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Intrinsic vs Descriptive Resource Reasoning

I Abramsky: Two perspectives on logic and structure3

1. Intrinsic: logic embodies structure
e.g. propositions-as-types/proofs-as-programs.

2. Descriptive: logic is used to talk about structure
e.g. Kripke semantics of modal logic.

I Linear Logic: control of weakening and contraction via
exponentials⇒ formulae are consumable resources (intrinsic).

I However! Semantic approaches to LL are not plausible models
of resources (descriptive).

3Abramsky. Information, Processes and Games. In Philosophy of Information. 2008
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The Logic of Bunched Implications5

I Control of weakening and contraction at context formation:
Two context formers; contexts are tree-shaped "bunches"4

I Distinct: in linear logic !ϕ( ψ is intuitionistic implication.

!ϕ( ψ `LL ϕ( ψ vs ϕ→ ψ 0BI ϕ −∗ ψ.

I Intrinsic: sharing interpretation (vs LL’s number-of-uses) via
αλ-calculus;

I Descriptive: Kripke semantics of resources (our focus).
e.g. money, RAM, chemical substances, quantum phenomena

4Read. Relevant Logic. 1988.
5O’Hearn, Pym. The Logic of Bunched Implications. 1999.
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BI’s Syntax and Resource Semantics

ϕ ::= p | > | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | >∗ | ϕ ∗ ϕ | ϕ −∗ ϕ

I R = (R ,w, ◦, e) a partially-ordered commutative monoid:
I w is conversion, ◦ is composition, e is unit resource;
I x w y and x′ w y′ ⇒ x ◦ x′ w y ◦ y′.

x � >∗ iff x w e;
x � ϕ ∗ ψ iff ∃y, z : x w y ◦ z, y � ϕ and z � ψ;
x � ϕ −∗ ψ iff ∀y : y � ϕ implies x ◦ y � ψ.

4 / 23
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Generalised Resource Semantics of BI

I Real applications: ◦ is partial (and possibly) non-deterministic).

Definition (BI Frame)
R = (R ,w, ◦,E) where w a partial order, ◦ : R2 → P(R), E ⊆ X and
the following conditions are satisfied for all x, y, z, t ,w, e, e′:

(◦ Closure) x w x′, y w y′, z ∈ x ◦ y → ∃z′ : z w z′, z′ ∈ x′ ◦ y′

(Associativity) t ∈ x ◦ y ∧ w ∈ t ◦ z → ∃s(s ∈ y ◦ z ∧ w ∈ x ◦ s)
(Commutativity) z ∈ x ◦ y → z ∈ y ◦ x

(Unit Closure) e ∈ E ∧ e′ w e → e′ ∈ E
(Unit Existence) ∃e ∈ E(x ∈ x ◦ e)

(Coherence) e ∈ E ∧ x ∈ y ◦ e → x w y

5 / 23



Resource Reasoning Bunched Logic Duality Separation Logic Further Work & Conclusions

Generalised Resource Semantics of BI

I Real applications: ◦ is partial (and possibly) non-deterministic).

Definition (BI Frame)
R = (R ,w, ◦,E) where w a partial order, ◦ : R2 → P(R), E ⊆ X and
the following conditions are satisfied for all x, y, z, t ,w, e, e′:

(◦ Closure) x w x′, y w y′, z ∈ x ◦ y → ∃z′ : z w z′, z′ ∈ x′ ◦ y′

(Associativity) t ∈ x ◦ y ∧ w ∈ t ◦ z → ∃s(s ∈ y ◦ z ∧ w ∈ x ◦ s)
(Commutativity) z ∈ x ◦ y → z ∈ y ◦ x

(Unit Closure) e ∈ E ∧ e′ w e → e′ ∈ E
(Unit Existence) ∃e ∈ E(x ∈ x ◦ e)

(Coherence) e ∈ E ∧ x ∈ y ◦ e → x w y

5 / 23



Resource Reasoning Bunched Logic Duality Separation Logic Further Work & Conclusions

Generalised Resource Semantics of BI

I Real applications: ◦ is partial (and possibly) non-deterministic).

Definition (BI Frame)
R = (R ,w, ◦,E) where w a partial order, ◦ : R2 → P(R), E ⊆ X and
the following conditions are satisfied for all x, y, z, t ,w, e, e′:

(◦ Closure) x w x′, y w y′, z ∈ x ◦ y → ∃z′ : z w z′, z′ ∈ x′ ◦ y′

(Associativity) t ∈ x ◦ y ∧ w ∈ t ◦ z → ∃s(s ∈ y ◦ z ∧ w ∈ x ◦ s)
(Commutativity) z ∈ x ◦ y → z ∈ y ◦ x

(Unit Closure) e ∈ E ∧ e′ w e → e′ ∈ E

(Unit Existence) ∃e ∈ E(x ∈ x ◦ e)
(Coherence) e ∈ E ∧ x ∈ y ◦ e → x w y

5 / 23



Resource Reasoning Bunched Logic Duality Separation Logic Further Work & Conclusions

Generalised Resource Semantics of BI

I Real applications: ◦ is partial (and possibly) non-deterministic).

Definition (BI Frame)
R = (R ,w, ◦,E) where w a partial order, ◦ : R2 → P(R), E ⊆ X and
the following conditions are satisfied for all x, y, z, t ,w, e, e′:

(◦ Closure) x w x′, y w y′, z ∈ x ◦ y → ∃z′ : z w z′, z′ ∈ x′ ◦ y′

(Associativity) t ∈ x ◦ y ∧ w ∈ t ◦ z → ∃s(s ∈ y ◦ z ∧ w ∈ x ◦ s)
(Commutativity) z ∈ x ◦ y → z ∈ y ◦ x

(Unit Closure) e ∈ E ∧ e′ w e → e′ ∈ E
(Unit Existence) ∃e ∈ E(x ∈ x ◦ e)

(Coherence) e ∈ E ∧ x ∈ y ◦ e → x w y

5 / 23



Resource Reasoning Bunched Logic Duality Separation Logic Further Work & Conclusions

Generalised Resource Semantics of BI

I Real applications: ◦ is partial (and possibly) non-deterministic).

Definition (BI Frame)
R = (R ,w, ◦,E) where w a partial order, ◦ : R2 → P(R), E ⊆ X and
the following conditions are satisfied for all x, y, z, t ,w, e, e′:

(◦ Closure) x w x′, y w y′, z ∈ x ◦ y → ∃z′ : z w z′, z′ ∈ x′ ◦ y′

(Associativity) t ∈ x ◦ y ∧ w ∈ t ◦ z → ∃s(s ∈ y ◦ z ∧ w ∈ x ◦ s)
(Commutativity) z ∈ x ◦ y → z ∈ y ◦ x

(Unit Closure) e ∈ E ∧ e′ w e → e′ ∈ E
(Unit Existence) ∃e ∈ E(x ∈ x ◦ e)

(Coherence) e ∈ E ∧ x ∈ y ◦ e → x w y

5 / 23



Resource Reasoning Bunched Logic Duality Separation Logic Further Work & Conclusions

BI Algebras

Definition (BI Algebra)
(A ,∧,∨,→,>,⊥, ∗,−∗,>∗) with
i) (A ,∧,∨,→,>,⊥) a Heyting algebra;
ii) (A , ∗,>∗) a commutative monoid;
iii) Residuation: a ∗ b ≤ c iff a ≤ b −∗ c.

I Thorough investigations: (Galatos & Jipsen)6, (Jipsen)7,
(Jipsen & Litak)8

I Connections to residuated lattices, relation algebra, Kleene
algebra, MV algebra....

6Distributive Residuated Frames and Generalized BI Algebras. 2017.
7Relation algebras, idempotent semirings and generalized BI algebras. 2017.
8An Algebraic Glimpse at Bunched Implications and Separation Logic. 2018.
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Prime Predicates

I Main technical mechanism in proofs
I A predicate P on tuples of filters and ideals such that

a) Closed under taking unions of ⊆-chains;
b) If P holds of tuple with one component H ∩ K , P holds of
tuple with either H or K .

Lemma
Tuples of filters and ideals satisfying a prime predicate can be
extended to a tuple of prime filters and ideals satisfying the prime
predicate.

I Idea: suitable for both squeeze lemma (relevant logic) +
correspondence theory (modal logic)

7 / 23
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BI Representation Theorem

Theorem
Every BI algebra can be embedded into a BI algebra of sets
generated by resource semantics on a BI frame.

Idea:
I Prime filter frame: w is ⊇, E = {F | >∗ ∈ F},

F • F ′ = {G | ∀a, b ∈ A : a ∈ F , b ∈ F ′ → a ∗ b ∈ G}
I To show BI frame: formulate requirements for frame axioms as

prime predicates, show inhabitation
I Resource semantics clauses generate the algebra of sets.
I Frame axioms guarantee BI algebra.
I Algebraic properties of residuation ensure h(a) = {F | a ∈ F} a

monomorphism.
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Proof Snippets

Associativity: suppose prime filters Ft ∈ Fx • Fy and Fw ∈ Ft • Fz .

I Need prime filter Fs : Fs ∈ Fy • Fz and Fw ∈ Fx • Fs

I Unary prime predicate (−)1 ∈ Fy • Fz ∧ Fw ∈ Fx • (−)1.
I Inhabited by filter F = {a | ∃b ∈ Fy , c ∈ Fz : a ≥ b ∗ c}.
I Thus suitable prime Fs exists: Associativity holds.

Embedding −∗: want h(a) −∗ h(b) ⊆ h(a −∗ b). Suppose a −∗ b < F .
I Need prime filters G,H: H ∈ F • G, a ∈ G, b < H.
I Binary prime predicate (−)1 ∈ F • (−)2 ∧ a ∈ (−)2 ∧ b ∈ (−)1.
I Inhabited by ideal b ↓ and filter a ↑.
I Thus suitable prime filters G,H exist: inclusion holds.

9 / 23
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BI Duality

I Recipe: Esakia duality for HA + Bimbó-Dunn-Urquhart duality
for gaggles + the correspondence theory just established.

Definition (BI Space)
X = (X ,O,w, ◦,E) such that

1. (X ,O,w) an Esakia space,

2. (X ,w, ◦,E) is a BI frame,

3. *some conditions on preservation of up-closed clopens*

4. If x < y ◦ z then there exist up-closed clopen sets C1,C2 such
that y ∈ C1, z ∈ C2 and x < C1 ∗ C2 (Bimbó-Dunn).

Theorem
Categories of BI algebras and BI spaces are dually equivalent. �
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More Connectives: Separating Disjunction ("par")

I Extend BI frame with commutative O : R2 → P(R)
(Idea: resource intersection)

I r � ϕ ∨∗ ψ iff ∀s, t : r ∈ s O t implies s � ϕ or t � ψ
I Consider Weak Distribution9: ϕ ∗ (ψ ∨∗ ξ) ` (ϕ ∗ ψ) ∨∗ ξ.
I CLAIM: Corresponds to frame property:

(x1 ◦ x2) ∩ (y1 O y2) , ∅ → ∃w(y1 ∈ x1 ◦ w ∧ x2 ∈ w O y2).

This holds for computer memory models of this logic.

9Hyland, De Paiva. Full Intuitionistic Linear Logic. 1993.
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Duality Theory for ∨∗ : Weak Distribution

I Prime filter operation:
F H G = {H | ∀a, b ∈ H : a ∨∗ b ∈ H implies a ∈ F or b ∈ G}.

I Suppose: Ft ∈ (Fx1 • Fx2) ∩ (Fy1 H Fy2).
I Unary prime predicate: Fy1 ∈ Fx1 • (−) ∧ Fx2 ∈ (−) H Fy2 .
I Inhabited by filter F = {b | ∃d < Fy2(b ∨∗ d ∈ Fx2)}.
I Hence sufficient prime Fw exists: frame property holds.

Topological duality:
I Add: If x < y O z then there exists upwards-closed clopen sets

C1,C2 such that y < C1, z < C2 and x ∈ C1 ∨
∗ C2.

We have a systematic treatment of a natural class of bunched logics.
• multiplicative connectives; • modalities; • interesting axioms
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A Whirlwind Tour of Separation Logic

I Program logic for programs that manipulate shared data
structures10.

I RAM model: heaps (memory allocations), ◦ composes disjoint
heaps, E is empty heap, ≤ is heap extension.

I Assertions ϕ are first-order BI formulae: predicates x 7→ y.
I Calculus of Hoare triples {ϕ}C{ψ}: if memory in state ϕ and C

executes + terminates, memory will be in state ψ afterwards.
I FB Infer: Separation Logic static analysis tool deployed at

Facebook, Spotify, Amazon, Uber, Instagram, Whatsapp...

10J. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. LICS
2002.
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BI Hyperdoctrines

A BI hyperdoctrine11 is a tuple

(P : Cop → Poset, (=X )X∈Ob(C), (∃XΓ,∀XΓ)Γ,X∈Ob(C))

such that:
1. C a category with finite products;
2. P : Cop → Poset a functor: objects to BI algebras, morphisms

to homomorphisms;
3. Diagonal morphisms ∆X : X → X × X has =X∈ P(X ×X ) adjoint

at >P(X ).
>P(X ) ≤ P(∆X )(a) iff =X≤ a ;

4. ∃XΓ and ∀XΓ are left and right adjoint to P(πΓ,X ).

∃XΓ(a) ≤ b iff a ≤ P(πΓ,X )(b) and
P(πΓ,X )(b) ≤ a iff b ≤ ∀XΓ(a).

11Biering et al. BI-Hyperdoctrines, Higher-Order SL and Abstraction. 2005.
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BI Hyperdoctrines

A BI hyperdoctrine15 is a tuple

(P : Cop → Poset, (=X )X∈Ob(C), (∃XΓ,∀XΓ)Γ,X∈Ob(C))

such that:

1. Stuff to interpret sorts and substitution

2. Stuff to interpret predicates and propositional connectives

3. Stuff to interpret equality

4. Stuff to interpret quantifiers

15Biering et al. BI-Hyperdoctrines, Higher-Order SL and Abstraction. 2005.
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Indexed BI Spaces

An indexed BI Space is a functor R : C→ BISp such that

1. C is a category with finite products;

2. For all objects Γ, Γ′ and X in C, all morphisms s : Γ→ Γ′ and all
product projections πΓ,X , R(πΓ′,X )(y) v R(s)(x) implies there
exists z such that: R(πΓ,X )(z) v x and y v R(s × idX )(z);16

Example
Separation Logic’s RAM model!

Theorem
The categories of BI hyperdoctrines and indexed BI spaces are
dually equivalent. �

16Coumans. Duality for First-Order Logic. Slides. 2010
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A Goldblatt-Thomason Theorem

I A class of frames C is definable in bunched logic L iff exists
formulae Σ ⊆ L s.t. R ∈ C iff R � Σ.

Theorem (Bunched Logic Goldblatt Thomason Theorem)
A class of L frames is definable iff it is closed under bounded
morphic images

, generated subframes and disjoint unions, and
reflects prime extensions. �

(Prime extension: the prime filter frame built from the complex
algebra of a frame)
I Easy: closure properties (use duality + HSP theorem (bunched

logic algebras form varieties)).
I Harder: reflection

(need: every prime extension the bounded morphic image of
an ultrapower frame – extends (Rodenburg 1986)).
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Application of Goldblatt-Thomason to Separation Logic

I Abstract Separation Logic: attempt to capture salient features
of memory models as subclasses of BI frames.

Example
A Separation Algebra is a cancellative, partial commutative monoid.

(Cancellative: x ◦ z = y ◦ z implies x = y.)

Theorem
Separation algebras are not BI definable.

Proof.
By failure of Goldblatt-Thomason closure properties. �

I Instead: systematic labelled proof theory to nonetheless
capture these classes17

17SD, Pym. Modular Tableaux for Separation Theories. FOSSACS 2018.
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Further Work

I More uniformity?
Sahlqvist-style correspondence theory of bunched logics.

I More Separation Logic?
Extension to semantics of program execution.

I More algebra?
Connections to algebraic theory of completions.

I More topology?
Topological models of resource.

I More logic?
Natural duality and many-valued variants of bunched logics.
Goldblatt-Thomason for first-order bunched logics
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Conclusions

I Bunched logics facilitate descriptive resource reasoning.

I Can be systematically understood (TACL!) with duality theory.
I This can be lifted to Separation Logic structures.
I Application of modal model theory-style results to SL.
I There are substructural logics having a direct impact on billions

of people, highly amenable to the techniques of this community!
I Full details: my PhD thesis, or SD & Pym. Stone-Type Dualities

for Separation Logics. LMCS, 2019.

Thanks!
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