Resource Reasoning in Duality Theoretic Form Stone-Type Dualities for Bunched and Separation Logics¹

Simon Docherty² and David Pym

University College London

TACL 2019

¹SD and Pym. Stone-Type Dualities for Separation Logics. *LMCS* 15(1), 2019. ²SD. Bunched Logics: A Uniform Approach. PhD Thesis. 2019 **Resource Reasoning**

Abramsky: Two perspectives on logic and structure³

³Abramsky. Information, Processes and Games. In Philosophy of Information. 2008

- Abramsky: Two perspectives on logic and structure³
 - 1. Intrinsic: logic embodies structure
 - e.g. propositions-as-types/proofs-as-programs.

³Abramsky. Information, Processes and Games. In Philosophy of Information. 2008

- Abramsky: Two perspectives on logic and structure³
 - 1. Intrinsic: logic embodies structure
 - e.g. propositions-as-types/proofs-as-programs.
 - 2. Descriptive: logic is used to talk about structure e.g. Kripke semantics of modal logic.

³Abramsky. Information, Processes and Games. In Philosophy of Information. 2008

- Abramsky: Two perspectives on logic and structure³
 - 1. Intrinsic: logic embodies structure
 - e.g. propositions-as-types/proofs-as-programs.
 - Descriptive: logic is used to talk about structure e.g. Kripke semantics of modal logic.
- Linear Logic: control of weakening and contraction via exponentials ⇒ formulae *are* consumable resources (intrinsic).

³Abramsky. Information, Processes and Games. In Philosophy of Information. 2008

- Abramsky: Two perspectives on logic and structure³
 - 1. Intrinsic: logic embodies structure
 - e.g. propositions-as-types/proofs-as-programs.
 - Descriptive: logic is used to talk about structure e.g. Kripke semantics of modal logic.
- Linear Logic: control of weakening and contraction via exponentials ⇒ formulae *are* consumable resources (intrinsic).
- However! Semantic approaches to LL are *not* plausible *models* of resources (descriptive).

³Abramsky. Information, Processes and Games. In Philosophy of Information. 2008

 Control of weakening and contraction at context formation: Two context formers; contexts are tree-shaped "bunches"⁴

⁵O'Hearn, Pym. The Logic of Bunched Implications. 1999.

⁴Read. Relevant Logic. 1988.

- Control of weakening and contraction at context formation: Two context formers; contexts are tree-shaped "bunches"⁴
- ▶ Distinct: in linear logic $!\varphi \multimap \psi$ is intuitionistic implication.

$$!\varphi \multimap \psi \vdash_{\mathrm{LL}} \varphi \multimap \psi \mathsf{VS} \varphi \to \psi \nvDash_{\mathrm{BI}} \varphi \twoheadrightarrow \psi.$$

⁴Read. Relevant Logic. 1988.

⁵O'Hearn, Pym. The Logic of Bunched Implications. 1999.

- Control of weakening and contraction at context formation: Two context formers; contexts are tree-shaped "bunches"⁴
- ▶ Distinct: in linear logic $!\varphi \multimap \psi$ is intuitionistic implication.

$$!\varphi \multimap \psi \vdash_{\mathrm{LL}} \varphi \multimap \psi \mathsf{VS} \varphi \to \psi \nvDash_{\mathrm{BI}} \varphi \twoheadrightarrow \psi.$$

 Intrinsic: sharing interpretation (vs LL's number-of-uses) via αλ-calculus;

⁴Read. Relevant Logic. 1988.

⁵O'Hearn, Pym. The Logic of Bunched Implications. 1999.

- Control of weakening and contraction at context formation: Two context formers; contexts are tree-shaped "bunches"⁴
- ▶ Distinct: in linear logic $!\varphi \multimap \psi$ is intuitionistic implication.

$$!\varphi \multimap \psi \vdash_{\mathrm{LL}} \varphi \multimap \psi \mathsf{VS} \varphi \to \psi \nvDash_{\mathrm{BI}} \varphi \twoheadrightarrow \psi.$$

- Intrinsic: sharing interpretation (vs LL's number-of-uses) via αλ-calculus;
- Descriptive: Kripke semantics of resources (our focus).
 e.g. money, RAM, chemical substances, quantum phenomena

⁴Read. Relevant Logic. 1988.

⁵O'Hearn, Pym. The Logic of Bunched Implications. 1999.

$\varphi ::= \mathbf{p} \mid \top \mid \bot \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \to \varphi \mid \top^* \mid \varphi \ast \varphi \mid \varphi \twoheadrightarrow \varphi$

$\varphi ::= p \mid \top \mid \bot \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \to \varphi \mid \top^* \mid \varphi \ast \varphi \mid \varphi \twoheadrightarrow \varphi$

$\varphi ::= p \mid \top \mid \bot \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \to \varphi \mid \top^* \mid \varphi \ast \varphi \mid \varphi \twoheadrightarrow \varphi$

$$\varphi ::= p \mid \top \mid \bot \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \to \varphi \mid \top^* \mid \varphi \ast \varphi \mid \varphi \twoheadrightarrow \varphi$$

▶ $\mathcal{R} = (R, \supseteq, \circ, e)$ a partially-ordered commutative monoid:

$$\varphi ::= p \mid \top \mid \bot \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \to \varphi \mid \top^* \mid \varphi \ast \varphi \mid \varphi \twoheadrightarrow \varphi$$

- ▶ $\mathcal{R} = (R, \supseteq, \circ, e)$ a partially-ordered commutative monoid:
- ▶ \supseteq is conversion, \circ is composition, *e* is unit resource;

$$\varphi ::= p \mid \top \mid \bot \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \to \varphi \mid \top^* \mid \varphi \ast \varphi \mid \varphi \twoheadrightarrow \varphi$$

- ▶ $\mathcal{R} = (R, \supseteq, \circ, e)$ a partially-ordered commutative monoid:
- ▶ \supseteq is conversion, \circ is composition, *e* is unit resource;

•
$$x \sqsupseteq y$$
 and $x' \sqsupseteq y' \Rightarrow x \circ x' \sqsupseteq y \circ y'$.

$$\varphi ::= p \mid \top \mid \bot \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \to \varphi \mid \top^* \mid \varphi \ast \varphi \mid \varphi \twoheadrightarrow \varphi$$

- ▶ $\mathcal{R} = (R, \supseteq, \circ, e)$ a partially-ordered commutative monoid:
- ▶ \supseteq is conversion, \circ is composition, *e* is unit resource;

►
$$x \sqsupseteq y$$
 and $x' \sqsupseteq y' \Rightarrow x \circ x' \sqsupseteq y \circ y'$.
 $x \models \top^* \text{ iff } x \sqsupseteq e;$

$$\varphi ::= p \mid \top \mid \bot \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \to \varphi \mid \top^* \mid \varphi \ast \varphi \mid \varphi \twoheadrightarrow \varphi$$

- ▶ $\mathcal{R} = (R, \supseteq, \circ, e)$ a partially-ordered commutative monoid:
- \blacktriangleright \exists is conversion, \circ is composition, *e* is unit resource;

►
$$x \sqsupseteq y$$
 and $x' \sqsupseteq y' \Rightarrow x \circ x' \sqsupseteq y \circ y'$.
 $x \models \top^*$ iff $x \sqsupseteq e$;
 $x \models \varphi * \psi$ iff $\exists y, z : x \sqsupseteq y \circ z, y \models \varphi$ and $z \models \psi$;

,

$$\varphi ::= p \mid \top \mid \bot \mid \varphi \land \varphi \mid \varphi \lor \varphi \mid \varphi \to \varphi \mid \top^* \mid \varphi \ast \varphi \mid \varphi \twoheadrightarrow \varphi$$

- ▶ $\mathcal{R} = (R, \supseteq, \circ, e)$ a partially-ordered commutative monoid:
- ▶ \exists is conversion, \circ is composition, *e* is unit resource;

•
$$x \sqsupseteq y$$
 and $x' \sqsupseteq y' \Rightarrow x \circ x' \sqsupseteq y \circ y'$.

 $\begin{array}{l} x \models \top^* \text{ iff } x \sqsupseteq e; \\ x \models \varphi * \psi \text{ iff } \exists y, z : x \sqsupseteq y \circ z, y \models \varphi \text{ and } z \models \psi; \\ x \models \varphi \twoheadrightarrow \psi \text{ iff } \forall y : y \models \varphi \text{ implies } x \circ y \models \psi. \end{array}$

Bunched Logic Duality

► Real applications: • is partial (and possibly) non-deterministic).

Definition (BI Frame)

 $\mathcal{R} = (R, \exists, \circ, E)$ where \exists a partial order, $\circ : \mathbb{R}^2 \to \mathcal{P}(\mathbb{R}), E \subseteq X$ and the following conditions are satisfied for all x, y, z, t, w, e, e':

 $(\circ \text{ Closure}) \quad x \sqsupseteq x', y \sqsupseteq y', z \in x \circ y \to \exists z' : z \sqsupseteq z', z' \in x' \circ y'$

► Real applications: • is partial (and possibly) non-deterministic).

Definition (BI Frame)

 $\mathcal{R} = (R, \exists, \circ, E)$ where \exists a partial order, $\circ : \mathbb{R}^2 \to \mathcal{P}(\mathbb{R}), E \subseteq X$ and the following conditions are satisfied for all x, y, z, t, w, e, e':

 $\begin{array}{ll} (\circ \mbox{ Closure}) & x \sqsupseteq x', y \sqsupseteq y', z \in x \circ y \to \exists z' : z \sqsupseteq z', z' \in x' \circ y' \\ (\mbox{Associativity}) & t \in x \circ y \land w \in t \circ z \to \exists s (s \in y \circ z \land w \in x \circ s) \\ (\mbox{Commutativity}) & z \in x \circ y \to z \in y \circ x \end{array}$

► Real applications: • is partial (and possibly) non-deterministic).

Definition (BI Frame)

 $\mathcal{R} = (R, \exists, \circ, E)$ where \exists a partial order, $\circ : \mathbb{R}^2 \to \mathcal{P}(\mathbb{R}), E \subseteq X$ and the following conditions are satisfied for all x, y, z, t, w, e, e':

 $\begin{array}{ll} (\circ \mbox{ Closure}) & x \sqsupseteq x', y \sqsupseteq y', z \in x \circ y \to \exists z' : z \sqsupseteq z', z' \in x' \circ y' \\ (\mbox{Associativity}) & t \in x \circ y \land w \in t \circ z \to \exists s(s \in y \circ z \land w \in x \circ s) \\ (\mbox{Commutativity}) & z \in x \circ y \to z \in y \circ x \\ (\mbox{Unit Closure}) & e \in E \land e' \sqsupseteq e \to e' \in E \end{array}$

► Real applications: • is partial (and possibly) non-deterministic).

Definition (BI Frame)

 $\mathcal{R} = (R, \exists, \circ, E)$ where \exists a partial order, $\circ : \mathbb{R}^2 \to \mathcal{P}(\mathbb{R}), E \subseteq X$ and the following conditions are satisfied for all x, y, z, t, w, e, e':

(\circ Closure) $x \supseteq x', y \supseteq y', z \in x \circ y \rightarrow \exists z' : z \supseteq z', z' \in x' \circ y'$ (Associativity) $t \in x \circ y \land w \in t \circ z \rightarrow \exists s (s \in y \circ z \land w \in x \circ s)$ (Commutativity) $z \in x \circ y \rightarrow z \in y \circ x$ (Unit Closure) $e \in E \land e' \supseteq e \rightarrow e' \in E$ (Unit Existence) $\exists e \in E(x \in x \circ e)$

► Real applications: • is partial (and possibly) non-deterministic).

Definition (BI Frame)

 $\mathcal{R} = (R, \exists, \circ, E)$ where \exists a partial order, $\circ : \mathbb{R}^2 \to \mathcal{P}(\mathbb{R}), E \subseteq X$ and the following conditions are satisfied for all x, y, z, t, w, e, e':

 $\begin{array}{ll} (\circ \mbox{ Closure}) & x \sqsupseteq x', y \sqsupseteq y', z \in x \circ y \to \exists z' : z \sqsupseteq z', z' \in x' \circ y' \\ (\mbox{Associativity}) & t \in x \circ y \land w \in t \circ z \to \exists s (s \in y \circ z \land w \in x \circ s) \\ (\mbox{Commutativity}) & z \in x \circ y \to z \in y \circ x \\ (\mbox{Unit Closure}) & e \in E \land e' \sqsupseteq e \to e' \in E \\ (\mbox{Unit Existence}) & \exists e \in E(x \in x \circ e) \\ (\mbox{Coherence}) & e \in E \land x \in y \circ e \to x \sqsupseteq y \end{array}$

BI Algebras

Definition (BI Algebra)

 $(A, \land, \lor, \rightarrow, \top, \bot, *, *, \top^*)$ with i) $(A, \land, \lor, \rightarrow, \top, \bot)$ a Heyting algebra; ii) $(A, *, \top^*)$ a commutative monoid; iii) Residuation: $a * b \le c$ iff $a \le b * c$.

 Thorough investigations: (Galatos & Jipsen)⁶, (Jipsen)⁷, (Jipsen & Litak)⁸

 ⁶Distributive Residuated Frames and Generalized BI Algebras. 2017.
 ⁷Relation algebras, idempotent semirings and generalized BI algebras. 2017.
 ⁸An Algebraic Glimpse at Bunched Implications and Separation Logic. 2018.

BI Algebras

Definition (BI Algebra)

 $(A, \land, \lor, \rightarrow, \top, \bot, *, *, \top^*)$ with i) $(A, \land, \lor, \rightarrow, \top, \bot)$ a Heyting algebra; ii) $(A, *, \top^*)$ a commutative monoid; iii) Residuation: $a * b \le c$ iff $a \le b * c$.

- Thorough investigations: (Galatos & Jipsen)⁶, (Jipsen)⁷, (Jipsen & Litak)⁸
- Connections to residuated lattices, relation algebra, Kleene algebra, MV algebra....

⁶Distributive Residuated Frames and Generalized BI Algebras. 2017.
 ⁷Relation algebras, idempotent semirings and generalized BI algebras. 2017.
 ⁸An Algebraic Glimpse at Bunched Implications and Separation Logic. 2018.

Prime Predicates

- Main technical mechanism in proofs
- A predicate P on tuples of filters and ideals such that
 a) Closed under taking unions of ⊆-chains;
 b) If P holds of tuple with one component H ∩ K, P holds of tuple with either H or K.

Lemma

Tuples of filters and ideals satisfying a prime predicate can be extended to a tuple of prime filters and ideals satisfying the prime predicate.

 Idea: suitable for both squeeze lemma (relevant logic) + correspondence theory (modal logic)

Theorem

Every BI algebra can be embedded into a BI algebra of sets generated by resource semantics on a BI frame.

Theorem

Every BI algebra can be embedded into a BI algebra of sets generated by resource semantics on a BI frame.

Idea:

▶ Prime filter frame: \exists is \supseteq , $E = \{F \mid \top^* \in F\}$, $F \bullet F' = \{G \mid \forall a, b \in A : a \in F, b \in F' \rightarrow a * b \in G\}$

Theorem

Every BI algebra can be embedded into a BI algebra of sets generated by resource semantics on a BI frame.

- ▶ Prime filter frame: \Box is \supseteq , $E = \{F \mid \top^* \in F\}$, $F \bullet F' = \{G \mid \forall a, b \in A : a \in F, b \in F' \rightarrow a * b \in G\}$
- To show BI frame: formulate requirements for frame axioms as prime predicates, show inhabitation

Theorem

Every BI algebra can be embedded into a BI algebra of sets generated by resource semantics on a BI frame.

- ▶ Prime filter frame: \exists is \supseteq , $E = \{F \mid \top^* \in F\}$, $F \bullet F' = \{G \mid \forall a, b \in A : a \in F, b \in F' \rightarrow a * b \in G\}$
- To show BI frame: formulate requirements for frame axioms as prime predicates, show inhabitation
- Resource semantics clauses generate the algebra of sets.

Theorem

Every BI algebra can be embedded into a BI algebra of sets generated by resource semantics on a BI frame.

- ▶ Prime filter frame: \supseteq is \supseteq , $E = \{F \mid \top^* \in F\}$, $F \bullet F' = \{G \mid \forall a, b \in A : a \in F, b \in F' \rightarrow a * b \in G\}$
- To show BI frame: formulate requirements for frame axioms as prime predicates, show inhabitation
- Resource semantics clauses generate the algebra of sets.
- Frame axioms guarantee BI algebra.

Theorem

Every BI algebra can be embedded into a BI algebra of sets generated by resource semantics on a BI frame.

- ▶ Prime filter frame: \Box is \supseteq , $E = \{F \mid \top^* \in F\}$, $F \bullet F' = \{G \mid \forall a, b \in A : a \in F, b \in F' \rightarrow a * b \in G\}$
- To show BI frame: formulate requirements for frame axioms as prime predicates, show inhabitation
- Resource semantics clauses generate the algebra of sets.
- Frame axioms guarantee BI algebra.
- Algebraic properties of residuation ensure h(a) = {F | a ∈ F} a monomorphism.

Proof Snippets

Associativity: suppose prime filters $F_t \in F_x \bullet F_y$ and $F_w \in F_t \bullet F_z$.
Associativity: suppose prime filters $F_t \in F_x \bullet F_y$ and $F_w \in F_t \bullet F_z$.

▶ Need prime filter F_s : $F_s \in F_y \bullet F_z$ and $F_w \in F_x \bullet F_s$

Associativity: suppose prime filters $F_t \in F_x \bullet F_y$ and $F_w \in F_t \bullet F_z$.

- Need prime filter F_s : $F_s \in F_y \bullet F_z$ and $F_w \in F_x \bullet F_s$
- Unary prime predicate $(-)_1 \in F_y \bullet F_z \land F_w \in F_x \bullet (-)_1$.

Associativity: suppose prime filters $F_t \in F_x \bullet F_y$ and $F_w \in F_t \bullet F_z$.

- Need prime filter F_s : $F_s \in F_y \bullet F_z$ and $F_w \in F_x \bullet F_s$
- Unary prime predicate $(-)_1 \in F_y \bullet F_z \land F_w \in F_x \bullet (-)_1$.
- ▶ Inhabited by filter $F = \{a \mid \exists b \in F_y, c \in F_z : a \ge b * c\}.$

Associativity: suppose prime filters $F_t \in F_x \bullet F_y$ and $F_w \in F_t \bullet F_z$.

- Need prime filter F_s : $F_s \in F_y \bullet F_z$ and $F_w \in F_x \bullet F_s$
- Unary prime predicate $(-)_1 \in F_y \bullet F_z \land F_w \in F_x \bullet (-)_1$.
- ▶ Inhabited by filter $F = \{a \mid \exists b \in F_y, c \in F_z : a \ge b * c\}.$
- Thus suitable prime F_s exists: Associativity holds.

Associativity: suppose prime filters $F_t \in F_x \bullet F_y$ and $F_w \in F_t \bullet F_z$.

- Need prime filter F_s : $F_s \in F_y \bullet F_z$ and $F_w \in F_x \bullet F_s$
- Unary prime predicate $(-)_1 \in F_y \bullet F_z \land F_w \in F_x \bullet (-)_1$.
- ▶ Inhabited by filter $F = \{a \mid \exists b \in F_y, c \in F_z : a \ge b * c\}.$
- Thus suitable prime F_s exists: Associativity holds.

Embedding \neg : want $h(a) \neg h(b) \subseteq h(a \neg b)$. Suppose $a \neg b \notin F$.

▶ Need prime filters G, H: $H \in F \bullet G$, $a \in G$, $b \notin H$.

Associativity: suppose prime filters $F_t \in F_x \bullet F_y$ and $F_w \in F_t \bullet F_z$.

- Need prime filter F_s : $F_s \in F_y \bullet F_z$ and $F_w \in F_x \bullet F_s$
- Unary prime predicate $(-)_1 \in F_y \bullet F_z \land F_w \in F_x \bullet (-)_1$.
- ▶ Inhabited by filter $F = \{a \mid \exists b \in F_y, c \in F_z : a \ge b * c\}.$
- Thus suitable prime F_s exists: Associativity holds.

Embedding \neg : want $h(a) \neg h(b) \subseteq h(a \neg b)$. Suppose $a \neg b \notin F$.

- ▶ Need prime filters G, H: $H \in F \bullet G$, $a \in G$, $b \notin H$.
- ▶ Binary prime predicate $\overline{(-)_1} \in F \bullet (-)_2 \land a \in (-)_2 \land b \in (-)_1$.

Associativity: suppose prime filters $F_t \in F_x \bullet F_y$ and $F_w \in F_t \bullet F_z$.

- Need prime filter F_s : $F_s \in F_y \bullet F_z$ and $F_w \in F_x \bullet F_s$
- Unary prime predicate $(-)_1 \in F_y \bullet F_z \land F_w \in F_x \bullet (-)_1$.
- ▶ Inhabited by filter $F = \{a \mid \exists b \in F_y, c \in F_z : a \ge b * c\}.$
- Thus suitable prime F_s exists: Associativity holds.

Embedding \neg : want $h(a) \neg h(b) \subseteq h(a \neg b)$. Suppose $a \neg b \notin F$.

- ▶ Need prime filters G, H: $H \in F \bullet G$, $a \in G$, $b \notin H$.
- ▶ Binary prime predicate $\overline{(-)_1} \in F \bullet (-)_2 \land a \in (-)_2 \land b \in (-)_1$.
- Inhabited by ideal $b \downarrow$ and filter $a \uparrow$.

Associativity: suppose prime filters $F_t \in F_x \bullet F_y$ and $F_w \in F_t \bullet F_z$.

- Need prime filter F_s : $F_s \in F_y \bullet F_z$ and $F_w \in F_x \bullet F_s$
- Unary prime predicate $(-)_1 \in F_y \bullet F_z \land F_w \in F_x \bullet (-)_1$.
- ▶ Inhabited by filter $F = \{a \mid \exists b \in F_y, c \in F_z : a \ge b * c\}.$
- Thus suitable prime F_s exists: Associativity holds.

Embedding \neg : want $h(a) \neg h(b) \subseteq h(a \neg b)$. Suppose $a \neg b \notin F$.

- ▶ Need prime filters G, H: $H \in F \bullet G$, $a \in G$, $b \notin H$.
- ▶ Binary prime predicate $\overline{(-)_1} \in F \bullet (-)_2 \land a \in (-)_2 \land b \in (-)_1$.
- Inhabited by ideal $b \downarrow$ and filter $a \uparrow$.
- ► Thus suitable prime filters *G*, *H* exist: inclusion holds.

- $X = (X, O, \supseteq, \circ, E)$ such that
 - 1. (X, O, \supseteq) an Esakia space,

- $X = (X, O, \supseteq, \circ, E)$ such that
 - 1. (X, O, \supseteq) an Esakia space,
 - 2. $(X, \sqsupseteq, \circ, E)$ is a BI frame,

- $X = (X, O, \supseteq, \circ, E)$ such that
 - 1. (X, O, \supseteq) an Esakia space,
 - 2. $(X, \sqsupseteq, \circ, E)$ is a BI frame,
 - 3. *some conditions on preservation of up-closed clopens*

- $X = (X, O, \supseteq, \circ, E)$ such that
 - 1. (X, O, \supseteq) an Esakia space,
 - 2. (X, \supseteq, \circ, E) is a BI frame,
 - 3. *some conditions on preservation of up-closed clopens*
 - If x ∉ y ∘ z then there exist up-closed clopen sets C₁, C₂ such that y ∈ C₁, z ∈ C₂ and x ∉ C₁ ∗ C₂ (Bimbó-Dunn).

Definition (BI Space)

- $X = (X, O, \supseteq, \circ, E)$ such that
 - 1. (X, O, \supseteq) an Esakia space,
 - 2. (X, \supseteq, \circ, E) is a BI frame,
 - 3. *some conditions on preservation of up-closed clopens*
 - 4. If $x \notin y \circ z$ then there exist up-closed clopen sets C_1, C_2 such that $y \in C_1, z \in C_2$ and $x \notin C_1 * C_2$ (Bimbó-Dunn).

Theorem

Categories of BI algebras and BI spaces are dually equivalent.

► Extend BI frame with commutative ∇ : $R^2 \rightarrow \mathcal{P}(R)$ (Idea: resource intersection)

⁹Hyland, De Paiva. Full Intuitionistic Linear Logic. 1993.

- ► $r \models \varphi \checkmark \psi$ iff $\forall s, t : r \in s \lor t$ implies $s \models \varphi$ or $t \models \psi$

⁹Hyland, De Paiva. Full Intuitionistic Linear Logic. 1993.

- ► $r \models \varphi \checkmark \psi$ iff $\forall s, t : r \in s \lor t$ implies $s \models \varphi$ or $t \models \psi$
- Consider Weak Distribution⁹: $\varphi * (\psi \stackrel{*}{\forall} \xi) \vdash (\varphi * \psi) \stackrel{*}{\forall} \xi$.

⁹Hyland, De Paiva. Full Intuitionistic Linear Logic. 1993.

- ► $r \models \varphi \checkmark \psi$ iff $\forall s, t : r \in s \lor t$ implies $s \models \varphi$ or $t \models \psi$
- Consider Weak Distribution⁹: $\varphi * (\psi \overset{\diamond}{} \xi) \vdash (\varphi * \psi) \overset{\diamond}{} \xi$.
- ► CLAIM: Corresponds to frame property: $(x_1 \circ x_2) \cap (y_1 \nabla y_2) \neq \emptyset \rightarrow \exists w (y_1 \in x_1 \circ w \land x_2 \in w \nabla y_2).$

<u>This holds for computer memory models of this logic.</u> ⁹Hyland, De Paiva. Full Intuitionistic Linear Logic. 1993.

Duality Theory for V: Weak Distribution

Prime filter operation:

 $F \checkmark G = \{H \mid \forall a, b \in H : a \ \Diamond b \in H \text{ implies } a \in F \text{ or } b \in G\}.$

Duality Theory for V: Weak Distribution

Prime filter operation:

 $F \bullet G = \{H \mid \forall a, b \in H : a \checkmark b \in H \text{ implies } a \in F \text{ or } b \in G\}.$

- ► Suppose: $F_t \in (F_{x_1} \bullet F_{x_2}) \cap (F_{y_1} \blacktriangledown F_{y_2}).$
- ▶ Unary prime predicate: $F_{y_1} \in F_{x_1} \bullet (-) \land F_{x_2} \in (-) \blacktriangledown F_{y_2}$.

Duality Theory for V: Weak Distribution

Prime filter operation:

 $F \checkmark G = \{H \mid \forall a, b \in H : a \ \diamond b \in H \text{ implies } a \in F \text{ or } b \in G\}.$

- ► Suppose: $F_t \in (F_{x_1} \bullet F_{x_2}) \cap (F_{y_1} \blacktriangledown F_{y_2}).$
- ▶ Unary prime predicate: $F_{y_1} \in F_{x_1} \bullet (-) \land F_{x_2} \in (-) \lor F_{y_2}$.
- ▶ Inhabited by filter $F = \{b \mid \exists d \notin F_{y_2}(b \overset{*}{\lor} d \in F_{x_2})\}.$
- Hence sufficient prime F_w exists: frame property holds.

Duality Theory for ∜: Weak Distribution

Prime filter operation:

 $F \blacksquare G = \{H \mid \forall a, b \in H : a \ \Diamond b \in H \text{ implies } a \in F \text{ or } b \in G\}.$

- ► Suppose: $F_t \in (F_{x_1} \bullet F_{x_2}) \cap (F_{y_1} \blacktriangledown F_{y_2}).$
- ▶ Unary prime predicate: $F_{y_1} \in F_{x_1} \bullet (-) \land F_{x_2} \in (-) \lor F_{y_2}$.
- ▶ Inhabited by filter $F = \{b \mid \exists d \notin F_{y_2}(b \overset{\diamond}{\lor} d \in F_{x_2})\}.$
- Hence sufficient prime F_w exists: frame property holds.

Topological duality:

► Add: If $x \notin y \lor z$ then there exists upwards-closed clopen sets C_1, C_2 such that $y \notin C_1, z \notin C_2$ and $x \in C_1 \stackrel{*}{\lor} C_2$.

Duality Theory for ∜: Weak Distribution

Prime filter operation:

 $F \checkmark G = \{H \mid \forall a, b \in H : a \checkmark b \in H \text{ implies } a \in F \text{ or } b \in G\}.$

- ► Suppose: $F_t \in (F_{x_1} \bullet F_{x_2}) \cap (F_{y_1} \blacktriangledown F_{y_2}).$
- ▶ Unary prime predicate: $F_{y_1} \in F_{x_1} \bullet (-) \land F_{x_2} \in (-) \blacktriangledown F_{y_2}$.
- ▶ Inhabited by filter $F = \{b \mid \exists d \notin F_{y_2}(b \overset{\diamond}{\lor} d \in F_{x_2})\}.$
- Hence sufficient prime F_w exists: frame property holds.

Topological duality:

► Add: If $x \notin y \lor z$ then there exists upwards-closed clopen sets C_1, C_2 such that $y \notin C_1, z \notin C_2$ and $x \in C_1 \lor C_2$.

We have a systematic treatment of a natural class of bunched logics.

• multiplicative connectives; • modalities; • interesting axioms

Separation Logic

 Program logic for programs that manipulate shared data structures¹⁰.

¹⁰J. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. *LICS* 2002.

- Program logic for programs that manipulate shared data structures¹⁰.
- ► RAM model: heaps (memory allocations), o composes disjoint heaps, *E* is empty heap, ≤ is heap extension.

¹⁰J. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. *LICS* 2002.

- Program logic for programs that manipulate shared data structures¹⁰.
- ► RAM model: heaps (memory allocations), o composes disjoint heaps, *E* is empty heap, ≤ is heap extension.
- Assertions φ are first-order BI formulae: predicates $x \mapsto y$.

¹⁰J. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. *LICS* 2002.

- Program logic for programs that manipulate shared data structures¹⁰.
- ► RAM model: heaps (memory allocations), o composes disjoint heaps, *E* is empty heap, ≤ is heap extension.
- Assertions φ are first-order BI formulae: predicates $x \mapsto y$.
- Calculus of Hoare triples {φ}C{ψ}: if memory in state φ and C executes + terminates, memory will be in state ψ afterwards.

¹⁰J. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. *LICS* 2002.

- Program logic for programs that manipulate shared data structures¹⁰.
- ► RAM model: heaps (memory allocations), o composes disjoint heaps, *E* is empty heap, ≤ is heap extension.
- Assertions φ are first-order BI formulae: predicates $x \mapsto y$.
- Calculus of Hoare triples {φ}C{ψ}: if memory in state φ and C executes + terminates, memory will be in state ψ afterwards.
- ► FB Infer: Separation Logic static analysis tool deployed at Facebook, Spotify, Amazon, Uber, Instagram, Whatsapp...

¹⁰J. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. *LICS* 2002.

A BI hyperdoctrine¹¹ is a tuple

$$(\mathbb{P}: \mathbb{C}^{op} \to \operatorname{Poset}, (=_X)_{X \in Ob(\mathbb{C})}, (\exists X_{\Gamma}, \forall X_{\Gamma})_{\Gamma, X \in Ob(\mathbb{C})})$$

such that:

- 1. C a category with finite products;
- 2. $\mathbb{P}: \mathbb{C}^{op} \to \text{Poset}$ a functor: objects to BI algebras, morphisms to homomorphisms;
- 3. Diagonal morphisms $\Delta_X : X \to X \times X$ has $=_X \in \mathbb{P}(X \times X)$ adjoint at $\top_{\mathbb{P}(X)}$.

$$op_{\mathbb{P}(X)} \leq \mathbb{P}(\Delta_X)(a) \text{ iff } =_X \leq a;$$

4. $\exists X_{\Gamma}$ and $\forall X_{\Gamma}$ are left and right adjoint to $\mathbb{P}(\pi_{\Gamma,X})$.

$$\exists X_{\Gamma}(a) \le b \quad \text{iff} \quad a \le \mathbb{P}(\pi_{\Gamma,X})(b) \text{ and} \\ \mathbb{P}(\pi_{\Gamma,X})(b) \le a \quad \text{iff} \quad b \le \forall X_{\Gamma}(a).$$

¹¹Biering et al. BI-Hyperdoctrines, Higher-Order SL and Abstraction. 2005.

A BI hyperdoctrine¹² is a tuple

$$(\mathbb{P}: \mathbb{C}^{op} \to \operatorname{Poset}, (=_X)_{X \in Ob(\mathbb{C})}, (\exists X_{\Gamma}, \forall X_{\Gamma})_{\Gamma, X \in Ob(\mathbb{C})})$$

such that:

- 1. Stuff to interpret sorts and substitution
- 2. $\mathbb{P}: \mathbb{C}^{op} \to \text{Poset a functor: objects to BI algebras, morphisms to homomorphisms;}$
- 3. Diagonal morphisms $\Delta_X : X \to X \times X$ has $=_X \in \mathbb{P}(X \times X)$ adjoint at $\top_{\mathbb{P}(X)}$.

$$op_{\mathbb{P}(X)} \leq \mathbb{P}(\Delta_X)(a) \text{ iff } =_X \leq a;$$

4. $\exists X_{\Gamma}$ and $\forall X_{\Gamma}$ are left and right adjoint to $\mathbb{P}(\pi_{\Gamma,X})$.

$$\exists X_{\Gamma}(a) \le b \quad \text{iff} \quad a \le \mathbb{P}(\pi_{\Gamma,X})(b) \text{ and} \\ \mathbb{P}(\pi_{\Gamma,X})(b) \le a \quad \text{iff} \quad b \le \forall X_{\Gamma}(a).$$

¹²Biering et al. BI-Hyperdoctrines, Higher-Order SL and Abstraction. 2005.

A BI hyperdoctrine¹³ is a tuple

$$(\mathbb{P}: \mathbb{C}^{op} \to \operatorname{Poset}, (=_X)_{X \in Ob(\mathbb{C})}, (\exists X_{\Gamma}, \forall X_{\Gamma})_{\Gamma, X \in Ob(\mathbb{C})})$$

such that:

- 1. Stuff to interpret sorts and substitution
- 2. Stuff to interpret predicates and propositional connectives
- 3. Diagonal morphisms $\Delta_X : X \to X \times X$ has $=_X \in \mathbb{P}(X \times X)$ adjoint at $\top_{\mathbb{P}(X)}$.

 $\top_{\mathbb{P}(X)} \leq \mathbb{P}(\Delta_X)(a) \text{ iff } =_X \leq a;$

4. $\exists X_{\Gamma}$ and $\forall X_{\Gamma}$ are left and right adjoint to $\mathbb{P}(\pi_{\Gamma,X})$.

$$\exists X_{\Gamma}(a) \le b \quad \text{iff} \quad a \le \mathbb{P}(\pi_{\Gamma,X})(b) \text{ and} \\ \mathbb{P}(\pi_{\Gamma,X})(b) \le a \quad \text{iff} \quad b \le \forall X_{\Gamma}(a).$$

¹³Biering et al. BI-Hyperdoctrines, Higher-Order SL and Abstraction. 2005.

A BI hyperdoctrine¹⁴ is a tuple

$$(\mathbb{P}: \mathbb{C}^{op} \to \operatorname{Poset}, (=_X)_{X \in Ob(\mathbb{C})}, (\exists X_{\Gamma}, \forall X_{\Gamma})_{\Gamma, X \in Ob(\mathbb{C})})$$

such that:

- 1. Stuff to interpret sorts and substitution
- 2. Stuff to interpret predicates and propositional connectives
- 3. Stuff to interpret equality
- 4. $\exists X_{\Gamma}$ and $\forall X_{\Gamma}$ are left and right adjoint to $\mathbb{P}(\pi_{\Gamma,X})$.

$$\exists X_{\Gamma}(a) \le b \quad \text{iff} \quad a \le \mathbb{P}(\pi_{\Gamma,X})(b) \text{ and} \\ \mathbb{P}(\pi_{\Gamma,X})(b) \le a \quad \text{iff} \quad b \le \forall X_{\Gamma}(a).$$

¹⁴Biering et al. BI-Hyperdoctrines, Higher-Order SL and Abstraction. 2005.

A BI hyperdoctrine¹⁵ is a tuple

$$(\mathbb{P}: \mathbb{C}^{op} \to \operatorname{Poset}, (=_X)_{X \in Ob(\mathbb{C})}, (\exists X_{\Gamma}, \forall X_{\Gamma})_{\Gamma, X \in Ob(\mathbb{C})})$$

such that:

- 1. Stuff to interpret sorts and substitution
- 2. Stuff to interpret predicates and propositional connectives
- 3. Stuff to interpret equality
- 4. Stuff to interpret quantifiers

¹⁵Biering et al. BI-Hyperdoctrines, Higher-Order SL and Abstraction. 2005.

Indexed BI Spaces

An *indexed BI Space* is a functor $\mathcal{R} : C \to BISp$ such that

- 1. C is a category with finite products;
- 2. For all objects Γ , Γ' and X in C, all morphisms $s : \Gamma \to \Gamma'$ and all product projections $\pi_{\Gamma,X}$, $\mathcal{R}(\pi_{\Gamma',X})(y) \sqsubseteq \mathcal{R}(s)(x)$ implies there exists z such that: $\mathcal{R}(\pi_{\Gamma,X})(z) \sqsubseteq x$ and $y \sqsubseteq \mathcal{R}(s \times id_X)(z)$;¹⁶

¹⁶Coumans. Duality for First-Order Logic. Slides. 2010

Indexed BI Spaces

An *indexed BI Space* is a functor $\mathcal{R} : C \to BISp$ such that

- 1. C is a category with finite products;
- 2. For all objects Γ , Γ' and X in C, all morphisms $s : \Gamma \to \Gamma'$ and all product projections $\pi_{\Gamma,X}$, $\mathcal{R}(\pi_{\Gamma',X})(y) \sqsubseteq \mathcal{R}(s)(x)$ implies there exists z such that: $\mathcal{R}(\pi_{\Gamma,X})(z) \sqsubseteq x$ and $y \sqsubseteq \mathcal{R}(s \times id_X)(z)$;¹⁶

Example

Separation Logic's RAM model!

¹⁶Coumans. Duality for First-Order Logic. Slides. 2010

Indexed BI Spaces

An indexed BI Space is a functor $\mathcal{R} : C \to BISp$ such that

- 1. C is a category with finite products;
- 2. For all objects Γ , Γ' and X in C, all morphisms $s : \Gamma \to \Gamma'$ and all product projections $\pi_{\Gamma,X}$, $\mathcal{R}(\pi_{\Gamma',X})(y) \sqsubseteq \mathcal{R}(s)(x)$ implies there exists z such that: $\mathcal{R}(\pi_{\Gamma,X})(z) \sqsubseteq x$ and $y \sqsubseteq \mathcal{R}(s \times id_X)(z)$;¹⁶

Example

Separation Logic's RAM model!

Theorem

The categories of BI hyperdoctrines and indexed BI spaces are dually equivalent.

¹⁶Coumans. Duality for First-Order Logic. Slides. 2010
A class of frames C is definable in bunched logic L iff exists formulae Σ ⊆ L s.t. R ∈ C iff R ⊨ Σ.

Theorem (Bunched Logic Goldblatt Thomason Theorem) A class of \mathcal{L} frames is definable iff it is closed under bounded morphic images

A class of frames C is definable in bunched logic L iff exists formulae Σ ⊆ L s.t. R ∈ C iff R ⊨ Σ.

Theorem (Bunched Logic Goldblatt Thomason Theorem) A class of \mathcal{L} frames is definable iff it is closed under bounded morphic images, generated subframes

A class of frames C is definable in bunched logic L iff exists formulae Σ ⊆ L s.t. R ∈ C iff R ⊨ Σ.

Theorem (Bunched Logic Goldblatt Thomason Theorem) A class of \mathcal{L} frames is definable iff it is closed under bounded morphic images, generated subframes and disjoint unions,

A class of frames C is definable in bunched logic L iff exists formulae Σ ⊆ L s.t. R ∈ C iff R ⊨ Σ.

Theorem (Bunched Logic Goldblatt Thomason Theorem) A class of \mathcal{L} frames is definable iff it is closed under bounded morphic images, generated subframes and disjoint unions, and reflects prime extensions.

A Goldblatt-Thomason Theorem

A class of frames C is definable in bunched logic L iff exists formulae Σ ⊆ L s.t. R ∈ C iff R ⊨ Σ.

Theorem (Bunched Logic Goldblatt Thomason Theorem) A class of \mathcal{L} frames is definable iff it is closed under bounded morphic images, generated subframes and disjoint unions, and reflects prime extensions.

(Prime extension: the prime filter frame built from the complex algebra of a frame)

A Goldblatt-Thomason Theorem

A class of frames C is definable in bunched logic L iff exists formulae Σ ⊆ L s.t. R ∈ C iff R ⊨ Σ.

Theorem (Bunched Logic Goldblatt Thomason Theorem) A class of \mathcal{L} frames is definable iff it is closed under bounded morphic images, generated subframes and disjoint unions, and reflects prime extensions.

(Prime extension: the prime filter frame built from the complex algebra of a frame)

 Easy: closure properties (use duality + HSP theorem (bunched logic algebras form varieties)).

A Goldblatt-Thomason Theorem

A class of frames C is definable in bunched logic L iff exists formulae Σ ⊆ L s.t. R ∈ C iff R ⊨ Σ.

Theorem (Bunched Logic Goldblatt Thomason Theorem) A class of \mathcal{L} frames is definable iff it is closed under bounded

morphic images, generated subframes and disjoint unions, and reflects prime extensions.

(Prime extension: the prime filter frame built from the complex algebra of a frame)

- Easy: closure properties (use duality + HSP theorem (bunched logic algebras form varieties)).
- Harder: reflection (need: every prime extension the bounded morphic image of an ultrapower frame – extends (Rodenburg 1986)).

Application of Goldblatt-Thomason to Separation Logic

 Abstract Separation Logic: attempt to capture salient features of memory models as subclasses of BI frames.

Example

A Separation Algebra is a cancellative, partial commutative monoid.

(Cancellative: $x \circ z = y \circ z$ implies x = y.)

¹⁷SD, Pym. Modular Tableaux for Separation Theories. FOSSACS 2018.

Application of Goldblatt-Thomason to Separation Logic

 Abstract Separation Logic: attempt to capture salient features of memory models as subclasses of BI frames.

Example

A Separation Algebra is a cancellative, partial commutative monoid.

(Cancellative: $x \circ z = y \circ z$ implies x = y.)

Theorem

Separation algebras are not BI definable.

Proof.

By failure of Goldblatt-Thomason closure properties.

 Instead: systematic labelled proof theory to nonetheless capture these classes¹⁷

¹⁷SD, Pym. Modular Tableaux for Separation Theories. FOSSACS 2018.

Further Work & Conclusions

More uniformity?

Sahlqvist-style correspondence theory of bunched logics.

- More uniformity? Sahlqvist-style correspondence theory of bunched logics.
- More Separation Logic?
 Extension to semantics of program execution.

- More uniformity? Sahlqvist-style correspondence theory of bunched logics.
- More Separation Logic?
 Extension to semantics of program execution.
- More algebra?

Connections to algebraic theory of completions.

- More uniformity? Sahlqvist-style correspondence theory of bunched logics.
- More Separation Logic?
 Extension to semantics of program execution.
- More algebra? Connections to algebraic theory of completions.
- More topology?

Topological models of resource.

- More uniformity? Sahlqvist-style correspondence theory of bunched logics.
- More Separation Logic?
 Extension to semantics of program execution.
- More algebra? Connections to algebraic theory of completions.
- More topology? Topological models of resource.
- More logic?

Natural duality and many-valued variants of bunched logics. Goldblatt-Thomason for first-order bunched logics

Bunched logics facilitate descriptive resource reasoning.

- Bunched logics facilitate descriptive resource reasoning.
- Can be systematically understood (TACL!) with duality theory.

- Bunched logics facilitate descriptive resource reasoning.
- Can be systematically understood (TACL!) with duality theory.
- This can be lifted to Separation Logic structures.

- Bunched logics facilitate descriptive resource reasoning.
- Can be systematically understood (TACL!) with duality theory.
- This can be lifted to Separation Logic structures.
- Application of modal model theory-style results to SL.

- Bunched logics facilitate descriptive resource reasoning.
- Can be systematically understood (TACL!) with duality theory.
- This can be lifted to Separation Logic structures.
- Application of modal model theory-style results to SL.
- There are substructural logics having a direct impact on billions of people, highly amenable to the techniques of this community!

- Bunched logics facilitate descriptive resource reasoning.
- Can be systematically understood (TACL!) with duality theory.
- This can be lifted to Separation Logic structures.
- Application of modal model theory-style results to SL.
- There are substructural logics having a direct impact on billions of people, highly amenable to the techniques of this community!
- Full details: my PhD thesis, or SD & Pym. Stone-Type Dualities for Separation Logics. LMCS, 2019.

Thanks!