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S,T first order theories, F : A := Mod(T)→ Mod(S) =: B a functor
between their categories of models.

Questions:

(i) Is every B ∈ B isomorphic to F (A) for some A ∈ A?

(ii) Is every B ∈ B elementarily equivalent to F (A) for some A ∈ A?

(iii) What is the elementary class generated by the essential image of F︸ ︷︷ ︸
:=Mod(

⋂
A∈A Th(F (A)))

?

Rephrasing of (iii): Is there some first order statement true for every F (A),
but not for all Bs ?
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Examples

Example 1: Dilworth’s congruence lattice problem

Lat → AlgDistLat
L 7→ Con(L)

Question (Dilworth 1940s) : Is every AlgDistLat of the form Con(L)?
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Examples

Example 1: Dilworth’s congruence lattice problem

Lat → DistSemLat
L 7→ Conc(L)

Question: Is every DistSemLat of the form Conc(L)?

Theorem (Huhn 1985): Every DistSemLat of cardinality ≤ ℵ1 is of the
form Conc(L).

Theorem (Wehrung/Tůma 2007/9): There are DistSemLats of cardinality
≥ ℵ2 not of the form Conc(L).

Corollary: @ first order sentence holding for all Conc(L), but not for general
DistSemLats.
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Theorem (Wehrung/Tůma 2007/9): There are DistSemLats of cardinality
≥ ℵ2 not of the form Conc(L).

Corollary: @ first order sentence holding for all Conc(L), but not for general
DistSemLats.

P. Arndt Ranges of functors TACL, 19.6.2019 5 / 34



Examples

Example 1: Dilworth’s congruence lattice problem

Lat → DistSemLat
L 7→ Conc(L)

Question: Is every DistSemLat of the form Conc(L)?

Theorem (Huhn 1985): Every DistSemLat of cardinality ≤ ℵ1 is of the
form Conc(L).
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Examples

My motivating examples:
– Representation problem for special groups (quadratic form theory)
– Which graded Z/2-algebras arise as Milnor K-theory of a field? (possible
applications to inverse Galois problem)

What are your examples?
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Some fragments of L∞κ

Definition: Let κ be a cardinal, Σ a first order signature.

(i) A κ-geometric formula is a formula built from atomic formulas, >,⊥,
using

∨
j∈J (J a set),

∧
i∈I (|I | < κ) and ∃{xi}i∈I (|I | < κ).

(ii) A κ-geometric theory is a theory which can be axiomatized by
formulas of the form ∀{xi} φ→ ψ, where φ, ψ are κ-geometric
formulas. (κ-geometric sequents)

(iii) For a class of Σ-structures C denote by Thκ-geom(C) the κ-geometric
theory of C, i.e. the set of all κ-geometric sequents that are valid in
every member of C.

(iv) Denote by Th¬-κ-geom(C) the set of negations of κ-geometric formulas
(i.e. sequents of the form ∀x̄ φ→ ⊥), that are valid in every member
of C.
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Accessible categories

Definition: Let κ be a regular cardinal.

(i) A diagram is κ-directed if...

Ai

Aj A

...

A<κ
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Accessible categories

Definition: Let κ be a regular cardinal.
(i) A diagram is κ-directed if...

Ai

))Aj
// A

...

A<κ

<<
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Accessible categories

Definition: Let κ be a regular cardinal.

(i) A diagram is κ-directed if...

(ii) An object A is κ-presentable if for all κ-directed diagrams D

Hom(A, colim D) ∼= colimd∈ObD Hom(A, d)

(iii) A category is κ-accessible if all κ-directed colimits exist and there is a
set of κ-presentable objects, s.t. every object is a κ-directed colimit of these.

Examples:
– Any variety is ℵ0-accessible. (“finitely accessible”)
– Fields is ℵ0-accessible
– Theorem: T finitary first order theory over a countable signature. Then
Mod(T) is ℵ1-accessible.
– Theorem: The κ-accessible categories are exactly the ones of the form
Mod(T) for a κ-geometric theory T.
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The result

Theorem (A.): Let A, B be κ-accessible categories, A = Mod(T),
B = Mod(S) for κ-geometric theories. Denote by Aκ,Bκ the subcategories
of κ-presentable objects. Suppose we have

A F // B

...and restricting to Aκ
Fκ //?�

OO

Bκ
?�

OO preserving κ-filtered colimits

Then the following hold:

(a) If Fκ is essentially surjective, then Thκ-geom(F (A)) = Thκ-geom(B).
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Example

Example 1: (Dilworth’s congruence lattice problem)

Lat → DistSemLat
L 7→ Conc(L)

preserves ℵ1-filtered colimits and ℵ1-presentable objects.

Theorem (Huhn 1985): Every DistSemLat of cardinality ≤ ℵ1 is of the
form Conc(L).

Corollary: @ an ℵ1-geometric sequent that holds for all Conc(L) but not for
general DistSemLats.

P. Arndt Ranges of functors TACL, 19.6.2019 12 / 34



The result

Theorem (A.): Let A, B be κ-accessible categories, A = Mod(T),
B = Mod(S) for κ-geometric theories. Denote by Aκ,Bκ the subcategories
of κ-presentable objects. Suppose we have

A F // B

...and restricting to Aκ
Fκ //?�

OO

Bκ
?�

OO preserving κ-filtered colimits

Then the following hold:

(a) If Fκ is essentially surjective, then Thκ-geom(F (A)) = Thκ-geom(B).

More generally: For different such functors F : A → B, F ′ : A′ → B one has
Thκ-geom(F (A)) = Thκ-geom(F ′(A′)) ⊇ S if and only if Fκ(A) and F ′κ(A′)
have equivalent idempotent completions.
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Example

Example 2: κ = ℵ0, B = Groups, A = Mod(Thgeom(F (n))) where F (n) is
the free group on n generators.

Theorem (Kharlampovich-Myasnikov/Sela 2006): The first order theories
of all finitely generated free groups coincide.

Not true in L∞,ω: ∃x1, . . . , xn ∀y
∨

w∈words(x1,...,xn) y = w .

Proposition: For m < n we have Thgeom(F (m)) 6= Thgeom(F (n)).

Proof: Idempotent closure of F (n) is {F (1), . . . ,F (n))} - these are
different for different n. �

Actually for m < n we have Thgeom(F (n)) ( Thgeom(F (m)).
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The result

Theorem (A.)(continued): Let A, B be κ-accessible categories,
A = Mod(T), B = Mod(S) for κ-geometric theories. Denote by Aκ,Bκ the
subcategories of κ-presentable objects. Suppose we have F : A → B
preserving κ-filtered colimits and κ-presentable objects.

Then the following hold:

(b) If Fκ : Aκ → Bκ is fully faithful, then F (A) = Mod(S′) for some
axiomatic extension S′ ⊇ S (i.e. the essential image F (A) can be
characterized by additional κ-geometric sequents in the language of S).

(c) If one has that every B ∈ Bκ admits a morphism to F (A), for some
A ∈ Aκ, then Th¬-κ-geom(F (A)) = Th¬-κ-geom(B), i.e. the objects in the
essential image of F and general objects of B satisfy exactly the same
negations of κ-geometric formulas.
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About the proof

Toposes

TopSpaces

88

GeomTheories

gggg
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About the proof

Toposes

TopSpaces

88

Sh(X )

∈

GeomTheories

gggg

X
0

88

∈
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Toposes

TopSpaces

88

Sh(X )

f∗
��

∈

GeomTheories

gggg

X
1

88

f
��

∈

Sh(Y )

f ∗

OO

`

Y
0

88

For good enough spaces:
– f surjective ⇔ f ∗ faithful
– f embedding ⇔ f∗ fully faithful
– f (X ) dense in Y ⇔ f∗(0) ∼= 0
– f closed inclusion ⇔ f ∗(G ) ∼= G × U for a subterminal object U
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Toposes

TopSpaces

88

Sh(X )

f∗
��

∈

GeomTheories

gggg

X
1

88

f
��

∈

Sh(Y )

f ∗

OO

`

Y
0

88

For good enough spaces:
– f surjective ⇔ f ∗ faithful ⇔: (f∗, f

∗) is a surjective geometric morphism
– f embedding ⇔ f∗ fully faithful ⇔: (f∗, f

∗) is an inclusion
– f (X ) dense in Y ⇔ f∗(0) ∼= 0 ⇔: (f∗, f

∗) is dominant
– f closed inclusion ⇔ f ∗(G ) ∼= G × U ⇔: (f∗, f

∗) is a closed inclusion
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Factorization

In TopSpaces:

X
f //

!! !!

Y

f (X ) �
� // f (X )

. �

==

In Toposes:

E
(f∗,f ∗) //

    

F

F ′ �
� // F ′′

. �

>>
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Factorization

In Toposes:

E
(f∗,f ∗) //

    

F

F ′ �
� // F ′′

. �

>>

For classifying toposes:

Set[T]
(f∗,f ∗) //

$$ $$

Set[S]

Set[S′] �
� // Set[S′′]

, �

::

S′ ⊇ S′′ ⊇ S axiomatic extensions over the same signature.
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Factorization

For classifying toposes:

f ∗(MS)

∈
MS
∈

�oo

Set[T]
(f∗,f ∗) //

$$ $$

Set[S]

Set[S′] �
� // Set[S′′]

, �

::

S′ ⊇ S′′ ⊇ S axiomatic extensions over the same signature, namely:

S′ = {geometric sequents satisfied by f ∗(MS)} = Thgeom(f ∗(MS))

S′′ = {negations of geometric formulas satisfied by f ∗(MS)} ∪ S
= Th¬-geom(f ∗(MS)) ∪ S
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About the proof

Definition: A κ-geometric morphism is a geometric morphism (f∗, f
∗) such

that f ∗ preserves κ-small limits.

Fact: A κ-accessible category A is the category of Set-valued models of the
κ-geometric theory T classified by the topos SetA

op
κ :

A ' Mod(T) ' κ-geom(Set, SetA
op
κ )
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About the proof

A ' Mod(T) ' κ-geom(Set, SetA
op
κ )

The hypotheses ensure that the functor F : A = Mod(T)→ Mod(S) = B is
induced by composing with a κ-geometric morphism

Set[T]κ := SetA
op
κ → SetB

op
κ =: Set[S]κ

Set

��
Set[T]κ

(f∗,f ∗) // Set[S]κ
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About the proof

A ' Mod(T) ' κ-geom(Set, SetA
op
κ )

Factorize this morphism as

Set

��
Set[T]κ

(f∗,f ∗) //

%% %%

Set[S]κ

Set[S′]κ �
� // Set[S′′]κ

+ �

99
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About the proof

Set[T]
(f∗,f ∗) //

$$

Set[S]

Set[S′] // Set[S′′]

::

where S′ ⊇ S′′ ⊇ S are axiomatic extensions over the same signature,
namely:

S′ := Thκ-geom(F (A))

S′′ := Th¬-κ-geom(F (A)) ∪ S
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About the proof

Set[T]
(f∗,f ∗) //

$$

Set[S]

Set[S′] // Set[S′′]

::

where S′ ⊇ S′′ ⊇ S are axiomatic extensions over the same signature,
namely: S′ := Thκ-geom(F (A)), S′′ := Th¬-κ-geom(F (A)) ∪ S

The conditions on Fκ ensure

– in case (a): that the 2nd and 3rd morphisms are equivalences
– in case (b): that the 1st morphism is an equivalence
– in case (c): that the 3rd morphism is an equivalence
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About the proof

The factorization is a κ-geometric variant of the

surjection - dense inclusion - closed inclusion

factorization from topos theory.

This factorization becomes computable, and the conditions on Fκ
exploitable, because

1. the toposes are presheaf toposes
2. the geometric morphisms are “essential”

(i.e. induced by functors between the index categories)

(using joint work with Eduardo Ochs)

Both 1. and 2. are made possible by passage from geometric to κ-geometric
morphisms!
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κ-geometric morphisms

Recall: A κ-geometric morphism is a geometric morphism (f∗, f
∗) such that

f ∗ preserves κ-small limits.

Proposition(A.): For a κ-geometric morphism (f∗, f
∗) the above

factorization yields κ-geometric morphisms.

How to compute the factorization?
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A functor between small categories f : C → D yields a κ-geometric
morphism

SetC
Ranf // SetD
−◦f

oo

Proposition (joint w/ Eduardo Ochs): For this geometric morphism the
factorization is induced by a factorization of f :

C
f //

    

D

D ′ �
� // D ′′

. �

>>

where
– D ′ is the full subcategory of D whose objects are in the image of f
– D ′′ is the full subcategory of D whose objects admit a morphism into the
image of f
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Thus we get:

SetC
f //

## ##

SetD

SetD
′ � � // SetD

′′
, �

;;

where
– D ′ is the full subcategory of D whose objects are in the image of f
– D ′′ is the full subcategory of D whose objects admit a morphism into the
image of f

When proving the theorem we are in this situation:
– Set[T]κ ' SetAκ is a presheaf category
– F (Aκ) ⊆ Bκ ensures that SetA

op
κ → SetB

op
κ is induced by

Fκ : (Aκ)op → Bopκ
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Afterthoughts

Advantages of being able to choose κ > ℵ0:
– includes all accessible categories into the scope
– ensures that our categories are models of κ-geometric theories of presheaf
type ⇒ can apply the easy factorization theorem.
– often makes sure that κ-presentable objects are preserved
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Afterthoughts

Continuations:
– applications
– exploit other factorizations
– ∞-categorical version
– relation to Wehrung’s work?
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