Topological representations of congruence lattices

Miroslav Ploščica

Šafárik's University, Košice, Slovakia
June 19, 2019

Congruence lattices

Problem. For a given class \mathcal{K} of algebras describe $\operatorname{Con} \mathcal{K}=$ all lattices isomorphic to Con A for some $A \in \mathcal{K}$.

Or, at least,
for given classes \mathcal{K}, \mathcal{L} determine if $\operatorname{Con} \mathcal{K}=\operatorname{Con} \mathcal{L}$ and, if Con $\mathcal{K} \nsubseteq$ Con \mathcal{L}, determine

$$
\operatorname{Crit}(\mathcal{K}, \mathcal{L})=\min \left\{\operatorname{card}\left(L_{c}\right) \mid L \in \operatorname{Con} \mathcal{K} \backslash \operatorname{Con} \mathcal{L}\right\}
$$

($L_{c}=$ compact elements of L)

Two approaches

In the sequel we assume that \mathcal{K} is a finitely generated congruence-distributive variety. Even under such restrictions, the problem of describing of Con \mathcal{K} is still hard. There are two main approaches: topological representations and lifting of semilattice diagrams. We try to connect these two methods.

Topological approach

$\mathrm{M}(L) \ldots$. completely meet-irreducible elements of a lattice L, including the top element
($a=\inf X$ implies $a \in X$)
Fact: if L is algebraic, then every element is a meet of completely meet-irreducible elements.
Topology on $\mathrm{M}(L)$: all sets of the form

$$
\mathrm{M}(L) \cap \uparrow x=\{a \in \mathrm{M}(L) \mid a \geq x\}
$$

are closed.

Theorem

If L is distributive algebraic, then $L \cong \mathcal{O}(\mathrm{M}(L)$). (The lattice of all proper open subsets of $\mathrm{M}(L)$.

Topological approach

If $L=\operatorname{Con} A$ (A in a fin. generated CD variety), then the basis of the topology is given by all sets of the form

$$
U(B, \delta)=\{\alpha \in \mathrm{M}(\operatorname{Con} A) \mid \alpha \upharpoonright B \leq \delta\}
$$

where B is a finite subalgebra of A and $\delta \in \operatorname{Con} B$.
Sometimes the properties of Con A are more effectively expressed as topological properties of $\mathrm{M}(\operatorname{Con} A)$. A sample:

- If A is a distributive lattice, then $\mathrm{M}(\operatorname{Con} A) \backslash\{1\}$ is Hausdorff.
- There exists a countable $B \in \mathbf{M}_{3}$ (the lattice variety generated by M_{3}) such that $\mathrm{M}(\operatorname{Con} B) \backslash\{1\}$ is not Hausdorff.
- Therefore, $\operatorname{Con}\left(\mathbf{M}_{3}\right) \nsubseteq \operatorname{Con}(\mathbf{D})$.

The topological approach was used to establish e.g.
$\operatorname{Crit}\left(\mathbf{M}_{4}, \mathbf{M}_{3}\right)=\aleph_{2}$. (But the argument is much more complicated.)

Lattice M_{n}

Con functor

The Con functor:

For any homomorphism of algebras $f: A \rightarrow B$ we define

$$
\operatorname{Con} f: \operatorname{Con} A \rightarrow \operatorname{Con} B
$$

by
$\alpha \mapsto$ congruence generated by $\{(f(x), f(y)) \mid(x, y) \in \alpha\}$.
Fact. Con f preserves \vee and 0 , not necessarily \wedge.

Lifting of semilattice morphisms

Let

- $\varphi: S \rightarrow T$ be a ($\vee, 0$)-homomorphisms of lattices;
- $f: A \rightarrow B$ be a homomorphisms of algebras.

We say that f lifts φ, if there are isomorphisms $\psi_{1}: S \rightarrow \operatorname{Con} A$, $\psi_{2}: T \rightarrow \operatorname{Con} B$ such that

commutes.
A generalization: lifting of semilattice diagrams

Result of P. Gillibert

Let \mathcal{K}, \mathcal{L} be finitely generated congruence distributive varieties.

Theorem

TFAE

- Con $\mathcal{K} \nsubseteq \operatorname{Con} \mathcal{L}$;
- there exists a diagram of finite $(\vee, 0)$-semilattices indexed by a finite ordered set liftable in \mathcal{K} but not in \mathcal{L}

Looking for a link

So, the list of all finite semilattice diagrams liftable in \mathcal{K} characterizes the class $\operatorname{Con}(\mathcal{K})$. However, it is not clear what the (un)liftability of a particular diagram means for the properties of lattices Con A with $A \in \mathcal{K}$.

We provide a partial answer. We start with diagrams consisting of a single arrow.

Convergence of nets

Let $N=\left(k_{p} \mid p \in P\right)$ be a net in a topological space X, and let $Y \subseteq X$. We say that N converges precisely to Y if

- every $y \in Y$ is a limit point of N;
- no $y \in X \backslash Y$ is an accumulation point of N.

Separability

Let $s: S_{0} \rightarrow S_{1}$ be a $(\vee, 0)$ - homomorphism of finite distributive lattices. Let $s \leftarrow$ be the dual ($\wedge, 1)$-homomorphism defined by

$$
s^{\leftarrow}(\beta)=\bigvee\left\{\alpha \in S_{0} \mid s(\alpha) \leq \beta\right\}
$$

Let X be a topological space, let \leq be its specialization order ($x \leq y$ iff y is in the closure of $\{x\}$).
Let K_{i} denote the set of all order embeddings $\mathrm{M}\left(S_{i}\right) \rightarrow X$ whose range is an upper subset of X.

Definition

We say that X is s-nonseparable, if there exist $k_{0} \in K_{0}$ and a net ($k_{p} \mid p \in P$) in K_{1} such that for every $\beta \in \mathrm{M}\left(S_{1}\right)$ the net $\left(k_{p}(\beta) \mid p \in P\right)$ converges precisely to the set
$\left\{k_{0}(\alpha) \mid \alpha \in \mathrm{M}\left(S_{0}\right), \alpha \geq s^{\leftarrow}(\beta)\right\}$.

Result for single arrow

Theorem
TFAE

- $\mathrm{M}(\operatorname{Con} A)$ is s-nonseparable for some $A \in \mathcal{K}$;
- $\mathrm{M}\left(\operatorname{Con} F\left(\aleph_{0}\right)\right)$ is s-nonseparable $\left(F\left(\aleph_{0}\right)\right.$ free in $\left.\mathcal{K}\right)$;
- s has a lifting in \mathcal{K}.

Example1

The semilattice homomorphism

$s(0)$
has a lifting in \mathbf{D} (distributive lattices), but not in \mathbf{D}^{01} (bounded distributive lattices). Therefore, $\operatorname{Crit}\left(\mathbf{D}, \mathbf{D}^{01}\right) \leq \aleph_{0}$. Intuitively: in Con D, where D is a distributive lattice, a sequence of coatoms can converge to the top element. This cannot happen when D is bounded.

Example2

The semilattice homomorphism

has a lifting in \mathbf{M}_{3} (the embedding of a 3-element chain into M_{3} lifts it), but not in \mathbf{D}. Therefore, $\operatorname{Crit}\left(\mathbf{M}_{3}, \mathbf{D}\right) \leq \aleph_{0}$.

Diagrams indexed by finite chains

Let \mathcal{S} be the diagram

$$
S_{0} \xrightarrow{s_{01}} S_{1} \xrightarrow{s_{12}} S_{2} \xrightarrow{s_{23}} \ldots \xrightarrow{s_{n-1, n}} S_{n}
$$

of finite distributive lattices and ($V, 0$)-homomorphisms. Let X be a topological space, let K_{i} denote the set of all order embeddings $\mathrm{M}\left(S_{i}\right) \rightarrow X$ whose range is an upper subset of X.

Definition

We say that X is \mathcal{S}-nonseparable, if there exist $k_{0} \in K_{0}$ and nets $\left(k_{p} \mid p \in P_{1} \times \ldots P_{i}\right)$ in K_{i} such that for every $\beta \in \mathrm{M}\left(S_{i}\right)$ and every $r=\left(p_{1}, \ldots, p_{i-1}\right) \in P_{1} \times \ldots P_{i-1}$ the net $\left(k_{\left(r, p_{i}\right)}(\beta) \mid p_{i} \in P_{i}\right)$ converges precisely to the set $\left\{k_{r}(\alpha) \mid \alpha \in \mathrm{M}\left(S_{i-1}\right), \alpha \geq s_{i-1,1}^{\leftarrow}(\beta)\right\}$.

Result for finite chains

Theorem
TFAE

- $\mathrm{M}(\operatorname{Con} A)$ is \mathcal{S}-nonseparable for some $A \in \mathcal{K}$;
- $\mathrm{M}\left(\operatorname{Con} F\left(\aleph_{0}\right)\right)$ is \mathcal{S}-nonseparable $\left(F\left(\aleph_{0}\right)\right.$ free in $\left.\mathcal{K}\right)$;
- \mathcal{S} has a lifting in \mathcal{K}.

Example3

Consider the following lattices

Example3

Consider the diagram \mathcal{A} in $\operatorname{HSP}(L)$:

Then $\mathcal{S}=\operatorname{Con} \mathcal{A}$ has a lifting in $H S P(L)$, but not in $H S P(M)$. Therefore, $\operatorname{Crit}(H S P(L), H S P(M)) \leq \aleph_{0}$.

Congruence intersection

A variety V has the Compact Congruence Intersection Property (CCIP) if the intersection of two compact congruences on any $A \in \mathbf{V}$ is compact.
Examples:

- Boolean algebras;
- distributive lattices;
- Stone algebras;
- $\operatorname{HSP}(A)$, where A is a finite algebra generating a CD variety, which has no proper subalgebras.

Congruence intersection

For varieties vith CCIP we have a nicer topological representation of congruence lattices. Since $\operatorname{Con}_{c} A$ is now a distributive lattice, we can consider its Priestley dual space. This space has the same underlying set as before (prime ideals of $\mathrm{Con}_{c} A$ correspond to completely \wedge-irreducible elements of $\operatorname{Con} A$), but the basis of the topology consists of all sets of the form

$$
U(B, \delta)=\{\alpha \in \mathrm{M}(\operatorname{Con} A) \mid \alpha \upharpoonright B=\delta\}
$$

where B is a finite subalgebra of A and $\delta \in \operatorname{Con} B$.

Congruence intersection

Using this representation is convenient because

- the spaces $\mathrm{M}(\operatorname{Con} A)$ are Hausdorff, so nets can have only one limit points;
- if $f: A \rightarrow B$ is a homomorphism of finite algebras, then Con f is a lattice homomorphism (preserves meets);
- $(\operatorname{Con} f)^{\leftarrow}(\beta) \in \mathrm{M}(\operatorname{Con} A)$ whenever $\beta \in \mathrm{M}(\operatorname{Con} B)$.

Congruence intersection

This enables to simplify the definition of \mathcal{S}-nonseparability.

Definition

We say that X is \mathcal{S}-nonseparable, if there exist $k_{0} \in K_{0}$ and nets $\left(k_{p} \mid p \in P_{1} \times \ldots P_{i}\right)$ in K_{i} such that for every $\beta \in \mathrm{M}\left(S_{i}\right)$ and every $r=\left(p_{1}, \ldots, p_{i-1}\right) \in P_{1} \times \ldots P_{i-1}$ the net $\left(k_{\left(r, p_{i}\right)}(\beta) \mid p_{i} \in P_{i}\right)$ converges to $k_{r}\left(s_{i-1,1}^{\leftarrow}(\beta)\right)$.

Under this definition, the previous theorems hold exactly as stated.

Finite chains are not enough

There are varieties \mathcal{K} and \mathcal{L} such that $\operatorname{Con} \mathcal{K} \neq \operatorname{Con} \mathcal{L}$, but exactly the same diagrams indexed by finite chains have lifting in \mathcal{K} as in \mathcal{L}. So, we need \mathcal{S}-nonseparability for other types of index sets. So far, I am only able to do it in the following special case.
A poset P is a generalized chain if it has a smallest element and any two subsets of the form $\downarrow x \backslash\{x\}$ are comparable (with respect to inclusion).

Square diagrams - CCIP version

Let \mathcal{S} be the commutative diagram

$$
\begin{array}{rrr}
S_{0} & \xrightarrow{s_{01}} S_{1} \\
s_{02} \downarrow & s_{13} \downarrow \\
S_{2} & \xrightarrow{s_{23}} & S_{3}
\end{array}
$$

of finite distributive lattices and lattice 0 -homomorphisms.

Definition

We say that X is \mathcal{S}-nonseparable, if there exist $k_{0} \in K_{0}$ such that for every open set $U_{k_{0}}$ containing k_{0} and every family
($U_{k} \mid k \in K_{1} \cup K_{2}$) (U_{k} containing k) there are $k_{1} \in K_{1}, k_{2} \in K_{2}$, $k_{3} \in K_{3}$ such that $k_{j}(\beta) \in U_{k_{i}}\left(s_{i j}\right)$ for every arrow $s_{i j}$ and every $\beta \in \mathrm{M}\left(S_{j}\right)$.
$U_{k}=\left(U_{k}(\alpha) \mid \alpha \in \mathrm{M}\left(S_{i}\right)\right) \subseteq X^{M\left(S_{i}\right)}$ and $k \in U_{k}$ means $k(\alpha) \in U_{k}(\alpha)$ for every α.

Result for square diagrams

K......CCIP
\mathcal{S}......square diagram

Theorem

TFAE

- $\mathrm{M}(\operatorname{Con} A)$ is \mathcal{S}-nonseparable for some $A \in \mathcal{K}$;
- $\mathrm{M}\left(\operatorname{Con} F\left(\aleph_{1}\right)\right)$ is \mathcal{S}-nonseparable $\left(F\left(\aleph_{1}\right)\right.$ free in $\left.\mathcal{K}\right)$;
- \mathcal{S} has a lifting in \mathcal{K}.

A similar theorem holds for diagrams indexed by finite generalized chains.

Finite generalised chains are still not enough

We have Con $\mathbf{M}_{4} \neq$ Con \mathbf{M}_{3}, but exactly the same diagrams indexed by finite generalized chains have lifting in these varieties. The diagram distinguishing them:

M3 versus M4

Topological representations of congruence lattices

Gillibert's bound

Theorem
 Let \mathcal{K} and \mathcal{L} be finitely generated $C D$ varieties such that Con $\mathcal{K} \nsubseteq \operatorname{Con} \mathcal{L}$. Then $\operatorname{Con} F_{\mathcal{K}}\left(\aleph_{2}\right) \notin \operatorname{Con} \mathcal{L}$.

Conjecture: for CCIP varieties, the cardinality \aleph_{2} can be replaced by \aleph_{1}.

