implies (w'_0 \circ w_0)Nw_1$,
(w) $\epsilon Nw_1 \implies w_0Nw_1$,
(c) $(w_0 \circ w_0)Nw_1 \implies w_0Nw_1$.

Definition (Terui 2018, Galatos & Jipsen 2013)

A Heyting frame is a tuple $\mathbb{F}=\langle W_0,W_1,N,\circ,\leadsto,\epsilon\rangle$ such that

- 1. the triple $\langle W_0, W_1, N \rangle$ is a polarity,
- 2. the triple $\langle W_0, \circ, \epsilon \rangle$ is a monoid,

Proposition (Terui 2018, Galatos & Jipsen 2013)

If $\mathbb{F} = \langle W_0, W_1, N, \circ, \rightsquigarrow, \epsilon \rangle$ is a Heyting frame, then the induced lattice \mathbb{F}^+ is a complete Heyting algebra with

$$Z_1 \to Z_2 = \{ w \in W_0 : \forall w' \in Z_1 \ w' \circ w \in Z_2 \}.$$

The structure
$$\mathbb{G}_{\mathrm{LJ}}^{cf} = \langle \mathsf{Fm}^{<\omega}, \mathsf{Seq}, N, \circ, \leadsto, \epsilon \rangle$$

The structure
$$\mathbb{G}_{LJ}^{cf} = \langle \mathsf{Fm}^{<\omega}, \mathsf{Seq}, N, \circ, \rightsquigarrow, \epsilon \rangle$$

 $\Gamma N(\Sigma \Rightarrow \Pi) \quad \text{iff} \quad \vdash_{LJ}^{cf} \Sigma, \Gamma \Rightarrow \Pi$
 $\Gamma_1 \circ \Gamma_2 = \Gamma_1, \Gamma_2$
 $\Gamma \rightsquigarrow (\Sigma \Rightarrow \Pi) = \Sigma, \Gamma \Rightarrow \Pi,$

is a Heyting frame.

The structure
$$\mathbb{G}_{LJ}^{cf} = \langle \mathsf{Fm}^{<\omega}, \mathsf{Seq}, N, \circ, \rightsquigarrow, \epsilon \rangle$$

 $\Gamma N(\Sigma \Rightarrow \Pi) \quad \text{iff} \quad \vdash_{LJ}^{cf} \Sigma, \Gamma \Rightarrow \Pi$
 $\Gamma_1 \circ \Gamma_2 = \Gamma_1, \Gamma_2$
 $\Gamma \rightsquigarrow (\Sigma \Rightarrow \Pi) = \Sigma, \Gamma \Rightarrow \Pi,$

is a Heyting frame. If $\not\vdash_{\mathrm{LJ}}^{cf} \Gamma \Rightarrow \Pi$, then $(\mathbb{G}_{\mathrm{LJ}}^{cf})^+ \not\models \Gamma \Rightarrow \Pi$.

The structure
$$\mathbb{G}_{LJ}^{cf} = \langle \mathsf{Fm}^{<\omega}, \mathsf{Seq}, N, \circ, \rightsquigarrow, \epsilon \rangle$$

 $\Gamma N(\Sigma \Rightarrow \Pi) \quad \text{iff} \quad \vdash_{LJ}^{cf} \Sigma, \Gamma \Rightarrow \Pi$
 $\Gamma_1 \circ \Gamma_2 = \Gamma_1, \Gamma_2$
 $\Gamma \rightsquigarrow (\Sigma \Rightarrow \Pi) = \Sigma, \Gamma \Rightarrow \Pi,$

is a Heyting frame. If $\not\vdash_{\mathrm{LJ}}^{cf} \Gamma \Rightarrow \Pi$, then $(\mathbb{G}_{\mathrm{LJ}}^{cf})^+ \not\models \Gamma \Rightarrow \Pi$.

If A is a Heyting algebra, then $\mathbb{G}_{\mathbf{A}} = \langle A, A, \leq, \wedge, \rightarrow, 1 \rangle$ is a Heyting frame, and $\mathbb{G}_{\mathbf{A}}^+ = \overline{\mathbf{A}}$, the MacNeille completion of A.

 $\mathbb{H}^{cf}_{\mathrm{HLJ}} = \langle \mathsf{HypSeq} \times \mathsf{Fm}^{<\omega}, \mathsf{HypSeq} \times \mathsf{Seq}, N, \circ, \leadsto, (\emptyset, \epsilon) \rangle$

$$\begin{split} \mathbb{H}^{cf}_{\mathrm{HLJ}} &= \langle \mathsf{HypSeq} \times \mathsf{Fm}^{<\omega}, \mathsf{HypSeq} \times \mathsf{Seq}, N, \circ, \rightsquigarrow, (\emptyset, \epsilon) \rangle \\ & (H_1; \Gamma) N(H_2; \Sigma \Rightarrow \Pi) \quad \mathrm{iff} \quad \vdash^{cf}_{\mathrm{HLJ}} H_1 \mid H_2 \mid \Sigma, \Gamma \Rightarrow \Pi \\ & (H_1; \Gamma_1) \circ (H_2; \Gamma_2) = (H_1 \mid H_2; \Gamma_1, \Gamma_2) \\ & (H_1; \Gamma) \rightsquigarrow (H_2; \Sigma \Rightarrow \Pi) = (H_1 \mid H_2; \Sigma, \Gamma \Rightarrow \Pi), \end{split}$$

is a Heyting frame.

$$\begin{split} \mathbb{H}^{cf}_{\mathrm{HLJ}} &= \langle \mathsf{HypSeq} \times \mathsf{Fm}^{<\omega}, \mathsf{HypSeq} \times \mathsf{Seq}, N, \circ, \rightsquigarrow, (\emptyset, \epsilon) \rangle \\ & (H_1; \Gamma) N(H_2; \Sigma \Rightarrow \Pi) \quad \mathrm{iff} \quad \vdash^{cf}_{\mathrm{HLJ}} H_1 \mid H_2 \mid \Sigma, \Gamma \Rightarrow \Pi \\ & (H_1; \Gamma_1) \circ (H_2; \Gamma_2) = (H_1 \mid H_2; \Gamma_1, \Gamma_2) \\ & (H_1; \Gamma) \rightsquigarrow (H_2; \Sigma \Rightarrow \Pi) = (H_1 \mid H_2; \Sigma, \Gamma \Rightarrow \Pi), \end{split}$$

is a Heyting frame. If $eqtiftial_{\text{HLJ}}^{cf} H$, then $(\mathbb{H}_{\text{HLJ}}^{cf})^+ \not\models H$.

$$\begin{split} \mathbb{H}^{cf}_{\mathrm{HLJ}} &= \langle \mathsf{HypSeq} \times \mathsf{Fm}^{<\omega}, \mathsf{HypSeq} \times \mathsf{Seq}, N, \circ, \rightsquigarrow, (\emptyset, \epsilon) \rangle \\ & (H_1; \Gamma) N(H_2; \Sigma \Rightarrow \Pi) \quad \mathrm{iff} \quad \vdash^{cf}_{\mathrm{HLJ}} H_1 \mid H_2 \mid \Sigma, \Gamma \Rightarrow \Pi \\ & (H_1; \Gamma_1) \circ (H_2; \Gamma_2) = (H_1 \mid H_2; \Gamma_1, \Gamma_2) \\ & (H_1; \Gamma) \rightsquigarrow (H_2; \Sigma \Rightarrow \Pi) = (H_1 \mid H_2; \Sigma, \Gamma \Rightarrow \Pi), \end{split}$$

is a Heyting frame. If $\not\vdash_{\text{HLJ}}^{cf} H$, then $(\mathbb{H}_{\text{HLJ}}^{cf})^+ \not\models H$.

If A is a Heyting algebra, then $\mathbb{H}_{\mathbf{A}}=\langle A^2,A^2,N,\circ,\leadsto,(0,1)\rangle$

$$(s,a)N(t,b) \iff s \lor t \lor (a \to b) = 1,$$

$$(s_1,a_2) \circ (s_2,a_2) = (s_1 \lor s_2, a_1 \land a_2),$$

$$(s,a) \rightsquigarrow (t,b) = (s \lor t, a \to b).$$

is a Heyting frame.

$$\begin{split} \mathbb{H}^{cf}_{\mathrm{HLJ}} &= \langle \mathsf{HypSeq} \times \mathsf{Fm}^{<\omega}, \mathsf{HypSeq} \times \mathsf{Seq}, N, \circ, \rightsquigarrow, (\emptyset, \epsilon) \rangle \\ & (H_1; \Gamma) N(H_2; \Sigma \Rightarrow \Pi) \quad \text{iff} \quad \vdash^{cf}_{\mathrm{HLJ}} H_1 \mid H_2 \mid \Sigma, \Gamma \Rightarrow \Pi \\ & (H_1; \Gamma_1) \circ (H_2; \Gamma_2) = (H_1 \mid H_2; \Gamma_1, \Gamma_2) \\ & (H_1; \Gamma) \rightsquigarrow (H_2; \Sigma \Rightarrow \Pi) = (H_1 \mid H_2; \Sigma, \Gamma \Rightarrow \Pi), \end{split}$$

is a Heyting frame. If $\not\vdash_{\text{HLJ}}^{cf} H$, then $(\mathbb{H}_{\text{HLJ}}^{cf})^+ \not\models H$.

If **A** is a Heyting algebra, then $\mathbb{H}_{\mathbf{A}}=\langle A^2,A^2,N,\circ,\rightsquigarrow,(0,1)\rangle$

$$(s,a)N(t,b) \iff s \lor t \lor (a \to b) = 1,$$

$$(s_1,a_2) \circ (s_2,a_2) = (s_1 \lor s_2, a_1 \land a_2),$$

$$(s,a) \rightsquigarrow (t,b) = (s \lor t, a \to b).$$

is a Heyting frame. Thus $\mathbb{H}^+_A \coloneqq A^+$ is a complete Heyting algebra.
Proposition (Ciabattoni, Galatos, & Terui 2017)

For each Heyting algebra **A** there is an embedding of Heyting algebras $\mathbf{A} \hookrightarrow \mathbf{A}^+$ given by $b \mapsto L(0, b) = \{(s, a) \in A^2 : s \lor (a \to b) = 1\}.$

Proposition (Ciabattoni, Galatos, & Terui 2017)

For each Heyting algebra **A** there is an embedding of Heyting algebras $\mathbf{A} \hookrightarrow \mathbf{A}^+$ given by $b \mapsto L(0, b) = \{(s, a) \in A^2 : s \lor (a \to b) = 1\}.$

We call $A \hookrightarrow A^+$ the *hyper-MacNeille completion* of A.

Proposition (Ciabattoni, Galatos, & Terui 2017)

For each Heyting algebra **A** there is an embedding of Heyting algebras $\mathbf{A} \hookrightarrow \mathbf{A}^+$ given by $b \mapsto L(0, b) = \{(s, a) \in A^2 : s \lor (a \to b) = 1\}.$

We call $A \hookrightarrow A^+$ the *hyper-MacNeille completion* of A.

Theorem (Ciabattoni, Galatos, & Terui 2017)

1. If A is a subdirectly irreducible Heyting algebra, then $A^+ \cong \overline{A}$.

Proposition (Ciabattoni, Galatos, & Terui 2017)

For each Heyting algebra **A** there is an embedding of Heyting algebras $\mathbf{A} \hookrightarrow \mathbf{A}^+$ given by $b \mapsto L(0, b) = \{(s, a) \in A^2 : s \lor (a \to b) = 1\}.$

We call $A \hookrightarrow A^+$ the *hyper-MacNeille completion* of A.

Theorem (Ciabattoni, Galatos, & Terui 2017)

- 1. If A is a subdirectly irreducible Heyting algebra, then $A^+ \cong \overline{A}$.
- 2. If V is a variety of Heyting algebras axiomatized by \mathcal{P}_3 -equations, then V is closed under hyper-MacNeille completions.

Proposition (Ciabattoni, Galatos, & Terui 2017)

For each Heyting algebra **A** there is an embedding of Heyting algebras $\mathbf{A} \hookrightarrow \mathbf{A}^+$ given by $b \mapsto L(0, b) = \{(s, a) \in A^2 : s \lor (a \to b) = 1\}.$

We call $A \hookrightarrow A^+$ the *hyper-MacNeille completion* of A.

Theorem (Ciabattoni, Galatos, & Terui 2017)

- 1. If A is a subdirectly irreducible Heyting algebra, then $A^+ \cong \overline{A}$.
- 2. If V is a variety of Heyting algebras axiomatized by \mathcal{P}_3 -equations, then V is closed under hyper-MacNeille completions.
- 3. If A is externally distributive, i.e., for all $\{a\} \cup S \subseteq A$ with S having a greatest lower bound in A,

$$\forall s \in S \ (a \lor s = 1) \implies a \lor \bigwedge S = 1,$$

then $A \hookrightarrow A^+$ is a regular completion.

Definition

A De Morgan supplemented Heyting algebra is an algebra $\mathbf{A} = \langle A, \wedge, \vee, \rightarrow, \sim, 0, 1 \rangle$ of type $\langle 2, 2, 2, 1, 0, 0 \rangle$ such that

Definition

A De Morgan supplemented Heyting algebra is an algebra $\mathbf{A} = \langle A, \wedge, \vee, \rightarrow, \sim, 0, 1 \rangle$ of type $\langle 2, 2, 2, 1, 0, 0 \rangle$ such that

1. the structure $\langle A, \wedge, \vee, \rightarrow, 0, 1 \rangle$ is a Heyting algebra,

Definition

A De Morgan supplemented Heyting algebra is an algebra $\mathbf{A} = \langle A, \wedge, \vee, \rightarrow, \sim, 0, 1 \rangle$ of type $\langle 2, 2, 2, 1, 0, 0 \rangle$ such that

- 1. the structure $\langle A, \wedge, \vee, \rightarrow, 0, 1 \rangle$ is a Heyting algebra,
- 2. the algebra A satisfies

$$x \lor y \approx 1 \iff \sim x \le y,$$

Definition

A De Morgan supplemented Heyting algebra is an algebra $\mathbf{A} = \langle A, \wedge, \vee, \rightarrow, \sim, 0, 1 \rangle$ of type $\langle 2, 2, 2, 1, 0, 0 \rangle$ such that

- 1. the structure $\langle A, \wedge, \vee, \rightarrow, 0, 1 \rangle$ is a Heyting algebra,
- 2. the algebra A satisfies

$$x \lor y \approx 1 \iff \sim x \le y,$$

3. the algebra A satisfies

 $\sim\!\!(x\vee y)\approx \, \sim x\wedge \sim y \quad (\text{or equivalently}, \sim \, \sim x\wedge \sim x\approx 0)$

Definition

A De Morgan supplemented Heyting algebra is an algebra $\mathbf{A} = \langle A, \wedge, \vee, \rightarrow, \sim, 0, 1 \rangle$ of type $\langle 2, 2, 2, 1, 0, 0 \rangle$ such that

- 1. the structure $\langle A, \wedge, \vee, \rightarrow, 0, 1 \rangle$ is a Heyting algebra,
- 2. the algebra A satisfies

$$x \lor y \approx 1 \iff \sim x \le y,$$

3. the algebra A satisfies

 $\sim\!\!(x\vee y)\approx \, \sim x\wedge \sim y \quad (\text{or equivalently}, \sim \, \sim x\wedge \sim x\approx 0)$

Examples

1. Boolean algebras,

Definition

A De Morgan supplemented Heyting algebra is an algebra $\mathbf{A} = \langle A, \wedge, \vee, \rightarrow, \sim, 0, 1 \rangle$ of type $\langle 2, 2, 2, 1, 0, 0 \rangle$ such that

- 1. the structure $\langle A, \wedge, \vee, \rightarrow, 0, 1 \rangle$ is a Heyting algebra,
- 2. the algebra A satisfies

$$x \lor y \approx 1 \iff \sim x \le y,$$

3. the algebra A satisfies

 $\sim\!\!(x\vee y)\approx \, \sim x\wedge \sim y \quad (\text{or equivalently}, \sim \, \sim x\wedge \sim x\approx 0)$

Examples

- 1. Boolean algebras,
- 2. finitely subdirectly irreducible (fsi) Heyting algebras,

$$1\approx x\vee y\implies 1\approx x \text{ or } 1\approx y.$$

Proposition

If A is a De Morgan supplemented Heyting algebra, then the embedding $A \hookrightarrow A^+$ is both meet- and join-dense. Consequently, $A^+ \cong \overline{A}$.

Proposition

If A is a De Morgan supplemented Heyting algebra, then the embedding $A \hookrightarrow A^+$ is both meet- and join-dense. Consequently, $A^+ \cong \overline{A}$.

Proposition

If A is a De Morgan supplemented Heyting algebra, then the embedding $A \hookrightarrow A^+$ is both meet- and join-dense. Consequently, $A^+ \cong \overline{A}$.

In particular, $A^+ \cong \overline{A}$, for A any of the following types of algebras 1. Boolean algebras,

Proposition

If A is a De Morgan supplemented Heyting algebra, then the embedding $A \hookrightarrow A^+$ is both meet- and join-dense. Consequently, $A^+ \cong \overline{A}$.

- 1. Boolean algebras,
- 2. subdirectly irreducible Heyting algebras,

Proposition

If A is a De Morgan supplemented Heyting algebra, then the embedding $A \hookrightarrow A^+$ is both meet- and join-dense. Consequently, $A^+ \cong \overline{A}$.

- 1. Boolean algebras,
- 2. subdirectly irreducible Heyting algebras,
- 3. finitely subdirectly irreducible Heyting algebras,

Proposition

If A is a De Morgan supplemented Heyting algebra, then the embedding $A \hookrightarrow A^+$ is both meet- and join-dense. Consequently, $A^+ \cong \overline{A}$.

- 1. Boolean algebras,
- 2. subdirectly irreducible Heyting algebras,
- 3. finitely subdirectly irreducible Heyting algebras,
- 4. Direct product of fsi Heyting algebras.

Recall that a subdirect product $\mathbf{A} \leq \prod_{x \in X} \mathbf{A}_x$ is a *Boolean product* if

Recall that a subdirect product $A \leq \prod_{x \in X} A_x$ is a *Boolean product* if 1. X is a Boolean (Stone) space,

Recall that a subdirect product $A \leq \prod_{x \in X} A_x$ is a *Boolean product* if

1. X is a Boolean (Stone) space,

2. $\llbracket a = b \rrbracket = \{x \in X : a(x) = b(x)\}$ is clopen, for all $a, b \in A$,

Recall that a subdirect product $A \leq \prod_{x \in X} A_x$ is a *Boolean product* if

1. X is a Boolean (Stone) space,

2.
$$\llbracket a = b \rrbracket = \{x \in X : a(x) = b(x)\}$$
 is clopen, for all $a, b \in A$,

3. $a \upharpoonright U \cup b \upharpoonright (X \setminus U) \in A$, for all clopen $U \subseteq X$ and all $a, b \in A$.

Recall that a subdirect product $A \leq \prod_{x \in X} A_x$ is a *Boolean product* if

- 1. X is a Boolean (Stone) space,
- 2. $[\![a=b]\!]=\{x\in X: a(x)=b(x)\}$ is clopen, for all $a,b\in A,$
- 3. $a \upharpoonright U \cup b \upharpoonright (X \setminus U) \in A$, for all clopen $U \subseteq X$ and all $a, b \in A$.

Theorem (VAGGIONE 1995)

Let A be a Heyting algebra. Then the following are equivalent.

Recall that a subdirect product $A \leq \prod_{x \in X} A_x$ is a *Boolean product* if

- 1. X is a Boolean (Stone) space,
- 2. $[\![a=b]\!]=\{x\in X: a(x)=b(x)\}$ is clopen, for all $a,b\in A,$
- 3. $a \upharpoonright U \cup b \upharpoonright (X \setminus U) \in A$, for all clopen $U \subseteq X$ and all $a, b \in A$.

Theorem (VAGGIONE 1995)

Let ${\bf A}$ be a Heyting algebra. Then the following are equivalent.

1. A is a (reduct of a) De Morgan supplemented Heyting algebra.

Recall that a subdirect product $A \leq \prod_{x \in X} A_x$ is a *Boolean product* if

- 1. X is a Boolean (Stone) space,
- 2. $[\![a=b]\!]=\{x\in X: a(x)=b(x)\}$ is clopen, for all $a,b\in A,$
- 3. $a \upharpoonright U \cup b \upharpoonright (X \setminus U) \in A$, for all clopen $U \subseteq X$ and all $a, b \in A$.

Theorem (VAGGIONE 1995)

Let A be a Heyting algebra. Then the following are equivalent.

- 1. A is a (reduct of a) De Morgan supplemented Heyting algebra.
- 2. A is (isomorphic to) a Boolean product of fsi Heyting algebras.

Recall that a subdirect product $A \leq \prod_{x \in X} A_x$ is a *Boolean product* if

- 1. X is a Boolean (Stone) space,
- 2. $[\![a=b]\!]=\{x\in X: a(x)=b(x)\}$ is clopen, for all $a,b\in A,$
- 3. $a \upharpoonright U \cup b \upharpoonright (X \setminus U) \in A$, for all clopen $U \subseteq X$ and all $a, b \in A$.

Theorem (VAGGIONE 1995)

Let A be a Heyting algebra. Then the following are equivalent.

- 1. A is a (reduct of a) De Morgan supplemented Heyting algebra.
- 2. A is (isomorphic to) a Boolean product of fsi Heyting algebras.

(i) Thus $A^+ \cong \overline{A}$, if A is a Boolean product of fsi Heyting algebras.

Recall that a subdirect product $A \leq \prod_{x \in X} A_x$ is a *Boolean product* if

- 1. X is a Boolean (Stone) space,
- 2. $[\![a=b]\!]=\{x\in X: a(x)=b(x)\}$ is clopen, for all $a,b\in A,$
- 3. $a \upharpoonright U \cup b \upharpoonright (X \setminus U) \in A$, for all clopen $U \subseteq X$ and all $a, b \in A$.

Theorem (VAGGIONE 1995)

Let A be a Heyting algebra. Then the following are equivalent.

- 1. A is a (reduct of a) De Morgan supplemented Heyting algebra.
- 2. A is (isomorphic to) a Boolean product of fsi Heyting algebras.
- (i) Thus $A^+\cong\overline{A},$ if A is a Boolean product of fsi Heyting algebras.
- (ii) MacNeille completions of Boolean product have been looked at before (Harding 1993; Crown, Harding, & Janowitz 1996).

Let \mathbf{A} be a Heyting algebra with dual Esakia space X.

Let **A** be a Heyting algebra with dual Esakia space X. For each $x \in X$ there is a congruence θ_x on **A** given by

$$a\theta_x b \iff a \leftrightarrow b \in x,$$

which makes the quotient \mathbf{A}/θ_x a fsi Heyting algebra.

Let A be a Heyting algebra with dual Esakia space X. For each $x \in X$ there is a congruence θ_x on A given by

$$a\theta_x b \iff a \leftrightarrow b \in x,$$

which makes the quotient \mathbf{A}/θ_x a fsi Heyting algebra.

Proposition

Any Heyting algebra **A** is (isomorphic to) a subdirect product of the family of fsi Heyting algebras $\{\mathbf{A}/\theta_x : x \in \min(X)\}$.

Let A be a Heyting algebra with dual Esakia space X. For each $x\in X$ there is a congruence θ_x on A given by

$$a\theta_x b \iff a \leftrightarrow b \in x,$$

which makes the quotient \mathbf{A}/θ_x a fsi Heyting algebra.

Proposition

Any Heyting algebra **A** is (isomorphic to) a subdirect product of the family of fsi Heyting algebras $\{\mathbf{A}/\theta_x : x \in \min(X)\}$.

If **A** is a De Morgan supplemented Heyting algebra, then the embedding $\mathbf{A} \hookrightarrow \prod_{x \in \min(X)} \mathbf{A}/\theta_x$ gives a Boolean product representation.

Algebras of dense open sections
Let \mathbf{A} be a Heyting algebra with dual Esakia space X.

1. We consider $\min(X)$ with the subspace topology from X.

- 1. We consider $\min(X)$ with the subspace topology from X.
- 2. For $(s,a) \in A^2$ let $\mathcal{O}(a,s) = \{a/\theta_x \in A/\theta_x : s \notin x\}$

- 1. We consider $\min(X)$ with the subspace topology from X.
- 2. For $(s,a)\in A^2$ let $\mathcal{O}(a,s)=\{a/\theta_x\in A/\theta_x:s\not\in x\}$
- 3. The sets $\mathcal{O}(a, s)$ determine a topology on the (disjoint) union of the family $\{\mathbf{A}/\theta_x : x \in \min(X)\}$.

- 1. We consider $\min(X)$ with the subspace topology from X.
- 2. For $(s,a) \in A^2$ let $\mathcal{O}(a,s) = \{a/\theta_x \in A/\theta_x : s \notin x\}$
- 3. The sets $\mathcal{O}(a, s)$ determine a topology on the (disjoint) union of the family $\{\mathbf{A}/\theta_x : x \in \min(X)\}$.
- 4. Let $D(\mathbf{A})$ be the subalgebra of $\prod_{\min(X)} \mathbf{A}/\theta_x$ consisting of elements which are continuous on a dense open $U \subseteq \min(X)$.

- 1. We consider $\min(X)$ with the subspace topology from X.
- 2. For $(s,a) \in A^2$ let $\mathcal{O}(a,s) = \{a/\theta_x \in A/\theta_x : s \notin x\}$
- 3. The sets $\mathcal{O}(a, s)$ determine a topology on the (disjoint) union of the family $\{\mathbf{A}/\theta_x : x \in \min(X)\}$.
- 4. Let $D(\mathbf{A})$ be the subalgebra of $\prod_{\min(X)} \mathbf{A}/\theta_x$ consisting of elements which are continuous on a dense open $U \subseteq \min(X)$.
- 5. Let Θ be the congruence on $D(\mathbf{A})$ given by $f \Theta g$ iff f and g agree on a dense open $U \subseteq \min(X)$.

- 1. We consider $\min(X)$ with the subspace topology from X.
- 2. For $(s,a) \in A^2$ let $\mathcal{O}(a,s) = \{a/\theta_x \in A/\theta_x : s \notin x\}$
- 3. The sets $\mathcal{O}(a, s)$ determine a topology on the (disjoint) union of the family $\{\mathbf{A}/\theta_x : x \in \min(X)\}$.
- 4. Let $D(\mathbf{A})$ be the subalgebra of $\prod_{\min(X)} \mathbf{A}/\theta_x$ consisting of elements which are continuous on a dense open $U \subseteq \min(X)$.
- 5. Let Θ be the congruence on $D(\mathbf{A})$ given by $f \Theta g$ iff f and g agree on a dense open $U \subseteq \min(X)$.
- 6. Let $Q(\mathbf{A})$ be the quotient $D(\mathbf{A})/\Theta$.

- 1. We consider $\min(X)$ with the subspace topology from X.
- 2. For $(s,a) \in A^2$ let $\mathcal{O}(a,s) = \{a/\theta_x \in A/\theta_x : s \notin x\}$
- 3. The sets $\mathcal{O}(a, s)$ determine a topology on the (disjoint) union of the family $\{\mathbf{A}/\theta_x : x \in \min(X)\}$.
- 4. Let $D(\mathbf{A})$ be the subalgebra of $\prod_{\min(X)} \mathbf{A}/\theta_x$ consisting of elements which are continuous on a dense open $U \subseteq \min(X)$.
- 5. Let Θ be the congruence on $D(\mathbf{A})$ given by $f \Theta g$ iff f and g agree on a dense open $U \subseteq \min(X)$.
- Let Q(A) be the quotient D(A)/Θ. We call this the algebra of dense open sections of A.

- 1. We consider $\min(X)$ with the subspace topology from X.
- 2. For $(s,a) \in A^2$ let $\mathcal{O}(a,s) = \{a/\theta_x \in A/\theta_x : s \notin x\}$
- 3. The sets $\mathcal{O}(a, s)$ determine a topology on the (disjoint) union of the family $\{\mathbf{A}/\theta_x : x \in \min(X)\}$.
- 4. Let $D(\mathbf{A})$ be the subalgebra of $\prod_{\min(X)} \mathbf{A}/\theta_x$ consisting of elements which are continuous on a dense open $U \subseteq \min(X)$.
- 5. Let Θ be the congruence on $D(\mathbf{A})$ given by $f \Theta g$ iff f and g agree on a dense open $U \subseteq \min(X)$.
- Let Q(A) be the quotient D(A)/Θ. We call this the algebra of dense open sections of A.
- 7. Note that $Q(\mathbf{A}) \in \mathcal{V}(\mathbf{A})$.

Theorem

For all Heyting algebras A there is an embedding $Q(A) \hookrightarrow A^+$, which is both meet- and join-dense. Consequently, $A^+ \cong \overline{Q(A)}$.

Theorem

For all Heyting algebras A there is an embedding $Q(A) \hookrightarrow A^+$, which is both meet- and join-dense. Consequently, $A^+ \cong \overline{Q(A)}$.

We note that the algebra $Q(\mathbf{A})$ is always De Morgan supplemented. Consequently, \mathbf{A}^+ is also De Morgan supplemented.

Theorem

For all Heyting algebras A there is an embedding $Q(A) \hookrightarrow A^+$, which is both meet- and join-dense. Consequently, $A^+ \cong \overline{Q(A)}$.

We note that the algebra $Q(\mathbf{A})$ is always De Morgan supplemented. Consequently, \mathbf{A}^+ is also De Morgan supplemented.

Corollary

Let ${\mathcal V}$ be a variety of Heyting algebras. The following are equivalent.

Theorem

For all Heyting algebras A there is an embedding $Q(A) \hookrightarrow A^+$, which is both meet- and join-dense. Consequently, $A^+ \cong \overline{Q(A)}$.

We note that the algebra $Q(\mathbf{A})$ is always De Morgan supplemented. Consequently, \mathbf{A}^+ is also De Morgan supplemented.

Corollary

Let \mathcal{V} be a variety of Heyting algebras. The following are equivalent.

1. The variety \mathcal{V} is closed under hyper-MacNeille completions.

Theorem

For all Heyting algebras A there is an embedding $Q(A) \hookrightarrow A^+$, which is both meet- and join-dense. Consequently, $A^+ \cong \overline{Q(A)}$.

We note that the algebra $Q(\mathbf{A})$ is always De Morgan supplemented. Consequently, \mathbf{A}^+ is also De Morgan supplemented.

Corollary

Let \mathcal{V} be a variety of Heyting algebras. The following are equivalent.

- 1. The variety V is closed under hyper-MacNeille completions.
- 2. The class of De Morgan supplemented members of V is closed under MacNeille completions.

Theorem (cf. HARDING 1993)

Let A be a Heyting algebra with dual Esakia space X. If there is $n \in \omega$, such that $|\mathbf{A}/\theta_x| \leq n$ for all $x \in \min(X)$, then the algebra $Q(\mathbf{A})$ is complete. In particular, $\mathbf{A}^+ \cong Q(\mathbf{A})$.

Theorem (cf. HARDING 1993)

Let A be a Heyting algebra with dual Esakia space X. If there is $n \in \omega$, such that $|\mathbf{A}/\theta_x| \leq n$ for all $x \in \min(X)$, then the algebra $Q(\mathbf{A})$ is complete. In particular, $\mathbf{A}^+ \cong Q(\mathbf{A})$.

Corollary

Any finitely generated variety of Heyting algebras is closed under hyper-MacNeille completions.

Theorem (cf. HARDING 1993)

Let A be a Heyting algebra with dual Esakia space X. If there is $n \in \omega$, such that $|\mathbf{A}/\theta_x| \leq n$ for all $x \in \min(X)$, then the algebra $Q(\mathbf{A})$ is complete. In particular, $\mathbf{A}^+ \cong Q(\mathbf{A})$.

Corollary

Any finitely generated variety of Heyting algebras is closed under hyper-MacNeille completions.

Proposition

The variety axiomatized by the equation

$$x_2 \lor (x_2 \to (x_1 \lor \neg x_1)) \approx 1$$
 (bd₂)

is closed under hyper-MacNeille completions, but not axiomatizable by \mathcal{P}_3 -equations nor finitely generated.

Recall that a Heyting algebra is *externally distributive*, provided that

$$\forall s \in S \ (a \lor s = 1) \implies a \lor \bigwedge S = 1,$$

for all $\{a\} \cup S \subseteq A$ with S having a greatest lower bound in A.

Recall that a Heyting algebra is *externally distributive*, provided that

$$\forall s \in S \ (a \lor s = 1) \implies a \lor \bigwedge S = 1,$$

for all $\{a\} \cup S \subseteq A$ with S having a greatest lower bound in A. **Proposition (cf. CIABATTONI, GALATOS,** \mathcal{C} **TERUI 2017)** Let A be a Heyting algebra. Then the following are equivalent.

Recall that a Heyting algebra is *externally distributive*, provided that

$$\forall s \in S \ (a \lor s = 1) \implies a \lor \bigwedge S = 1,$$

for all {a} ∪ S ⊆ A with S having a greatest lower bound in A.
Proposition (cf. CIABATTONI, GALATOS, & TERUI 2017)
Let A be a Heyting algebra. Then the following are equivalent.
1. The completion A → A⁺ is regular.

Recall that a Heyting algebra is *externally distributive*, provided that

$$\forall s \in S \ (a \lor s = 1) \implies a \lor \bigwedge S = 1,$$

for all {a} ∪ S ⊆ A with S having a greatest lower bound in A.
Proposition (cf. CIABATTONI, GALATOS, & TERUI 2017)
Let A be a Heyting algebra. Then the following are equivalent.
1. The completion A → A⁺ is regular.

2. The algebra A is externally distributive.

Recall that a Heyting algebra is *externally distributive*, provided that

$$\forall s \in S \ (a \lor s = 1) \implies a \lor \bigwedge S = 1,$$

for all {a} ∪ S ⊆ A with S having a greatest lower bound in A.
Proposition (cf. CIABATTONI, GALATOS, & TERUI 2017)
Let A be a Heyting algebra. Then the following are equivalent.
1. The completion A ↪ A⁺ is regular.

2. The algebra A is externally distributive.

Note that every variety of Heyting algebras $\mathcal{V} \supseteq \mathcal{BA}$ contains an incomplete algebra which is **not** externally distributive.

1. Can we find a "simpler" De Morgan supplemented Heyting algebra $S(\mathbf{A}) \in \mathcal{V}(\mathbf{A})$ such that $\mathbf{A}^+ = \overline{S(\mathbf{A})}$?

- 1. Can we find a "simpler" De Morgan supplemented Heyting algebra $S(\mathbf{A}) \in \mathcal{V}(\mathbf{A})$ such that $\mathbf{A}^+ = \overline{S(\mathbf{A})}$?
- 2. How to use our methods to show that varieties axiomatized by \mathcal{P}_3 -equations are closed under hyper-MacNeille completions?

- 1. Can we find a "simpler" De Morgan supplemented Heyting algebra $S(\mathbf{A}) \in \mathcal{V}(\mathbf{A})$ such that $\mathbf{A}^+ = \overline{S(\mathbf{A})}$?
- 2. How to use our methods to show that varieties axiomatized by \mathcal{P}_3 -equations are closed under hyper-MacNeille completions?
- 3. How to find Boolean product representations of A^+ and Q(A)?

- 1. Can we find a "simpler" De Morgan supplemented Heyting algebra $S(\mathbf{A}) \in \mathcal{V}(\mathbf{A})$ such that $\mathbf{A}^+ = \overline{S(\mathbf{A})}$?
- 2. How to use our methods to show that varieties axiomatized by \mathcal{P}_3 -equations are closed under hyper-MacNeille completions?
- 3. How to find Boolean product representations of A^+ and Q(A)?
- 4. Can we find workable descriptions of MacNeille completions of Boolean products of (fsi) Heyting algebras?

Thank you very much for your time and attention